

MATHS

BOOKS - JEEVITH PUBLICATIONS MATHS (KANNADA ENGLISH)

VECTOR ALGEBRA

One Marks Questions With Answers

1. Compute the magnitude of the following vectors : $a = \hat{i} + \hat{j} + \hat{k}, b = 2\hat{i} - 7\hat{j} - 3\hat{k}, c = \frac{1}{\sqrt{3}}\hat{i} + \frac{1}{\sqrt{3}}\hat{j} - \frac{1}{\sqrt{3}}\hat{k}.$

Watch Video Solution

2. Write two different vectors having same magnitude.

3. Write two different vectors having same direction.

Watch Video Solution
4. Find the value of x and y so that the vectors $2\hat{i} + 3\hat{j}$ and $x\hat{i} + y\hat{j}$ are equal .
Watch Video Solution
5. Find the scalar and vector components of the vector with initial point $(2, 1)$ and terminal point $(-5, 7)$.
Wateh Video Colution

Two Marks Three Marks Questions With Answers

1. Find the sum of vectos $a=\hat{i}-2\hat{j}+\hat{k}, b=-2\hat{i}+4\hat{j}+5\hat{k}$ and $c=\hat{i}-6\hat{j}-7\hat{k}.$

2. Find unit vector in the direction of vector $\hat{i}+\hat{j}+2\hat{k}$

3. Find the unit vector in the direction of vector \overline{PQ} , where P and Q are the points P = (1, 2, 3). Q = (4, 5, 6) respectively.

Watch Video Solution

4. For given vectors , $a = 2\hat{i} - j + 2\hat{k}$ and $b = -\hat{i} + j - \hat{k}$, find the unit vector in the direction of the vector $\overrightarrow{a} + \overrightarrow{b}$.

Watch Video Solution

5. Find a vector in the direction of vector $5\hat{i}-\hat{j}+2\hat{k}$ which has magnitude 8 unit.

Watch Video Solution

9. Show that the vector $\hat{i} + \hat{j} + \hat{k}$ is equally inclined to the axes OX,OY and OZ.

10. Find the position vectors of a point R which divides the line joining two points P and Q whose position vectors are $\hat{i} + 2\hat{j} - \hat{k} - \text{ and } -\hat{i} + \hat{j} - \hat{k}$ respectively, in the ration 2:1. (i)

Internally, (ii) Externally.

Watch Video Solution

11. Find the position vector of the mid-point of the vector joining point

P(2, 3, 4) and Q(4, 1, -2)

Watch Video Solution

12. Show that the points A, B and C with position vectors , $\vec{a} = 3\hat{i} - 4\hat{j} - 4\hat{k}, \vec{b} = 2\hat{i} - \hat{j} + \hat{k}$ and $\vec{c} \cdot \hat{i} - 3\hat{j} - 5\hat{k}$ respectively, from the vertices of a right angled triangle.

16. Find the projection of the vector $\hat{i} + 3\hat{j} + 7\hat{k}$ on the vector $7\hat{i} - \hat{j} + 8\hat{k}.$

Watch Video Solution

17. Find
$$\left|\overrightarrow{a}\right|$$
 and $\left|\overrightarrow{b}\right|$, if $\left(\overrightarrow{a}+\overrightarrow{b}\right)$. $\left(\overrightarrow{a}-\overrightarrow{b}\right)=8$ and $\left|\overrightarrow{a}\right|=8\left|\overrightarrow{b}\right|$.

Watch Video Solution

18. Evaluate the product
$$\left(3\overrightarrow{a} - 5\overrightarrow{b}\right)$$
. $\left(2\overrightarrow{a} + 7\overrightarrow{b}\right)$.

Watch Video Solution

19. Find the magnitude of two vectors \overrightarrow{a} and \overrightarrow{b} having the same magnitude and such that the angle between them is 60° and their scalar product is 1/2.

20. Find
$$|x|$$
, if for a unit vector a, $\left(\overrightarrow{x} - \overrightarrow{a}\right)$. $\left(\overrightarrow{x} + \overrightarrow{a}\right) = 12$.

21. If
$$a=2\hat{i}+2\hat{j}+3\hat{k}, b=\hat{i}+2\hat{j}+\hat{k}$$
 and $c=3\hat{i}+\hat{j}$ such that

 $a + \lambda b$ is perpendicular to c, then find the value of λ .

Watch Video Solution

22. Show that |a|b + |b| a is perpendicular to |a|b - |b| a for any two non-

zero vectors a and b.

