

MATHS

BOOKS - VGS BRILLIANT MATHS (TELUGU ENGLISH)

COORDINATE GEOMETRY

Example

1. What is the distance between A (4,0) and B

(8,0)?

- **2.** A and B are two points given by (8, 3), (-4,
- 3) . Find the distance between A and B .

- **3.** Find the distance between two points A (4 ,
- 3) and B (8 , 6) . (AS_1)

4. Show that the points A = (4, 2), B (7, 5) and C (9, 7) are collinear.

Watch Video Solution

5. Are the points (3 , 2) , (- 2 , - 3) and (2 , 3) form a triangle ? (AS_2)

6. Show that the points (1,7), (4,2), (-1,-1) and (- 4 , 4) are vertices of a square . (AS_2)

Watch Video Solution

7. Figure shows the arrangement of desks in a classroom. Madhuri, Meena, Pallavi are seated at A (3,1), B (6,4) and C (8,6) respectively. Do you think they are seated in a line? Give

reasons for your . (AS_2)

Watch Video Solution

8. Find the relation between x and y such that point (x, y) is equidistant from the points (7, y)

1) and (3,5).

Watch Video Solution

9. Find the coordinates of the point which divides the line segment join- lng the points (4, -3) and (8,5) in the ratio 3:1 internally. (AS_1)

10. Find the midpoint of the line segment joining the points (3,0) and (-1,4). (AS_1)

Watch Video Solution

11. Find the centroid of the triangle whose vertices are (3, -5), (-7, 4), (10, -2) respectively . (AS_1)

12. In what ratio does the point (- 4 , 6) divide the line segment joining the points A (- 6 , 10) and B (3 , - 8) ? (AS_1)

Watch Video Solution

13. Find the coordinates of the points of trisection of the line segment joining the points A(2,-2) and B(-7,4). (AS_1)

14. Find the ratio in which the Y - axis divides the line segment joining the points (5 , -6) and (-1 , -4) . Also find the point of intersection (AS_1)

Watch Video Solution

15. Show that the points A(7 , 3) , B (6 , 1) , C (8 , 2) and D (9 , 4) taken in that order are vertices of a parallelogram . (AS_2)

16. If the points A (6 , 1) , B (8 , 2) , C (9 , 4) and D (p, 3) are the vertices of a par -allelogram , taken in order , find the value of P.

Watch Video Solution

17. Find the area of a triangle whose vertices are (1,-1),(-4,6) and (-3,-5). (AS_1)

18. Find the area of a triangle formed by the points A(5, 2), B (4, 7) and C (7, -4). (AS_1)

Watch Video Solution

19. If A (-5,7), B(-4,-5), C(-1,-6) and D (4, 5) are the vertices of a quadrilat-eral, then find the area of a quadri-lateral ABCD.

20. The points (3 , - 2) , (- 2 , 8) and (0 ,4) are three points in a plane . Show that these points are collinear . (AS_2)

Watch Video Solution

21. Find the value of 'b' for which the points are collinear . (AS_1)

A(1,2), B(-1,b) and C(-3,-4)

22. The end points of a line segment are (2,3)

, (4,5). Find the slope of the line

Watch Video Solution

23. Determine x so that 2 is the slope of the line through P (2 , 5) and Q (x , 3) . (AS_1)

Watch Video Solution

Do These

1. From the figure write coordinates of the point A , B , C , D , E , F , G , H , (AS_5)

Watch Video Solution

2. Find the distance covered by the knight in eanch of its 8 moves i.e., find the distance of A,

B, C, D, E, F, G and H from the origin. (AS_5)

Watch Video Solution

3. What is the distance between two points H and C ?And find the distance between two points A and B (AS_1)

4. Where do these following points lie (- 4 , 0) , (2 , 0) , (6 , 0) , (- 8,0) on coordi- nate plane ? (AS_3)

5. What is the distance between points (- 4, 0) and (6, 0) on coordinate plane ?

6. Find the distance between the following pairs of points : (AS_1)

(3,8),(6,8)

Watch Video Solution

7. Find the distance between the following pairs of points : (AS_1)

(-4,-3),(-8,-3).

8. Find the distance between the following pairs of points :

(3,4),(3,8).

Watch Video Solution

9. Find the distance between the following pairs of points :

(-5,-8),(-5,-12).

10. Find the distance between the following points .

A = (2 , 0) and B (0 , 4)
$$(AS_1)$$

Watch Video Solution

11. Find the distance between the following points .

P(0,5) and Q(12,0).

12. Find the distance between the following pair of points.

(7,8) and (-2,3)

Watch Video Solution

13. Find the distnace between the following pair of poitns.

(-8,6) and (2,0)

14. Find the point which divides the line segment joining the points (3,5) and (8,10) internallly in the ratio 2:3. (AS_1)

Watch Video Solution

15. Find the midpoint of the line segment joining the points (2 , 7) and (12 , - 7) . (AS_1)

16. Find the centroid of the triangle whose vertices are (- 4 , 6) , (2 , - 2) and (2 , 5) respectively . (AS_1)

Watch Video Solution

17. Find the trisectional points of line joining(

2,6) and (-4,8). (AS_1)

18. Find the trisectional points of line joining (

- 3 , -5) and (- 6 , - 8) . (AS_1)

Watch Video Solution

19. Find the area of the triangle whose vertices

are (AS_1)

(-5,-1), (3,-5), (5,2)

20. Find the area of the triangle whose vertices are

(6,-6),(3,-7) and (3,3).

Watch Video Solution

21. Verify whether the following points are collinear or not .

(1,-1),(4,1),(-2,-3). (AS_2)

22. Verify whether the following points are collinear or not .

$$(1,-1),(2,3),(2,0)$$

Watch Video Solution

23. Verify whether the following points are collinear or not .

24. Find the area of the triangle whose lengths of sides are 15 m, 17 m, 21 m (use Heron 's Formula) (AS_1, AS_2)

Watch Video Solution

25. Find the area of the triangle formed by the points (0,0), (4,0), (4,3) by unsing Heron's formula . (AS_1)

26. Plot these points on the coordinate axis and join them (AS_3) which gives a straight line ? Which in not why

?

$$A(1,2), B(-3,4), C(7,-1)$$

Watch Video Solution

27. Plot these points on the coordinate axis and join them $\left(AS_3\right)$

which gives a straight line? Which in not why

P(3,-5),Q(5,-1)R(2,1),S(1,2)

Watch Video Solution

28. Find the slope of $\stackrel{\Longleftrightarrow}{AB}$ with the given end points

29. Find the slope of $\stackrel{\displaystyle \longleftrightarrow}{AB}$ with the given end points

Watch Video Solution

30. Find the slope of \overrightarrow{AB} with the given end points

Try These

1. Where so these following points lie- (0 , - 3) , (0 , -8) , (0 , 6) , (0 , 4) on coordi- nate plane ? (AS_3)

Watch Video Solution

2. What is the distance between (0, -3), (0, -8) and justify that the distance between two points on Y - axis is $|y_2 - y_2|$ on coordinate plane? (AS_1, AS_3)

3. Find the distance between points 'O' (origin) and 'A' $(7\,,4)\,.\,(AS_1)$

4. Find the distance between A(1, -3) and B(-

4 , 4) and rounded to two decimals . (AS_1)

5. Let A (4 , 2) , B (6 , 5) and C (1 , 4) be the vertices of ΔABC

The median from A meet BC at D . Find the coordinates of the poin D . (AS_1)

6. Let A(4,2), B(6,5) and C(1,4) be the vertices of the \triangle ABC. The median from A meets BC at D. Find the coordinates of the point D. Find the coordinates of the point P on AD such that AP : PD = 2 : 1.

Watch Video Solution

7. Let A(4,2), B(6,5) and C(1,4) be the vertices of the \triangle ABC. The median from A meets BC at D. Find the points which divide the line segment

BE in the ratio 2:1 and also that divide the line segment CF in the ratio 2:1.

Watch Video Solution

8. What do you observe? Justify the point that divides each median in the ratio 2:1 is the centriod of a traingle (AS_3)

9. The points (2,3)(x,y)(3,-2) are the vertices of a triangle . If the centroid of this triangle is origin then find (x,y)

Watch Video Solution

10. Take a point A on X -axis and B on Y - axis and find area of the triangle AOB . Discuss with your friends what did they do (AS_3)

11. Find the area of the square formed by (0 ,

-1) , (2, 1) ,(0 , 3) and (- 2, 1) taken in order are as vertices .

Watch Video Solution

12. Find the slope of $\stackrel{\displaystyle \longleftrightarrow}{AB}$ with the points lying on (AS_1)

A(2,1),B(2,6)

13. Find the slope of $\stackrel{\displaystyle \longleftrightarrow}{AB}$ with the points lying on (AS_1)

15. Find the slope \overrightarrow{AB} with the points lying on A (3 , 2) , (B (- 8 , 2) . When the line \overrightarrow{AB} parallel to X - axis ? Why ? Think and discuss with your friends in groups . (AS_2, AS_3)

Watch Video Solution

Think Discuss

1. How will you find the distance between two points in which x or y co-ordinates are same

but not zero ? (AS_2)

Watch Video Solution

2. Ramu says the distance of a point P(x.y) from the origin O(0,0) is $\sqrt{x^2+y^2}$. Do you agree with Ramu or not ? Why ? (AS_2, AS_3)

Watch Video Solution

3. Ramu also writes the distance formula as

$$AB = \sqrt{\left(x_{1} - x_{2}
ight)^{2} + \left(y_{1} - y_{2}
ight)^{2}} \cdot ext{ why ?}$$

4. Sridhar calculated the distance between T (

5, 2) and (R (-4, -1) to the nearest tenth is 9.

5 units . Now you find the distance between P (

4 , 1) and Q (- 5 , - 2) . Do you get the same

answer that Sridhar got ? Why ? $(AS_2,\,AS_3)$

5. The line joining points A (6,9) and B (-6,-

9) are given.

In which ratio does origin divide AB ? And what it is called for AB? (AS_1)

Watch Video Solution

6. The line joining points A (6, 9) and B (-6, -

9) are given .

In which ratio does the point P(2,3) divide

 \overline{AB} ?

Watch Video Solution

7. The line joining points A (6, 9) and B (-6, -

9) are given .

In which ratio does the point Q (- 2 , - 3) divide

 \overline{AB} ?

Watch Video Solution

8. The iine joining points A (6, 9) and B (- 6, -

9) are givne

Into how many parts is \overline{AB} divided by P and Q

?

Watch Video Solution

- **9.** The line joining points A (6,9) and B (-6,-
 - 9) are given

What do we cell P and Q for \overline{AB} ?

10. If $A(x_1,y_1), B(x_2,y_2)$ then the circumradius of ΔOAB is

Watch Video Solution

11. Let A $(x_1,y_1), B(x_2,y_2), C(x_3,y_3)$. Then find the area of the following triangles in a plane . And discuss with your friends in groups

about the area of that triangle

Watch Video Solution

12. Let A $(x_1,y_1), B(x_2,y_2), C(x_3,y_3)$. Then find the area of the following triangles in a

plane. And discuss with your friends in groups about the area of that triangle

13. Let A (x_1,y_1) , $B(x_2,y_2)$, $C(x_3,y_3)$. Then find the area of the following triangles in a plane. And discuss with your friends in groups about the area of that triangle

14. Find the area of the triangle formed by the following points

Watch Video Solution

15. Find the area of the triangle formed by the following points

16. Find the area of the triangle formed by the following points

17. What do you observe ? Justify the point that divides each median in the ratio 2 : 1 is the centriod of a traingle . (AS_3)

Watch Video Solution

18. Plot these points on three different graphs

. What do you observe ? (AS_5)

View Text Solution

19. Can we have a triangle having area zero square units area ? (AS_2, AS_3)

Watch Video Solution

20. What does it mean?

View Text Solution

21. Does y = x + 7 represent a straight line ?

Draw the line on the coordinate plane . At

which point does this line intersect Y-axis? How much angle does it make with X - axis? Discuss with your friends . (AS_3, AS_5)

