

MATHS

BOOKS - JEEVITH PUBLICATIONS MATHS (KANNADA ENGLISH)

THREE DIMENSIONAL GEOMETRY

One Marks Questions With Answers

1. If a line makes angles $90^\circ, 135^\circ, 45^\circ$ with the positive X, Y and Z-axes

respectively, find its direction cosines.

Watch Video Solution

2. Find the direction cosines of a line which makes equal angles with the

coordinate axes.

3. If a line has the direction ratios -18, 12, -4, then what are its direction cosines?

Watch Video Solution

4. Find the intercepts cut-off by the plane 2x + y - z = 5.

Watch Video Solution

5. Find the equation of the plane with intercept 3 on the Y-axis and parallel to ZOX - plane.

6. In the following problems find the distance of each of the given points

from the corresponding given plane:

	Point	Plane
(a)	$(0,\!0,\!0)$	3x - 4y + 12z = 3
(b)	(3, -2, 1)	2x-y+2z+3=0
(c)	(2,3,-5)	x+2y-2z=9
(d)	(-6,0,0)	2x-3y+6z

Watch Video Solution

Two Marks Questions With Answers

1. Show that the points (2, 3, 4), (-1, -2, 1), (5, 8, 7) are collinear.

Watch Video Solution

2. Find the direction cosines of the sides of the triangle whose vertices

are (3, 5, -4), (-1, 1, 2) and (-5, -5, -2).

3. Show that the line through the points (1, -1, 2), (3, 4, -2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).

Watch Video Solution

4. Show that the line through the points (4,7,8), (2,3,4) is parallel to the

line through the points (-1,-2,1), (1,2,5).

Watch Video Solution

5. Find the equation of the line which passes through the point (1,2,3) and

is parallel to the vector $3\hat{i}+2\hat{j}-2\hat{k}.$

6. Find the equation of the line in vector and in Cartesian form that passes through the point with position vector and $2\hat{i} - \hat{j} + 4\hat{k}$ is in the

8. The Cartesian equation of a line is $\frac{x-5}{3} = \frac{y+4}{7} = \frac{z-6}{2}$, write its vector form.

Watch Video Solution

9. Find the vector and the Cartesian equations of the line that passes through the origin and (5,-2,3).

10. Find the vector and the Cartesian equation of the line that passes through the points (3,-2,-5), (3,-2,6).

11. Find the value of p so that the lines
$$\frac{1-x}{3} = \frac{7y-14}{2p} = \frac{z-3}{2}$$
 and $\frac{7-7x}{3p} = \frac{y-5}{1} = \frac{6-z}{5}$ are at right angles.

Watch Video Solution

12. Show that the lines
$$\frac{x-5}{7} = \frac{y+2}{-5} = \frac{z}{1}$$
 and $\frac{x}{1} = \frac{y}{2} = \frac{x}{3}$ are

perpendicular to each other.

13. Find the Cartesian equation of the following planes:

$$r.\left(\hat{i}+\hat{j}-\hat{k}
ight)=0$$

Watch Video Solution

14. Find the Cartesian equation of the following planes:

$$r.\left(2\hat{i}+3\hat{j}-4\hat{k}
ight)=1$$

Watch Video Solution

15. Find the Cartesian equation of the following planes:

$$r.\left[(s-2t)\hat{i}+(3-t)\hat{j}+(2s+t)\hat{k}
ight]=15$$

Watch Video Solution

Three Marks Questions With Answers

1. Find the shortest distance between the lines.

$$r=\left(\hat{i}+2\hat{j}+\hat{k}
ight)+\lambdaig(\hat{i}-\hat{j}+\hat{k}ig) ~~ ext{and}~~r=\left(2\hat{i}-\hat{j}-\hat{k}
ight)+\muig(2\hat{i}+\hat{j}+\hat{j}+\hat{j})$$

Watch Video Solution

2. Find the shortest distance between the lines.

$$\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$$
 and $\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}$

