©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - JEEVITH PUBLICATIONS PHYSICS (KANNADA ENGLISH)

ANNUAL EXAM QUESTION PAPER -
 MARCH -2017

- Watch Video Solution

2. Define mobility. Mention its S.I. Unit

- Watch Video Solution

3. What is the significance of Lenz's law?

- Watch Video Solution

4. What is meant displacement current?

- Watch Video Solution

5. Write one application of microwave .

- Watch Video Solution

6. How is the power of lens related to its focal length ?

- Watch Video Solution

7. What are matter waves? Derive an expression for the de Broglie wave length.

D Watch Video Solution
8. What is the outcome of Davission Germer

Experiment?

(Watch Video Solution

9. What is the SI unit of activity?

- Watch Video Solution

10. What is transducer?
(Watch Video Solution

Part B

1. Mention and five properties of electric field
lines.

- Watch Video Solution

2. Mention any two factors on which the capacitance of a parallel plate capacitor depends.
(Watch Video Solution
3. State and explain ohm's law
4. Define the terms :
(i) Declination
(ii) Inclination or Dip.

D Watch Video Solution
5. State Faraday's law of electromagnetic induction.

- Watch Video Solution

6. Name the type of lens used to correct
(i) Myopia
(ii) Hypermietropia

D Watch Video Solution
7. Name the type of lens used to correct
(i) Myopia
(ii) Hypermietropia

8. What is a NAND gate?

D Watch Video Solution

9. Draw block diagram of a reciever

- Watch Video Solution

Part C

1. Obtain the relation between electric field and electric potential due to a point charge.

- Watch Video Solution

2. Derive the expression for energy stored in a charged capacitor.
3. How is a galvanometer converted into a voltmeter?

D Watch Video Solution
4. Derive the expression for emf induced in a straight conductor moving perpendicular to a uniform magnetic field.

D Watch Video Solution

5. What is a transformer ? Mention two

 sources of energy loss in a transformerD Watch Video Solution
6. Mention any three application of polaroids

D Watch Video Solution
7. Write any three experimental observations of photoelectric effect

- Watch Video Solution

8. Give three defferences between n-type and p-type semiconductors.

- Watch Video Solution

Part D

1. Deduce the condition for balance of a wheatstone's bridge using Kirchoffs rules .

Watch Video Solution

2. Derive the expression for magnetic field at a point on the axis of a circular current loop.

- Watch Video Solution

3. Write any five properites of ferromagnetic materials
4. Derive th lens maker's formula.

D Watch Video Solution

5. State the law of radioactivity and hence, show that $N=N_{0} e^{-\lambda t}$.

- Watch Video Solution

6. What is rectification with relevant circuit diagram and waveform explain the working of p-n junction dioide as full wave rectifier

- Watch Video Solution

7. Two point charges $q_{A}=3 \mu C$ and $q_{B}=-3 \mu C$ are located 0.2 m apart in
vacuum.
a. What is the electric field at the mid point O of the line $A B$ joining the two charges?
b. If a negative test charge of magnitude $1.5 \times 10^{-9} C$ is placed at this point, what is
the force experienced by the test charge?

- Watch Video Solution

8. Two point charges $q_{A}=3 \mu C$ and $q_{B}=-3 \mu C$ are located 0.2 m apart in vacuum.
a. What is the electric field at the mid point O of the line $A B$ joining the two charges?
b. If a negative test charge of magnitude
$1.5 \times 10^{-9} C$ is placed at this point, what is the force experienced by the test charge?

D Watch Video Solution

9. Which two resistors are connected in series
with a cell of emf 2 V and negligible internal resistance, a current of $(2 / 5) \mathrm{A}$ flows in the circuit. When the resistances are in parallel,
the main current is $(5 / 3) \mathrm{A}$. Calculate the resistances.

D Watch Video Solution

10. A source of alternating emf of $220 \mathrm{~V}-50 \mathrm{~Hz}$
is connected in series with a resitance of 200Ω
an inductance of 100 mH and a capacitance of
$30 \mu F$ does the current lead or lag the voltage and by what angle?
11. Light of wavelength $6000{ }^{\circ}$ is used to obtain interference fringe of width 6 mm in a young's double slit experiment. Calculate the wavelength of light required to obtain fringe of width 4 mm if the distance between the screen and slits is reduced to half of its initial value.

D Watch Video Solution

12. The first member of the Balmer series of hydrogen atom has wavelength of 656.3 nm .

Calculate the wavelength and frequency of the second member of the same series. Given, $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

D Watch Video Solution