Watch Video Solution

22. Find the slope \overrightarrow{AB} with the points lying on A (3 , 2) , (B (- 8 , 2) . When the line \overrightarrow{AB} parallel to X - axis ? Why ? Think and discuss with your friends in groups . (AS_2, AS_3)

Exercise 71

1. Find the distance between the following pair of points .

(2,3) and (4,1)

Watch Video Solution

2. Find the distance between the following pair of points.

(-5,7) and (-1,3)

3. Find the distance between the following pair of points .

$$(-2,-3)$$
 and $(3,2)$

4. Find the distance between the following pair of points .

5. Find the distance between the points (0, 0) and (36, 15) . (AS_1)

Watch Video Solution

6. Verify that the points (1,5), (2,3) and (-2, -1) are collinear or not.

 (AS_2)

7. Check whether (5, -2), (6, 4) and (7, -2) are the vertices of an isosceles traingle.

Watch Video Solution

8. In a classroom, 4 friends are seated at the points A,B,C and D as shown in figure. Jarina and Phani walk into the class and after observing for a few minutes Jarina asks Phani "Don't you think ABCD is a square?" Phani disagrees. Using distance formula. Find which

of them is correct. Why?

Watch Video Solution

9. Show that the following points form an equilateral triangle A(a,0),

 (AS^2)

B (-a,0) , $Cig(0,a\sqrt{3}ig)$.

10. Prove that the points (- 7 , - 3) , (5 , 10) , (15 , 8) and (3 , - 5) taken in order are the corners of a parallelogram . (AS_2)

Watch Video Solution

11. Show that the points (- 4 , -7) , (- 1 , 2) , (8 , 5) and (5 , -4) taken in order are the vertices of a rhombus. And find its area.

(Hint : Area of rhombus $= rac{1}{2} imes ext{pro-duct of}$ its diagonals) (AS_2, AS_4)

Watch Video Solution

12. Name the type to quadrilateral formed, if any, by the following points, and give reasons for your answer. (AS_2) (-1,-2),(1,0),(-1,2),(-3,0)

13. Name the type to quadrilateral formed, if any , by the following points, and give reasons for your answer. (AS_2)

Watch Video Solution

14. Name the type of quadrilateral formed, if any, by the points, and give reasons for your answer.

Watch Video Solution

15. Find the point on the X - axis which is equidistant from (2 , -5) and (- 2 , 9). (AS_1)

Watch Video Solution

16. If the distance between two points (x, 7)and (1, 15) is 10, find the value of x . (AS_1)

17. Find the value of y for which the distance between the points P(2,-3) and Q(10, y) is 10 units. (AS_1)

Watch Video Solution

18. Find the radius of the circle whose centre is (3,2) and passes through (-5,6). (AS_4)

19. Can you draw a triangle with vertices (1 , 5) , (5 , 8) and (13 , 14) ? Give reason . (AS_2)

Watch Video Solution

20. Find a relation between x and y such that the point (x,y) is equi-distant from the points (-2,8) and (-3,-5). (AS_3)

1. Find the coordinates of the point which divides the line segment join-ing the points (- 1, 7) and (4, - 3) in the ratio 2:3 (AS_1)

Watch Video Solution

2. Find the coordinates of the points of trisection of the line segment joining (AS_1)

3. Find the ratio in which the line segment joining the point (- 3 , 10) and (6 , -8) is divided by (-1 , 6). (AS_1)

Watch Video Solution

4. If (1 , 2) , (4 , y) , (x , 6) and (3 , 5) are the vertices of a parallelogram taken in order, find x and y . (AS_4)

5. Find the coordinates of a point A , where AB is the diameter of a circle whose centre is (2 , - 3) and B is (1 , 4) . (AS_4)

Watch Video Solution

6. If A and B are (- 2 , - 2) and (2 , - 4) respectively . Find the coordinates of P such that AP $=\frac{3}{7}$ AB and P lies on the segment AB . (AS_1)

7. Find the coordinates of points which divide the line segment joining A (- 4 , 0) and B(0 , 6) into four equal parts . (AS_1)

Watch Video Solution

8. Find the coordinates of the points which divides the line segment joining A(- 2 , 2) and B (2 , 8) into four equal parts (AS_1)

9. Find the coordinates of the point which divide the line segment joining the points (a + b , a - b) and (a - b , a + b) in the ratio 3 : 2 internally. (AS_1)

Watch Video Solution

10. Find the coordinates of centroid of the triangle with following vertices : (AS_1) (-1,3),(6,-3) and (-3,6)

11. Find the coordinates of centroid of the triangle with following vertices : (AS_1) (6,2),(0,0) and (4,-7)

Watch Video Solution

12. Find the coordinates of centroid of the triangle with following vertices : (AS_1)

(1,-1),(0,6) and (-3,0)

1. Find the area of the triangle whose vertices are (AS_1)

$$(2,3),(-1,0),(2,-4)$$

Watch Video Solution

2. Find the area of the triangle whose vertices

are (AS_1)

3. Find the area of the triangle whose vertices are (AS_1)

(0,0),(3,0),(0,2)

Watch Video Solution

4. Find the value of 'K' for which the points are collinear. (AS_1)

(7, -2), (5, 1), (3, K)

5. Find the value of 'K' for which the points are collinear . (AS_1)

(8,1),(K,-4),(2,-5)

Watch Video Solution

6. Find the value of 'K' for which the points are collinear . (AS_1)

(K, K), (2, 3) and (4, -1)

7. Find the area of the triangle formed by joining the mid-points of the sides of the triangle whose vertices are (0,-1),(2,1) and (0,3). Find the ratio of this area to the area of the given triangle $.(AS_1)$

Watch Video Solution

8. Find the area of the quadrilateral whose vertices taken inorder are (-4,-2), (-3,-5), (3,-2) and (2,3) (AS_1)

9. Find the area of the triangle formed by the points by using Heron's for -mula .

10. Find the area of the triangle formed by the points by using Heron's for -mula .

Exercise 7 4

1. Find the slope of the line joining the two given points (AS_1)

(4,-8) and (5,-2)

Watch Video Solution

2. Find the slope of the line joining the two given points (AS_1)

(0 , 0) and $\left(\sqrt{3},3\right)$.

3. Find the slope of the line joining the two given points (AS_1)

(2a , 3b) and (a , - b) .

4. Find the slope of the line joining the two given points (AS_1)

(a, 0) and (0, b).

Watch Video Solution

5. Find the slope of the line joining the two given points (AS_1)

A(-1.4, -3.7), B(-2.4, 1.3).

Watch Video Solution

6. Find the slope of the line joining the two given points (AS_1)

A(2,-2), B(-6,-2).

Watch Video Solution

7. Find the slope of the line joining the two given points (AS_1)

$$A\bigg(-3\frac{1}{2},3\bigg), B\bigg(-7,2\frac{1}{2}\bigg).$$

Watch Video Solution

8. Find the slope of the line joining the two given points (AS_1)

A(0,4),B(4,0)

Watch Video Solution

Optional Exercise

1. Centre of a circle Q is on the Y-axis. The circle passes through the points (0, 7) and (0, -1). If it intersects the positive X-axis at (P, 0), what is the value of 'P'?

2. The triangle \triangle ABC is formed by the points A(2,3),B(-2,-3),C(4,-3). What is the point of intersection of side BC and angular bisector of A?

Watch Video Solution

3. The side BC of an equilateral ΔABC is parallel to X - axis . Find the slopes of line along sides BC , CA and AB .

4. A right triangle has sides 'a' and 'b' where a>b. If the right angle is bisected then find the distance between orthocentres of the smaller triangles using coordinate geometry.

Watch Video Solution

5. Find the centroid of the triangle formed by the line $2 \times + 3 \times - 6 = 0$ with the coordinate axes.

Observation Material 1 Marks Questions

1. What do you mean by centroid of a triangle

Watch Video Solution

2. Find the co-ordinates of the point, which divides the line segment join-ing (2,0) and (0,2) in the ratio 1:1.

3. The distance between two points A ($\cos \theta$ 0

4. If A (4 , 0) , B (0 , y) and AB = 5 , find the possible values of y .

5. Find the centroid triangle whose ver-tices are (3,4)(-7,-2) and (10,-5).

Watch Video Solution

6. Find the distance between the points (0,0) and (a,b).

Watch Video Solution

7. Find the mid point of the line segment formed by the points (-5,5) and (5,-5).

8. If the slope of the line passing through the two points(2 , 5) and (5 , 8) is repre-sented by tan θ , (where $0^\circ < \theta < 90^\circ$) in trigonometry, then find angle θ .

9. A (0 , 3) , B (k , 0) and AB = 5 . Find the positive value of k .

10. Find the distance between the points (1,5) and (5,8).

Observation Material 2 Marks Questions

1. Where do the points (0, -3) and (-8, 0) lie on co-ordinate axis?

Watch Video Solution

2. Find the relation between x and y such that point (x, y) is equidistant from the points (7, y)1) and (3,5).

Watch Video Solution

- **3.** Find the value of k, for which the points (7,
- 2), (5, 1) and (3, k) are collinear.

4. Find the centroid of the triangle, whose vertices are (-4,4),(-2,2) and (6,-6).

Watch Video Solution

5. Show that the points A = (4, 2), B (7, 5) and C (9, 7) are collinear.

6. A (3 , 6) , B (3 , 2) and C (8 , 2) are the vertices of a rectangle ABCD . Plot these points on a graph paper . From this find the coordinates of vertex D , so that ABCD will be a rectangle .

Watch Video Solution

7. Show that the points A (- 3 , 3) , B (0 , 0) , c (3 , - 3) are collinear .

8. If the distance between the two points (8 , x) and (x , 8) is $2\sqrt{2}$ units, then find the value of 'x'.

Watch Video Solution

9. Two vertices of a triangle are (3 , 2) , (- 2 , 1) and its centroid is $\left(\frac{5}{3}, -\frac{1}{3}\right)$. Find the third vertex of the triangle .

10. Find the angle made by the line join-ing (5, 3) and (-1, -3) with the posi-tive direction of X - axis.

Watch Video Solution

11. Determine 'x', if the slope of the line join-ing the two points (4, x), (7, 2) is $\frac{8}{3}$.

12. In the diagram on a Lunar eclipse, if the positions of Sun, Earth and Moon are shown by (-4,6), (k,-2) and (5,-6) respectively, then find the value of k.

Watch Video Solution

13. If the distance between two points (x, 1) and (-1, 5) is '5', find the value of 'x'.

Observation Material 4 Marks Questions

- **1.** Check whether the points (3,0), (6,4) and (
- 1, 3) are the vertices of a right -angled isosceles triangle or not. Also find the area of the triangle.

2. Find the area of the triangle formed by the points (2, 3), (-1, 3) and (2, -1) using Heron's formula.

3. Name the type of the quadrilateral formed by joining the points A(-1, -2) B (1,0), C(-1, 2) and D(-3,0) are graph paper, justify your answer.

- **4.** If A (5 , 7) , B(4 , 5) , C(1 , 6) and D (4 ,
- 5) are the vertices of a quadrilat-eral, then find

the area of a quadri-lateral ABCD.

Watch Video Solution

5. Find the trisection points of the line segment joined by the points (- 3 , 3) and (3 , - 3).

Watch Video Solution

6. If the points P(-3,9) ,Q(a, b) and R(4, -5) are collinear and a + b=1, then find the values of a

and b.

Watch Video Solution

7. The points C and D are on the line segment joining A(-4, 7) and B(5, 13) such that AC = CD = DB. Then find coor-dinates of points C and D.

8. The area of the triangle is 18 sq.units, whose vertices are (3, 4), (-3, -2) and (p, -1), then find the value of 'p'.

Watch Video Solution

9. Find the points of tri-section of the line segment joining the points (-2,1) and (7,4).

1. Find the distance between the points (5,7) and (7,5).

Watch Video Solution

Cce Model Examination

1. Find the distance between the points (5, 7) and (7, 5) by plotting them in co-ordinate plane with the help of a right angled triangle.