Watch Video Solution

3. Find the angle between the following pairs of lines :

$$ec{r}=3\hat{i}+2\hat{j}-4\hat{k}+\lambda\Big(\hat{i}+2\hat{j}+2\hat{k}\Big) ~~\&~~ec{r}=5\hat{i}-2\hat{j}+\mu\Big(3\hat{i}+2\hat{j}+6\hat{k}\Big) \
ightarrow ec{r}$$

Note : Angle between two lines is the angle between b_1 and b_2

4. Find the angle between the following pairs of lines :

$$r = 2 \hat{i} - 5 \hat{j} + \hat{k} + \lambda \Big(3 \hat{i} + 2 \hat{j} + 6 \hat{k} \Big) \hspace{0.2cm} ext{and} \hspace{0.2cm} r = 7 \hat{i} - 6 \hat{k} + \mu \Big(\hat{i} + 2 \hat{j} + 2 \hat{k} \Big)$$

Watch Video Solution

5. Find the angle between the following pairs of lines :

$$r = 3 \hat{i} + \hat{j} - 2 \hat{k} + \lambda \Big(\hat{i} - \hat{j} - 2 \hat{k} \Big) \;\; ext{and} \;\; r = 2 \hat{i} - \hat{j} - 56 \hat{k} + \mu \Big(3 \hat{i} - 5 \hat{j} + 2 \hat{k} \Big) \;\; ext{and} \;\; r = 2 \hat{i} - \hat{j} - 56 \hat{k} + \mu \Big(3 \hat{i} - 5 \hat{j} + 2 \hat{k} \Big) \;\; ext{and} \;\; r = 2 \hat{i} - \hat{j} - 56 \hat{k} + \mu \Big(3 \hat{i} - 5 \hat{j} + 2 \hat{k} \Big) \;\; ext{and} \;\; r = 2 \hat{i} - \hat{j} - 56 \hat{k} + \mu \Big(3 \hat{i} - 5 \hat{j} + 2 \hat{k} \Big) \;\; ext{and} \;\; r = 2 \hat{i} - \hat{j} - 56 \hat{k} + \mu \Big(3 \hat{i} - 5 \hat{j} + 2 \hat{k} \Big) \;\; ext{and} \;\; r = 2 \hat{i} - \hat{j} - 56 \hat{k} + \mu \Big(3 \hat{i} - 5 \hat{j} + 2 \hat{k} \Big) \;\; ext{and} \;\; r = 2 \hat{i} - 2 \hat{i} - 2 \hat{i} + 2 \hat{i}$$

Watch Video Solution

6. Find the angle between the following pairs of lines :

$$\frac{x-2}{2} = \frac{y-1}{5} = \frac{z+3}{-3} \text{ and } \frac{x+2}{-1} = \frac{y-4}{8} = \frac{z-5}{4}.$$
Watch Video Solution

7. Find the angle between the following pairs of lines :

$$\frac{x}{2} = \frac{y}{2} = \frac{z}{1}$$
 and $\frac{z-5}{4} = \frac{y-2}{1} = \frac{z-3}{8}$.

Watch Video Solution

8. Find the distance between the parallel lines

$$\vec{r} = \hat{i} + 2\hat{j} - 4\hat{k} + m\left(2\hat{i} + 3\hat{j} + 6\hat{k}\right)$$
 and $\vec{r} = 3\hat{i} + 3\hat{j} - 5\hat{k} + n\left(2\hat{i} + 3\hat{j}\right)$
Watch Video Solution

9. Find the angle between the planes whose vector equations are

$$\overrightarrow{r}\cdot\left(2\hat{i}+2\hat{j}-3\hat{k}
ight)=5~~ ext{and}~~\overrightarrow{r}\cdot\left(3\hat{i}-3\hat{j}+5\hat{k}
ight)=3$$

Note : Angle between two planes is the angle between $\overrightarrow{n_1}~~{
m and}~~\overrightarrow{n_2}$