23. If a,b,c are unit vectors such that a + b + c = 0, then find the value of

$$a. b + b. c + c. a.$$

24. If either a = 0, b = 0, then a.b=0. But the converse need not to be true. Justify your answer with an example.

Watch Video Solution

25. If the vertices A,B,C of a triangle ABC have position vectors (1, 2, 3), (-1, 0, 0)(0, 1, 2) respectively then find $\angle ABC(\angle ABC$ is the angle between the factors BA and BC).

26. Show that the points A(1, 2, 7), B(2, 6, 3) and C(3, 10, -10) are

collinear.

27. Show that the vectors $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} - 3\hat{j}$. And $3\hat{i} - 4\hat{j} - 3\hat{k}$. Form the vertices of a right angled triangle.

Watch Video Solution

28. Find
$$\left| \overrightarrow{a} \times \overrightarrow{b} \right|$$
, if $a = \hat{i} - 7\hat{j} + 7k$ and $b = 3\hat{i} - 2\hat{j} + 2\hat{k}$.

View Text Solution

29. Find a unit vector perpendicular to each of the vectors $\left(\overrightarrow{a} + \overrightarrow{b}\right)$ and $\left(\overrightarrow{a} - \overrightarrow{b}\right)$ where $\overrightarrow{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$ and $\overrightarrow{b} = \hat{i} + 2\hat{j}$

30. If a unit vector \hat{a} , makes angles $\frac{\pi}{3}$ with $\hat{i}, \frac{\pi}{4}$ with \hat{j} and an acute

angle heta with \hat{k} , then find heta and hence the components of a.

Watch Video Solution

31. Show that
$$\left(\overrightarrow{a} - \overrightarrow{b}\right) \times \left(\overrightarrow{a} + \overrightarrow{b}\right) = 2\left(\overrightarrow{a} \times \overrightarrow{b}\right).$$

Watch Video Solution

32. Find
$$\lambda$$
 and u, if $\left(2\hat{i}+6\hat{j}+27\hat{k}
ight) imes\left(\hat{i}+\lambda\hat{j}+\mu\hat{k}
ight)=0.$

Watch Video Solution

33. Given that a.b=0 and a imes b = 0. What can you conclude about the

vectors a and b?

34. Prove that
$$\left[\overrightarrow{a} + \overrightarrow{b}, \overrightarrow{b} + \overrightarrow{c}, \overrightarrow{c} + \overrightarrow{a}\right] = 2\left[\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}\right].$$

Watch Video Solution

35. Prove that
$$\left[\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} + \overrightarrow{d}\right] = \left[\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}\right] + \left[\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{d}\right].$$

Watch Video Solution

36. Find the volume of the parallelopiped whose cotermius edges are

 $2\hat{i}+\hat{j}+3\hat{k},\;-\hat{i}+2\hat{j}+\hat{k}\; ext{and}\;3\hat{i}+\hat{j}+2\hat{k}.$

Watch Video Solution37.Show that the vectors
$$\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}\vec{b} = -2i + 3\hat{j} - 4\hat{k}\vec{c} = \hat{i} - 3\hat{j} + 5\hat{k}$$
 are coplanar.

View Text Solution
Try Yourself
1. Find the area of the triangle with vertices A(1,1,2), B(2,3,5) and C(1,5,5).
Watch Video Solution
2. Find the area of the parallelogram whose adjacent sides are determined by the vectors $a=\hat{i}-\hat{j}+3\hat{k}$ and $b=2\hat{i}-2\hat{j}+5\hat{k}.$

Watch Video Solution

3. Let the vectors a and b be such that |a| = 3 and $|b| = \frac{\sqrt{2}}{3}$, then $a \times b$ is a unit vector, if the angle between a and b is

A.
$$\frac{\pi}{6}$$

B. $\frac{\pi}{4}$

C.
$$\frac{\pi}{3}$$

D. $\frac{\pi}{2}$.

Answer:

4. Area of a rectangle having vertices

$$A\left(-\hat{i}+\frac{1}{2}\hat{j}+4\hat{k}\right), B\left(\hat{i}+\frac{1}{2}\hat{j}+4\hat{k}\right), C\left(\hat{i}-\frac{1}{2}\hat{j}+4\hat{k}\right), \text{ and } D\left(-\hat{i}+\hat{k}+2\hat{j}+4\hat{k}\right)$$

is
A. $\frac{1}{2}$
B. 1
C. 2
D. 4

Answer:

