© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - VIDHYASANGAM - RAO'S

ACADEMY MATHS (KANNADA

ENGLISH)

AREA OF PARALLELOGRAMS AND
 TRIANGLES

1. Which of the following figures lie on the same base and between the same parallels. In
shuch a case, write the common base and the two prarllels.

- Watch Video Solution

1. In $A B C D$ is a parallelogram, $A E \perp D C$ and $C F$
$\perp A D$. If $A B=16 \mathrm{~cm}, \mathrm{AE}=8 \mathrm{~cm}$ and $\mathrm{CF}=10 \mathrm{~cm}$,
find $A D$.

2. If E, F, G and H are respectively the midpoints of the sides of a parallelogram $A B C D$, show that $\operatorname{ar}(E F G H)=\frac{1}{2} \operatorname{ar}(A B C D)$

D Watch Video Solution
3. P and Q are any two points lying on the sides $D C$ and $A D$ respectively of a parallelogram ABCD. Show that ar (APB) = ar (BQC).

D Watch Video Solution

4. In P is a point in the interior of a parallelogram ABCD. Show that(ii) ar (APD) + $\operatorname{ar}(\mathrm{PBC})=\operatorname{ar}(\mathrm{APB})+\operatorname{ar}(P C D)^{\prime}$

(D) Watch Video Solution
5. In, PQRS and ABRS are parallelograms and X is any point on side $B R$. Show that
$\operatorname{ar}(\mathrm{PQRS})=\operatorname{ar}(\mathrm{ABRS})$
as (AXS) $=\frac{1}{2}$ ar (PQRS)

- Watch Video Solution

6. A farmer was having a field in the form of a parallelogram PQRS. She took any point A on RS and joined it to points P and Q . In how many parts the fields is divided? What are the
shapes of these parts? The farmer wants to sow wheat and pulses in equal portions of the
field separately. how should she do it?

- Watch Video Solution

Exercise 113

1. In the figure $11.23, \mathrm{E}$ is any point on median $A D$ of a $\triangle A B C$. Show that ar (ABE) $=\operatorname{ar}(A C E)$.

(Watch Video Solution
2. In a triangle $A B C, E$ is the mid-point of median AD. Show that $\operatorname{ar}(B E D)=\frac{1}{4} \operatorname{ar}(A B C)$.

D Watch Video Solution
3. Show that the diagonals of a parallelogram divide it into four triangles of equal area.

- Watch Video Solution

4. In, $A B C$ and $A B D$ are two triangles on the same base $A B$. If line- segment $C D$ is bisected
by $A B$ at O, show that $\operatorname{ar}(A B C)=\operatorname{ar}(A B D)$.

D Watch Video Solution

5. If E, F, G and H are respectively the midpoints of the sides of a parallelogram $A B C D$,
show that $\operatorname{ar}(E F G H)=\frac{1}{2} \operatorname{ar}(A B C D)$

- Watch Video Solution

6. D and E are points on sides $A B$ and $A C$ respectively of $\Delta \mathrm{ABC}$ such that ar (DBC) $=$ ar
$E B C)$. Prove that $D E \| B C$.

- Watch Video Solution

7. Diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B \| D C$ intersect each other at O. Prove
that $\operatorname{ar}(A O D)=\operatorname{ar}(B O C)$.

- Watch Video Solution

8. In, $A B C D E$ is a pentagon. A line through B
parallel to AC meets DC produced at F. Show
that
(i) $\operatorname{ar}(\mathrm{ACB})=\operatorname{ar}(\mathrm{ACF})$
(ii) $\operatorname{ar}($ AEDF $)=\operatorname{ar}(A B C D E)$

- Watch Video Solution

Exercise 114

1. Parallelogram $A B C D$ and rectangle $A B E F$ are on the same base $A B$ and have equal areas.

Show that the perimeter of the parallelogram is greater than that of the rectangle.

D Watch Video Solution

2. In, D and E are two points on $B C$ such that $B D=\operatorname{De}=E C$. Show that $\operatorname{ar}(A B D)=\operatorname{ar}(A D E)=a r$
(AEC).

Can you now answer the question that you
have left in the 'introduction' of this chapter, whether the field of Budhia has been actually divided into three parts of equal area?

- Watch Video Solution

3. Diagonals $A C$ and $B D$ of a quadrilateral $A B C D$
intersect each other at P. Show that ar (APB)
$\times \operatorname{ar}(\mathrm{CPD})=\operatorname{ar}(\mathrm{APD}) \times \operatorname{ar}(\mathrm{BPD})$.
[Hint : From A and C, draw perpendiculars to BD.

D Watch Video Solution

