© 'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - JEEVITH PUBLICATIONS PHYSICS (KANNADA ENGLISH)

SUPER MODEL QUESTION PAPER

> (WITH ANSWERS)

1. Name the apparatus to detect charge on a body

D Watch Video Solution

2. Write the equivalent mathematical form for

Ohm's law.

- Watch Video Solution

3. Name the type of induced emf associated with a conductor moving in a static magnetic field.

D Watch Video Solution

4. Give the mathematical form of Ampere's
circuital law.

D Watch Video Solution
5. Long distance radio broadcasts use short wave bands. Why?

D Watch Video Solution
6. A particle is acceelerated bty applying an electric field how does its de broglic wave length change?

D Watch Video Solution
7. What the is rest mass energy of a photon?

D Watch Video Solution

8. Why are electromagnetic radiations due to ?

D Watch Video Solution
9. Why are nuclear forces called exchange

forces?

10. What is amplitude modulation ?

D Watch Video Solution

1. Define effective resistance of a number of resistors connected in a series or parallel combination

D Watch Video Solution
2. State Kirchhoff's laws of Electrical network.

- Watch Video Solution

3. State and explain Gauss's law in magnetism.

D Watch Video Solution

4. Give the expression for Lorentz force acting on a moving electric charge in a combined
electric and magnetic field.

D Watch Video Solution

5. Distinguish between HF chokes and LF chokes.

D Watch Video Solution

6. Explain myopia or short sighteness with a neat labelled diagram
7. Distinguish between p type and n type semiconductors

D Watch Video Solution

8. Draw block diagram of a reciever

- Watch Video Solution

1. Derive an expression for electric potential energy of a systemm of charges in an electric field.

- Watch Video Solution

2. Derive an expression for capacitance of a paralle plate capacitor
3. Give any three pracitical application of high energetic charged particles obtained in a cyclotron

- Watch Video Solution

4. Define self inductane of a solenoid. On what
factors does it depend ?

- Watch Video Solution

5. Show that voltage in an inductor leads the current by $\pi / 2$ rad for a pure inductor

D Watch Video Solution

6. Write any three difference between interference and diffraction.
(Watch Video Solution
7. Explain Werner Heisenberg's uncertainty principle (qualitative).

D Watch Video Solution
8. Explain a typical p-n juction solar cell with a neat labelling

- Watch Video Solution

9. Derive an expression for electrical

conductivity.

D Watch Video Solution

Part D

1. Obtain an expression for the force between
two straight parallel conductor carrying
current. Hence define ampere.

D Watch Video Solution
2. Explain briefly how bar magnets act as equivalent solenoids.

D Watch Video Solution

3. Derive referaction formula (for object in air and image in the denser medium) for refraction of light at a spherical surface
4. State the law of radioactivity and hence, show that $N=N_{0} e^{-\lambda t}$.

D Watch Video Solution

5. Show that voltage gain in a transistor amplifier in CE mode is negative and hence obtain an expression for the voltage gain.

D Watch Video Solution

6. An oil drop of 12 excess electrons is held stationary under a constant electric field of $2.55 \times 10^{4} N C^{-1}$ in Millikan's oil drop experiment. The density of the oil is $1.26 \times 10^{3} \mathrm{kgm}^{-3}$. Estimate the radius of the $\operatorname{drop}\left(g=9.81 m s^{-2}, e=1.60 \times 10^{-19} C\right)$.

D Watch Video Solution

7. Six lead - acid type of secondary celJs each of emf 2.0 V and internal resistance 0.015Ω are
joined in series to provide supply to a resistance of 8.5Ω. What is the current drawn
from the supply and its terminal voltage?

D Watch Video Solution

8. A secondary cell after long use has an emf of
1.9 V and large internal resistance of 380Ω.

What maximum current can be drawn from
the cell? Could the cell drive the starting motor of a car?
9. A circuit containing an inductor of 80 mH inductance and a capacitor of $60 \mu F$ capacitance in series, is connected to a 230 V , 50 Hz supply. The resistance of the circuit is negligible.

Obtain the current amplitude and r.m.s value.

- Watch Video Solution

10. A circuit containing an inductor of 80 mH
inductance and a capacitor of $60 \mu F$
capacitance in series, is connected to a 230 V , 50 Hz supply. The resistance of the circuit is negligible.

Obtain the r.m.s values of potential drop across each element.

D Watch Video Solution

11. A circuit containing an inductor of 80 mH inductance and a capacitor of $60 \mu F$ capacitance in series, is connected to a 230 V , 50 Hz supply. The resistance of the circuit is
negligible.

What is the average power transferred to the inductor?

D Watch Video Solution

12. A circuit containing an inductor of 80 mH inductance and a capacitor of $60 \mu F$ capacitance in series, is connected to a 230 V , 50 Hz supply. The resistance of the circuit is negligible.

What is the average power transferred to the

capacitor?

D Watch Video Solution

13. A circuit containing an inductor of 80 mH inductance and a capacitor of $60 \mu F$ capacitance in series, is connected to a 230 V , 50 Hz supply. The resistance of the circuit is negligible.

What is the total average power absorbed by
the circuit (averaged over one complete cycle)?

D Watch Video Solution

14. Calculate the distance between the centers of $4^{\text {th }}$ and $7^{\text {th }}$ bright fringes in an interference pattern produced in young's slit experiment. Give separation between the slits $=1.1 \times 10^{-3}$, wavelength of light used
$=589.3 \mathrm{~nm}$, and distance of the screen from
the double slit $=1.3 m$.

Watch Video Solution

15. A 12.5 eV electron beam is used to bombard gaseous hydrogen at room temperature What series of wavelengths will be emitted.

- Watch Video Solution

