

PHYSICS

BOOKS - JEEVITH PUBLICATIONS PHYSICS (KANNADA ENGLISH)

SUPER MODEL QUESTION PAPER -1

Part A

1. Define charge on a body.

2. Mention the S.I. unit of current.

Watch Video Solution

3. State Lenz's law.

Watch Video Solution

4. Write an expression for the speed of propagation of electromagnetic wave in terms

of permittivity and permeability of free space.
Watch Video Solution
E Name one source for visible rays
5. Name one source for visible rays.
Watch Video Solution
6. What are paraxial rays ?
Watch Video Solution

Threshold frequency **Watch Video Solution** 8. Mention the different methods of electron emission. **Watch Video Solution 9.** What is nuclear fusion? **Watch Video Solution**

7. Define the terms:

10. What is the signal bandwidth offered by a co - axial cable ?

Watch Video Solution

Part B

1. State and explain coulomb's law properties of equipotential surface .

2. Write two properties of equipotential surfaces.

Watch Video Solution

3. State and explain ohm's law

4. Define the terms (a) electromagnet (b) coercivity

Watch Video Solution

5. state faraday's laws of electromagnetic induction . Express then mathematically .

6. Write any two applications of total reflection prisms .

Watch Video Solution

7. Explain the working of a zener diode as a voltage regulator.

8. Explain the terms 'range ' and ' band width ' used in electronic communication systems.

Watch Video Solution

Part C

1. The effective capacitance of two capacitors connected in series is

2. Derive a relation between electric field and potential

Watch Video Solution

3. Derive a relation between electric field and potential

4. What are eddy currents? Mention two applications of eddy currents.

Watch Video Solution

5. Derive the law of reflection of light on the basis of Huygens wave theory.

6. Distinguish between p type and n type semiconductors

Watch Video Solution

7. Obtain the expression for current in case of AC applied to an inductor .

1. Obtain an expression for the equivalent emf and internal resistance of two cells connected in parallel.

Watch Video Solution

2. What is a solenoid? Derive an expression for the magnetic field at a point well within the current carrying solenoid.

3. Find an expression for the torque acting on a magnetic dipole placed in an uniform magnetic field . Hence define magnetic dipole moment .

Watch Video Solution

4. Derive th lens maker's formula.

5. State the law of radioactivity and hence, show that $N=N_0e^{-\lambda t}.$

Watch Video Solution

6. Classify metals, semiconductors and insulators based on the band theory of solids.

7. Two point charges $q_A=3\mu C$ and $q_B=-3\mu C$ are located 0.2 m apart in vacuum.

a. What is the electric field at the mid point O of the line AB joining the two charges? b. If a negative test charge of magnitude $1.5\times10^{-9}C \ \text{is placed at this point, what is}$

the force experienced by the test charge?

8. Three resistors 2Ω , 4Ω and 5Ω are connected in parallel. What is the total resistance of the combination?

Watch Video Solution

9. If the combination is connected to a battery of emf 20 v and negligible internal resistance determine the current through each resistor, and the total current drawn from the battery.

10. A radio can be tuned over the frequency range of a portion of μ broad cast band (800 kHz to 1200 kHz) . If its LC circuit has an effective inductance of 200 μ H , what must be the range of its variable capacitor?

Watch Video Solution

11. In Young.s double slit experiment, using monochromatic light of wavelength λ , the

intensity of light at a point on the screen where path difference is λ is K units. The intensity of light at a point where path difference is $\lambda/3$ is.

Watch Video Solution

12. It is found that an electron in an hydrogen atom requires +13.6 ev of energy to jump from the innermost level to the outermost energy level .Calculate the radius of the innermost orbit and the velocity in that orbit.

