©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - JEEVITH PUBLICATIONS PHYSICS (KANNADA ENGLISH)

ANNUAL EXAM QUESTION PAPER

MARCH 2018

Question

1. What is an equipotential surface?

- Watch Video Solution

2. Define 'drift velocity' of free electrons .

- Watch Video Solution

3. Write any one application of the cyclotron.

- Watch Video Solution

4. State Faraday's law of electromagnetic induction.

D Watch Video Solution
5. If the peak value of a.c. current is $4.24 A$, what is its root mean square value?

- Watch Video Solution

6. What is a transformer ? Mention two sources of energy loss in a transformer

D Watch Video Solution

7. Two lenses of power $+1.5 D$ and $-0.5 D$ are kept in contact on their principal axis. What is
the effective power of the combination?

D Watch Video Solution

8. The decay of proton to neutron is possible only inside the nucleus. Why?

D Watch Video Solution
9. What is 'depletion region' in a semiconductor diode?

- Watch Video Solution

10. What is the output of this combination?

D Watch Video Solution
11. Mention any two factors on which the capacitance of a parallel plate capacitor depends.
12. State kirchhoff's laws of electrical network

- Watch Video Solution

13. Define:
(a) Magnetic declination (b)Magnetic dip.

Mention the S.I. unit of magnetisation.
(Watch Video Solution
14. Write an expression for magnetic potential energy of a magnetic dipole kept in a uniform magnetic field and explain the terms.

- Watch Video Solution

15. Give any two applications of X-rays.

- Watch Video Solution

16. What is 'myopia' ? How to rectify it?
17. Draw the diagram representing the schematic arrangement of Geiger-Marsden experimental alpha particle scattering.

D Watch Video Solution

18. Write any two characteristics of nuclear forces.
19. Mention any three properties of an electric charge.

D Watch Video Solution

20. State Ampere's circuital law . Using it, derive the expression for magnetic field at a point due to a long current carrying conductor .
21. What is hysterisis? Define the terms
'coercivity' and 'retentivity' of a ferromagnetic material.

D Watch Video Solution

22. Arrive at Snell's law of refraction, using

Huygen's principle for refraction of a plane wave.
23. Writer Bohr's postulates for the hydrogen atom model.

D Watch Video Solution
24. State the three postulates of Bohr's theory
of hydrogen atom.

- Watch Video Solution

25. Derive an expression for the half-life of a radio active nuclide.

D Watch Video Solution
26. Distinguish between p type and n type semiconductors
(D) Watch Video Solution
27. Draw the block diagram of a generalised communication system.

D Watch Video Solution
28. Define electric potential due to a point charge and arrive at the expression for the electric potential at a point due to a point charge.
29. Obtain an expression for the equivalent emf and internal resistance of two cells connected in parallel.

- Watch Video Solution

30. Derive the expression for magnetic field at a point on the axis of a circular current loop.
31. Obtain an expression for the impedance of a series LCR circuit. (using phasor diagram method).

D Watch Video Solution

32. Deduce the relation between $\mathrm{n}, \mathrm{u}, \mathrm{v}, \mathrm{Q}, \mathrm{R}$ for refraction at a spherical surface, where the symbols have their usual meaning.
33. What is a rectifier ? With suitable circuit describe the action of a full wave rectifier by drawing input and output waveforms.

D Watch Video Solution

34. Three charges each equal to +4 nC are placed at the three comers of a square of side

2 cm . Find the electric field at the fourth corner.
35. 100 mg mass of nichrome metal is drawn into a wire of area of cross-section 0.05 mm .

Calculate the resistance of this wire. Given density of nichrome $8.4 \times 10^{3} \mathrm{kgm}^{-3}$ and resistivity of the material as $1.2 \times 10^{-6} \Omega \mathrm{~m}$.

D Watch Video Solution

36. A circular coil of radius 10 cm and 25 turns
is rotated about its vertical diameter with an angular speed of $40 \mathrm{rads}^{-1}$, in a uniform
horizontal magnetic field of magnitude $5 \times 10^{-2} T$. Calculate the maximum emf induced in the coil. Also find the maximum current in the coil if the resistance of the coil is 15Ω.

D Watch Video Solution

37. In Young's double slit experiment the slits are separated by 0.28 mm and the screen is placed at a distance of $1.4 m$ away from the
slits. The distance between the central bright
fringe and the fifth dark fringe is measured to be 1.35 cm . Calculate the wavelength of the light used. Also find the fridge width if the screen is moved towards the slits by $0.4 m$, for the same experimental set up.

- Watch Video Solution

38. Light of frequency $8.41 \times 10^{14} \mathrm{~Hz}$ is incident on a metal surface. Electrons with their maximum speed of $7.5 \times 10^{5} \mathrm{~ms}^{-1}$ are ejected from the surface. Calculate the
threshold frequency for photoemission of electrons. Also find the work function of the metal in electron volt $(e V)$. Given Plank's
constant $h=6.625 \times 10^{-34} J s$ and mass of the electron $9.1 \times 10^{-31} \mathrm{~kg}$.

D Watch Video Solution