Watch Video Solution

2. Are the points (5, 7) and (7, 5) equal?

Watch Video Solution

3. Find the point on X-axis which is equi distant from the points (5,7) and (7,5).

4. The X-coordinate of the point of intersection of the two ogives of grouped data is......

A. Mean

B. Median

C. Range

D. Mode

Answer: B

5. Centroid of triangle , whose vertices are (- a

, 0) , (0 , b) and (a , 0) is

A. (a,b)

B. $\left(\frac{a}{3},0\right)$

 $\mathsf{C.}\left(0,\,\frac{b}{3}\right)$

D. $\left(\frac{a}{3}, \frac{b}{3}\right)$

Answer: C

6. The formula to find the area of a tri-angle is

••••

A.
$$\Delta=rac{1}{2}$$
 bh

B.
$$\Delta = \sqrt{(s-a)(s-b)(s-c)}$$

C.
$$\Delta = \sqrt{s(s-a)(s-b)(s-c)}$$

D. A and C

Answer: D

7. In the given figure, area of ΔOAB is

A. 12 sq. u.

B. 6 sq. u.

C. 24 sq. u.

D. 18 sq. u.

Answer: B

Watch Video Solution

8. Slope of the line that passes through the points $P(x_1,y_1)$ and $Q(X_2,y_2)$ and making an angle θ with X-axis is

A.
$$\dfrac{y_2+y_1}{x_2+x_1}$$

B.
$$\theta$$

C.
$$rac{y_2-y_1}{x_2-x_1}$$

D. $\sin \theta$

Answer: C

Watch Video Solution

9. In a coordinate plane, if line segment AB is parallel to X-axis, then which of the following is correct?

A. x coordinates of points A and B are equal.

B.y coordinates of points A and B are equal.

C. x coordinate of point A and y coordinate of point B are equal.

D. y coordinate of point A and x coor-dinate of point B are equal.

Answer: B

10. The area of a triangle whose vertices (points) are (0,0),(3,0) and (0,4) is

A. 3 sq. units

B. 4 sq. units

C. 6 sq. units

D. 5 sq. units

Answer: C

11. Slope of the line passing through the points (-1,1) and (1,1) is

- A. -1
- B. 0
- **C**. 1
- D. not defined

Answer: B

12. If the co-ordinates of the vertices of a rectangle are (0,0), (4,0), (4,3) and (0,3), then the length of its diagonal

- A. 4
- B. 5
- C. 7
- D. 3

Answer: B

13. Sum of the distances from A (3, 4) to x - axis and from B (5,7) to Y - axis is

A. 8

B. 10

C. 11

D. 9

Answer: D

14. (x, y), (2, 0), (3, 2) and (1, 2) are vertices of a parallelogram, then (x, y) =

- A. (0,0)
- B.(4,8)
- C. (1,0)
- D. (5,0)

Answer: A

15.	The	graph	represented	by $y = x$	is
-----	-----	-------	-------------	------------	----

Answer: C

16. The distance between two points

$$A(a\cos\theta,0), B(0,a\sin\theta)$$
 is

- A. a
- $B. a^2$
- C. \sqrt{a}
- D. 0

Answer: A

17. The area of the triangle BOA issq. units.

A. 1

B. 2

C. 3

D. 4

Answer: C

Watch Video Solution

18. Slope of the line passing through the points (4,6) and (2,-5) is

A.
$$\frac{6}{5}$$

$$\mathsf{B.}\,\frac{-2}{4}$$

$$\mathsf{C.}\;\frac{5}{6}$$

D.
$$\frac{11}{2}$$

Answer: D

Watch Video Solution

19. A point on the Y-axis is of form

A.(0, y)

B.(x,0)

C. (x, y)

D. (y, y)

Answer: A

20. A point of the X-axis is of the form

A. (0, y)

B. (x, 0)

C. (x, y)

D.(x,x)

Answer: B

21. AOBC is a rectangle whose three vertices are A(4,0), B(0,3) and O(0,0), then its diagonal is

A. 4

B. 3

C. 5

D. 7

Answer: C

22. The perimetre of a triangle whose vertices are A(12, 0), O(0, 0) and B(0, 5) is

A. 13

B. 30

C. 34

D. 60

Answer: B

23. The distance of the point (- 8 , 3) from the origin is

A. 5

B. 55

C. 73

D. 24

Answer: C

24. The distance of the point (- 4 , 3) from X-axis is

A.-4

 $\mathsf{B.}-3$

C. 4

D. 3

Answer: D

25. The distance of the point (- 8 , - 7) from yaxis is

A. 8

B.-7

C. - 8

D. 7

Answer: A

26. The points (- 3 , 0) , (0 , 5) and (3 , 0) are the vertices of atriangle .

A. scalene

B. isosceles

C. equilateral

D. right angled

Answer: B

27. The distance between the points (- 2 , 3)

and (2, -3) is

A. 0

B. 52

C. $\sqrt{52}$

D. 16

Answer: C

28. If the distance between the points (4, y)

and (1,0) is 5 then y =

A. 0

B. 4

C. \pm 4

D. \pm 2

Answer: C

29. The distance between the points (0,7) and

(-7,0) is

A.
$$\sqrt{14}$$

$$\mathsf{C.}\,2\sqrt{7}$$

D.
$$7\sqrt{2}$$

Answer: D

30. A circle is draw with origin as centre and passing through (2,3), then its radius is ...

- A. 2
- B. 3
- C. 13
- D. $\sqrt{13}$

Answer: D

31. The area of the triangle formed by (a, b + c

),
$$(b, c+a)$$
 and $(c, a+b)$ is

A.
$$2 (a + b + c)$$

$$D.a + b + c$$

Answer: C

32. If points (x, 0), (0, y) and (1, 1) are collinear, then $\frac{1}{x} + \frac{1}{y} = \dots$

A. 1

B. - 1

C. 0

D. 2

Answer: A

33. The point which divides the line segment joining the points (3,4) and (7,-6) internally in the ratio 1: 2 lies in thequadrant.