10. Find the angle between the planes whose vector equations are

3x - 6y + 2z = 7 and 2x + 2y - 2z = 5

11. Find the angle between the line $\frac{x+1}{2} = \frac{y}{3} = \frac{z-3}{6}$ and the plane 10x + 2y - 11z = 0.

Note : The angle between a line and a plane is the complement of the angle between \overrightarrow{b} and \overrightarrow{a}

Watch Video Solution

12. In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin:

2x + 3y + 4z - 12 = 0

13. In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin:

3y + 4z - 6 = 0

Watch Video Solution

14. In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin:

x + y + z = 1

Watch Video Solution

15. In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin:

5y + 8 = 0

16. Find the vector and Cartesian equations of the planes.

That passes through the point (1, 0, -2) and the normal to the plane is $\hat{i}-2\hat{j}+\hat{k}.$

Watch Video Solution

17. Find the vector and Cartesian equations of the planes.

That passes through the point (1, 4, 6) and the normal to the plane is $\hat{i} - 2\hat{j} + \hat{k}.$

Watch Video Solution

18. Find the equation of the planes that passes through the sets of three points.

$$(1, 1, -1), (6, 4, -5)$$
 and $(-4, -2, 3)$

19. Find the equation of the planes that passes through the sets of three

points.

```
(1, 1, 0), (1, 2, 1), (-2, 2, -1).
```

Watch Video Solution

Five Marks Questions With Answers

1. Obtain the equation of a line passing through a point A with Position vector \overrightarrow{a} and parallel to a vector \overrightarrow{b} both in vector and cartesion form.

Watch Video Solution

2. Derive the equation of a line in 3D passing through two points A and B with position vectors \overrightarrow{a} and \overrightarrow{b} respectively both in vector and Cartesian form.

3. Derive the formula for the shortest distance between skew lines $\overrightarrow{r} = \overrightarrow{a} + \lambda \overrightarrow{b}$ and $\overrightarrow{r} = \overrightarrow{a}_2 + \lambda \overrightarrow{b}_2$ in vector form.

4. Derive the formula for the distance between two parallel lines $\overrightarrow{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b}$ and $\overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b}$ in vector form.

Watch Video Solution

5. Derive the equation of a plane in normal form both in the vector and

Cartesian form .

6. Derive the equation of a plane perpendicular to a given vector and

passing through a given point in both vector form and Cartesian form.

$$r\cdot\left(2\hat{i}+2\hat{j}-3\hat{k}
ight)=7, r\cdot\left(2\hat{i}+5\hat{j}+3\hat{k}
ight)=9$$
 and through the point (2, 1, 3).

3. Find the equation of the plane through the line of intersection of the planes x + y + z = 1 and 2x + 3y + 4z = 5 which is perpendicular to the plane x - y + z = 0.

Watch Video Solution

4. Find the angle between the planes whose vector equation are

$$r.\left(2\hat{i}+2\hat{j}-3\hat{k}
ight)=5, r.\left(3\hat{i}-3\hat{j}+5\hat{k}
ight)=3.$$

Watch Video Solution

5. In the following exercise determine whether the given planes are parallel or perpendicular and in case they are neither, find the angle between them.

7x + 5y + 6z + 30 = 0 and 3x - y - 10z + 4 = 0

6. In the following exercise determine whether the given planes are parallel or perpendicular and in case they are neither, find the angle between them.

2x + y + 3z - 2 = 0 and x - 2y + 5 = 0

Watch Video Solution

7. In the following exercise determine whether the given planes are parallel or perpendicular and in case they are neither, find the angle between them.

2x - 2y + 4z + 5 = 0 and 3x - 3y + 6z = 1 = 0

Watch Video Solution

8. In the following exercise determine whether the given planes are parallel or perpendicular and in case they are neither, find the angle

2x - y + 3z - 1 = 0 and 2x - y + 3z + 3 = 0

Watch Video Solution

9. In the following exercise determine whether the given planes are parallel or perpendicular and in case they are neither, find the angle between them.

4x + 8y + z - 8 = 0 and y + z - 4 = 0

Watch Video Solution

10. Obtain the equation of a plane in the intercept form.

