

MATHS

BOOKS - VIDHYASANGAM - RAO'S ACADEMY MATHS (KANNADA ENGLISH)

NUMBER SYSTEM

1. Are the square roots of all positive integers irrational ? If not give an example of the square root of a number that is a rational number

Watch Video Solution

2. Show that $\sqrt{5}$ can be represented on the

number line

3. Rationalise the denominators of the

following

$$\frac{1}{9-\sqrt{2}}$$

Exercise 13

1. write the following in decimal form and say

what kind of decimal expansion each has:

 $\frac{36}{100}$

2. write the following in decimal form and say what kind of decimal expansion each has: $\frac{1}{11}$

Watch Video Solution

3. write the following in decimal form and say

what kind of decimal expansion each has:

4. write the following in decimal form and say

what kind of decimal expansion each has:

 $\frac{3}{13}$

5. write the following in decimal form and say

what kind of decimal expansion each has:

 $\frac{2}{11}$

6. write the following in decimal form and say

what kind of decimal expansion each has:

 $\frac{329}{400}$

7. you know that $\frac{1}{7} = 0$. $\overline{142857}$ can you predict what the decimal expansion of $\frac{2}{7}$, $\frac{3}{7}$, $\frac{4}{7}$, $\frac{5}{7}$, $\frac{6}{7}$ are without actually doing the long division ? If so how [hint : study the

9. Express the following in the form of $rac{p}{q}$ where p and q are integers and q
eq 0 $0.4ar{7}$

10. Express the following in the form of $\frac{p}{q}$ where p and q are integers and $q \neq 0$

 $0.\ \overline{001}$

11. Express 0.9999.... In the form $\frac{p}{q}$ are you surprised by your answer ? With your teacher and classmates discuss why the answer makes

sense

12. what can the maximum number of digits be

in the repeating block of digits in the decimal expansion of $\frac{1}{17}$?

13. Look at several example of rational numbers in the form $\frac{p}{q}$ where p and q are integers with no common factors other than 1 and having terminating decimal representations (expansions) can you guess what property q must satisfy? Watch Video Solution

14. write three numbers whose decimal expansions are non-terminating non recuring

16. Classify the following numbers as rational

or irrational

1. Visualise 3.765 on the number line using

successive magnification

Watch Video Solution

2. Visualise 4. $\overline{26}$ on the number line upto 4

decimal places

1. Classify the following numbers as rational or

irrational

$$2-\sqrt{5}$$

Watch Video Solution

2. Classify the following numbers as rational or

irrational

$$\left(3+\sqrt{23}
ight)-\sqrt{23}$$

3. Classify the following numbers as rational or

irrational

$$\frac{2\sqrt{7}}{7\sqrt{7}}$$

Watch Video Solution

4. Classify the following numbers as rational

or irrational

5. Classify the following numbers as rational or irrational

 2π

Watch Video Solution

6. Simplify the following expressions:

$$\left(3+\sqrt{3}
ight)\left(2+\sqrt{2}
ight)$$

7. Simplify the following expressions:

$$\left(3+\sqrt{3}
ight)\left(3-\sqrt{3}
ight)$$

8. Simplify the following expressions:

$$\left(\sqrt{5}+\sqrt{2}\right)^2$$

9. Simplify the following expressions:

$$\left(\sqrt{5}-\sqrt{2}
ight)\left(\sqrt{5}+\sqrt{2}
ight)$$

Watch Video Solution

10. Real π is defined as the ratio of the circumference (say c) of a circle to its diameter (say d) i.e $\pi = \frac{c}{d}$ this seems to contradict the fact that π is irrational how will you resolve this contradication ?

12. Rationalise the denominators of the

following

$$\frac{1}{\sqrt{7}-\sqrt{6}}$$

14. Rationalise the denominators of the

following

$$rac{1}{\sqrt{7}-2}$$

Exercise 16

1. Find

 $64^{\frac{1}{2}}$

Watch Video Solution

2. Find

 $32^{rac{1}{5}}$

3. Find

 $125^{rac{1}{3}}$

4. Find

 $9^{\frac{3}{2}}$

Watch Video Solution

5. Find

 $32^{rac{2}{5}}$

 $\frac{1}{\left(3^3\right)^7}$

10. Simplify

 $\frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}}$

Watch Video Solution

11. Simplify

$$\left(7^{rac{1}{2}}.8^{rac{1}{2}}
ight)$$