- A. Q_1
- B. Q_2
- $\mathsf{C}.\,Q_3$
- D. Q_4

Answer: D

34. The points (a , 2a) , (3a , 3a) and (3 , 1) are collinear, then a =

A.
$$\frac{-1}{4}$$

B.
$$\frac{1}{3}$$

$$\mathsf{C.}\,\frac{-2}{3}$$

D.
$$\frac{-1}{3}$$

Answer: D

35. P (2 , 2), Q (- 4, 4) and R (5 , - 8) are the vertices of a ΔPQR , then median from 'R' is

••••

A.
$$\sqrt{147}$$

$$\mathrm{B.}\,\sqrt{157}$$

C.
$$4\sqrt{17}$$

D.
$$2\sqrt{13}$$

Answer: B

36. A circle drawn with origin as centre passes

through $\left(\frac{13}{2},0\right)$. The point which doesn't lie

in the interior of the circle is

A.
$$(-6, 3)$$

$$\mathsf{B.}\left(5,\frac{1}{2}\right)$$

$$\mathsf{C.}\left(2,\frac{7}{3}\right)$$

D.
$$\left(\frac{-3}{4}, 1\right)$$

Answer: A

37. The distance of the point (- 9, 40) from the origin is

- A. 9
- B. 40
- C. 53
- D. 41

Answer: D

38. If (- 2 , 8) and (6 , - 4) are the end points of the diameter of a circle, then the centre of the circle is

- A. (3, 6)
- B. (4, 2)
- C.(2,2)
- D. (-3, 2)

Answer: C

39. The distance of a point (α, β) from the origin is

A.
$$\alpha$$
, β

B.
$$\alpha^2 + \beta^2$$

C.
$$\sqrt{\alpha^2 + \beta^2}$$

D.
$$\sqrt{lpha^2-eta^2}$$

Answer: C

40. The angle between X-axis and Y-axis is

A. 0°

B. 180°

C. 360°

D. 90°

Answer: D

41. The midpoint of the line joining of (2, 3)

and (- 2 , - 3) is

- A.(0,0)
- B.(2,3)

$$\mathsf{C.}\left(1,1\frac{1}{2}\right)$$

D.
$$\left(-1, -1\frac{1}{2}\right)$$

Answer: A

42. The slope of line join of (5, -1), (0, 8) is

A.
$$\frac{7}{5}$$

B.
$$\frac{9}{5}$$

$$\mathsf{C.}-\frac{9}{5}$$

$$\mathsf{D.}-\frac{5}{9}$$

Answer: C

Watch Video Solution

43. Slope of X-axis is

- A. 0
- B. 1
- C. -1
- D. not defined

Answer: A

Watch Video Solution

44. Slope of Y-axis is

A. 1

$$B. - 1$$

C. 0

D. not defined

Answer: D

Watch Video Solution

45. The centroid of the triangle whose vertices

are (2, -3), (4, 6), (-2, 8) is

$$A.\left(\frac{8}{3},\frac{17}{3}\right)$$

C.
$$(-3, -8)$$

$$D.\left(\frac{4}{3}, \frac{11}{3}\right)$$

Answer: D

Watch Video Solution

- **46.** Two vertices of a triangle are (3, 5) and (-
- 4,-5). If the centroid of the triangle is (4,3),

find the third vertex.

- A. (13, 9)
- B. (-9, -13)
- C. (9, 13)
- D. (13, -9)

Answer: A

Watch Video Solution

47. The ratio in which the point (4,8) divide the line segment joining the points (8,6) and (0,10) is

A. 2:1

B. 1:1

C. 1: 2

D. 3:1

Answer: B

Watch Video Solution

48. If (0 , 0) , (a , 0) and (0 , b) are collinear ,

then

A.
$$ab = 0$$

$$B.a=b$$

C.
$$a = -b$$

$$D.a-b=c$$

Answer: A

Watch Video Solution

49. If (-2 , -1) , (a , 0) , (4 , b) and (1 , 2) are the vertices of a parallelogram then a =

- **A.** 3
- B. 2
- C. 4
- D. 1

Answer: D

Watch Video Solution

50. In the above problem b =

A. 3

B. 4

 $\mathsf{C.}-5$

D. none

Answer: A

View Text Solution

51. (-2,8) \in

A. Q_1

B. Q_4

 $\mathsf{C.}\,Q_2$

D. Q_3

Answer: C

Watch Video Solution

52. If A , B , C are collinear then area of ΔABC

=

A. 2

D. none

Answer: C

Watch Video Solution

53. Area of triangle formed by (- 4 , 0) ,(0 , 0) and (0 , 5) issq.units.

A. 12

D. 9

Answer: B

Watch Video Solution

54. The value of p if the distance between (2,

3) and (p, 3) is 5 is

A. 7

D. 5

Answer: A

Watch Video Solution

55. The value of k if the distance between (2,

8) and (2, k) is 3 is

A. 4. 5

D. 5

Answer: D

Watch Video Solution

56. A(0 , - 1) , B(2 , 1) and C(0 , 3) are the vertices of ΔABC then median through B has a lengthunits.

A. 9. 5

- B. 10
- C. 2
- D. 9

Answer: C

Watch Video Solution

57. The closed figure formed by the points (-2,

- 0), (2,0), (2,2), (0,4) and (-2,-2) is a
 - A. pentagon

B. triangle

C. circle

D. none

Answer: A

Watch Video Solution

58. The coordinates of the midpoint joining

 $P(x_1,y_1)$ and $Q(x_2,y_2)$ is

A.
$$\left(rac{x_1+x_2}{2},rac{y_1+y_2}{2}
ight)$$

B.
$$\left(rac{x_1-x_2}{2},rac{y_1+y_2}{2}
ight)$$
C. $\left(rac{x_1+y_1}{2},1
ight)$

D. none

Answer: A

Watch Video Solution

59. The coordinates of the point which divides the line joining (x_1, y_1) and (x_2, y_2)

A.
$$\left(rac{mx_2+nx_1}{m+n},rac{my_2+ny_1}{m+n}
ight)$$

B.
$$\left(0, \frac{m}{n}\right)$$

$$\mathsf{C.}\left(\frac{mx_2}{m+n},\frac{ny_1}{m+n}\right)$$

D.
$$\left(rac{mx_2+nx_1}{m-n},rac{my_2+ny_1}{m-n}
ight)$$

Answer: A

Watch Video Solution

60. The centroid divides each median in the

....ratio.

A. 3:1

B. 1:3

C. 1: 2

D. 2:1

Answer: D

Watch Video Solution

61. If the distance between the points (3 , k) and (4 , 1) is $\sqrt{10}$ then the value of k =

A. 8 or 10

B. 4 or -2

C. -1 or 2

D. none

Answer: B

Watch Video Solution

62. If the points (1, 2), (-1, x) and (2, 3) are collinear then the value of x is

A. 9

B. 7

C. 0

D. -1

Answer: C

Watch Video Solution

63. If the centroid of the triangle formed with (a , b) , (b , c) and (c , a) is O(O , O) then $a^3+b^3+c^3=\$

$$A.a+b+c$$

B.
$$\frac{a+b+c}{3}$$

c.
$$\frac{abc}{3}$$

D. 3 abc

Answer: D

Watch Video Solution

64. The distance between two points A ($\cos \theta$

0), B(0, a $\sin \theta$) is

A.
$$\frac{a}{3}$$

B. a

 $\mathsf{C.}\,a^2$

D. $\frac{a}{2}$

Answer: B

Watch Video Solution

65. Distance of (x, y) from X-axis is

A. y

B.-x

 $\mathsf{C}.-y$

D. none

Answer: A

Watch Video Solution

66. Distance of (x, y) from Y-axis is

A. -x

B. y

C. x

D. none

Answer: C

Watch Video Solution

67. (x , 0) is a point on

A. X-axis

B. Y-axis

C. origin

D. none

Answer: A

Watch Video Solution

68. (0, y) is a point on

A. (0,0)

B. Y - axis

C. X - axis

D. none

Answer: B

Watch Video Solution

69. Distance of (x, y) from origin is

A.
$$\sqrt{x} + \sqrt{y}$$

B.
$$\sqrt{x+y}$$

C.
$$\sqrt{xy}$$

D.
$$\sqrt{x^2+y^2}$$

Answer: D

70. If a < 0 then $(-a, -a) \in$

A. Q_2

B. Q_1

 $\mathsf{C}.\,Q_4$

D. Q_3

Answer: B

71. Coordinate geometry was introduced by

A. Rene Descartes

B. John Ven

C. Cayley

D. None

Answer: A

72. Slope of the line y = mx is

A. y

B. x

C. m

D. none

Answer: C

73. Slope of the line joining the points (2a, 3b)

A.
$$\frac{-a}{b}$$

$$\mathsf{B.}\;\frac{b}{a}$$

$$\mathsf{C.}\;\frac{b}{4a}$$

D.
$$\frac{4b}{a}$$

Answer: D

74. Slope of the line joining the points A(-1.4, -

3.7) and B(-2.4,1.3) is

A.-5

B. 5

C. 6

D. 7

Answer: A

75. (3 , -5) ∈

A. Q_4

B. Q_3

 $\mathsf{C}.\,Q_1$

D. Q_2

Answer: A

76. The angle between the lines x = 2 and y = 3

is

- A. 60°
- B. 70°
- C. 90°
- D. 80°

Answer: C

77. Slope of vertical line is

A. 0

B. - 1

C. 3

D. not defined

Answer: D

78. Area of triangle formed with (-5,-1), (3,-5) and (5, 2) issq.units.

- A. 28
- B. 20
- C. 32
- D. 16

Answer: C

79. If the points (k,k),(2, 3) and (4, -1) are collinear then k =

$$\text{A.}\ \frac{-1}{7}$$

$$\mathsf{B.}\;\frac{1}{2}$$

$$\mathsf{C.}\,\frac{3}{7}$$

D.
$$\frac{7}{3}$$

Answer: D

80. A(2 , 0) , B(1, 2) , C(1 , 6) then $\Delta ABC =$

A. 10

B. 12

C. 2

D. 9

Answer: C

81. Identify collinear points .

D. all

Answer: A

82. The area of square formed with the vertices (0, -1),(2, 1), (0, 3) and (-2, 1) taken in order as vertices issq.units.

- A. 12
- B. 6
- C. 8
- D. none

Answer: C

83. Find the coordinates of centroid of the triangle with following vertices $:(AS_1)$

(-1,3),(6,-3) and (-3,6)

A.
$$\left(1, \frac{1}{2}\right)$$

$$\mathsf{B.}\left(\frac{2}{3},2\right)$$

$$\mathsf{C.}\left(8,\frac{-1}{2}\right)$$

Answer: B

84. A(1, -1), B(0, 6) and C(-3, 0) then G =

A.
$$\left(\frac{8}{9}, \frac{1}{7}\right)$$

$$\mathsf{B.}\left(\frac{6}{7},\,\frac{1}{3}\right)$$

$$\mathsf{C.}\left(\frac{1}{2},\,\frac{1}{3}\right)$$

D.
$$\left(\frac{-2}{3}, \frac{5}{3}\right)$$

Answer: D

85. The point of concurrence of medians of a triangle is called.....

A. centroid

B. orthocentre

C. centre

D. none

Answer: A

86. Mid point of the line joining the points (1,

1) and (0,0) is

A. (0,9)

B. (3,7)

 $\mathsf{C.}\left(\frac{1}{2},\frac{1}{2}\right)$

 $\mathsf{D.}\left(1,\frac{1}{2}\right)$

Answer: C

- 87. The radius of the circle whose centre is (3,
- 2) and passes through (-5, 6) isunits.

A.
$$2\sqrt{5}$$

B.
$$4\sqrt{7}$$

$$\mathsf{C.}\,4\sqrt{3}$$

D.
$$4\sqrt{5}$$

Answer: D

88. Area of parallelogram =sq.units.

A.
$$\frac{1}{2}$$
 bh

B. bh

$$\mathsf{C}.\,b^2h^2$$

D. none

Answer: B

A.
$$\sqrt{10}$$

B. 10

C. 8

D. $\sqrt{19}$

Answer: A

Watch Video Solution

90. In quadrilateral ABCD,

AB = BC = CD = AD and $AC \neq BD$ then it is a

••••

- A. trapezium
- B. square
- C. parallelogram
- D. none

Answer: D

Watch Video Solution

91. A(a, b) and B(-a, -b) then BA =units.

A. $2\sqrt{a}$

B.
$$2\sqrt{a^2+b^2}$$

C.
$$2\sqrt{b}$$

D.
$$\sqrt{a^2+b}$$

Answer: B

Watch Video Solution

92. If θ is the angle made by a line with x-axis then slope m =

A. $\tan \theta$

- $\mathsf{B.}\sec\theta$
- C. cosec heta
- D. none

Answer: A

- **93.** A(4, 0), B(8, 0) then AB =units.
 - A. 6
 - B. 10

C. 4

D. 12

Answer: C

Watch Video Solution

94. Other name for x-coordinate of a point is

A. abscissa

B. point

C. ordinate

D. none

Answer: A

Watch Video Solution

95. (8, 10) \in

A. Q_2

B. Q_1

C. Q_3

D. none

Answer: B

Watch Video Solution

96. Slope of horizontal line is

A. 3

B. - 1

C. 0

D. none

Answer: C

A. straight line

B. circle

C. curve

D. none

Answer: A

98. Heron's formula to calculate area of triangle is

A.
$$\sqrt{S(S-a)(S-b)}$$

B.
$$\sqrt{S(S-a)(S-b)(S-c)}$$

C.
$$\sqrt{S(S-a)(S-b)(S+c)}$$

D. none

Answer: B

99. In Heron's formula S =

A.
$$\frac{a-b-c}{2}$$

B.
$$\frac{a+b-c}{2}$$

$$\mathsf{C.}\,\frac{ab}{2}+c$$

D.
$$\frac{a+b+c}{2}$$

Answer: D

100. Coordinates of origin are

- A. (a, b)
- B. (3,7)
- C. (0,0)
- D. none

Answer: C

101. A(4,3), B(8,6) then AB =units.

A. 9

B. 5

C. 16

D. 12

Answer: B

102. $Q_1\cap Q_2$ =

A. ϕ

B. $\{0\}$

 $C. \{8, 4\}$

D. none

Answer: A

103. If AC = AB + BC then the points A, B, C are

•••••

A. non collinear

B. collinear

C. can't be determined

D. none

Answer: B

104. Slope of the line $\frac{x}{a} + \frac{y}{b} = 1$ is

A.
$$\frac{-b}{a}$$

B.
$$\frac{b}{a}$$

C.
$$\frac{a}{b}$$

D. none

Answer: A

105. The midpoint of the line joining the points (1, 2) and (1, p) is (1, -1) then p =

- A. 31
- B.-3
- $\mathsf{C.}-4$
- D. none

Answer: C

106. The centroid of the triangle formed with

the line x + y = 6 with the coordinate axes is

- A. (4,0)
- B. (1, 3)
- C. (8, 1)
- D.(2,2)

Answer: D

107. Slope of the line joining the points (2,5)

and (k, 3) is 2 then k =

A. 4

B. 1

C. -1

D. none

Answer: B

108. A point on X - axis is

A. (9, 0)

B. (0, 3)

C. (9, 3)

D. (3, -1)

Answer: A

109. The slope of a line passing through (- 2,

3) and (4 , a) is $\frac{-5}{3}$ then a =

A. 1

B. 7

C. - 7

D. 2

Answer: C

110. If (1 , x) is at $\sqrt{10}$ units from origin then the value of x =

- A. \pm 31
- B. \pm 3
- C. \pm 2
- D. \pm 1

Answer: B

111.
$$A = \left(\frac{1}{2}, \frac{3}{2}\right), B\left(\frac{3}{2}, \frac{-1}{2}\right)$$
 then BA =

A.
$$\sqrt{5}$$

B.
$$\sqrt{6}$$

C.
$$\sqrt{19}$$

D. none

Answer: A

112. X and Y axes will intersect at

- A. (1,1)
- B. (2, 2)
- C.(0,0)
- D. (8, 5)

Answer: C

113. In $\Delta ABC, AB=BC$ then it istriangle .

A. scalene

B. equilateral

C. isosceles

D. none

Answer: B

114. Y axis can be represented by

A.
$$x = 0$$

$$B. y = 0$$

$$\mathsf{C.}\,y = \frac{1}{2}$$

D. all

Answer: A

Watch Video Solution

115. y intercept of the line x - 2y + 1 = 0 is

A.
$$\frac{-1}{2}$$

B. 1

C. -1

D. $\frac{1}{2}$

Answer: D

Watch Video Solution

116. If G is the centroid and AD be a median with length 12 cm of $\triangle ABC$, then the value of AG is

- A. 4cm
- B. 8cm
- C. 10cm
- D. 6cm

Answer: B

In the below figure G is the centroid then $AG : GD = \dots$ [

- A) 1:4
- B) 2:3
- C) 1:1
- D) 2:1

117.

In the above figure AD : GD =

- A. 3:1
- B. 1:2
- C.2:1
- D. none

Answer: A

118. equation of X - axis is

A.
$$x = 0$$

B.
$$x = 7$$

$$C. x = 1$$

D.
$$y = 0$$

Answer: D

119. If (p, 2p) , (2p, 3p) and (3 , 1) are collinear then p =

A.
$$\frac{1}{3}$$

$$B. - 1$$

$$\mathsf{C.}\,\frac{-1}{3}$$

D. none

Answer: D

120. In ΔABC , all the sides are different then it is calledtriangle .

- A. isosceles
- B. scalene
- C. equilateral
- D. none

Answer: B

121. In $\Delta PQR, PQ=QR$ then it is called

.....triangle .

A. isosceles

B. right triangle

C. equilateral

D. none

Answer: A

122. A (1, - 1) ,
$$B\!\left(2\frac{1}{2},0\right)$$
 , C (4 , 1) then area of

$$\Delta ABC$$
 =sq. units.

- A. 2
- B. 9
- C. 0
- D. none

Answer: C

123. The point of concurrence of attitudes of a triangle is called its......

A. orthocentre

B. centroid

C. isosceles

D. none

Answer: A

124. $A(2a, 4a), B(2a, 6a), C(2a + \sqrt{3}a, 5a)$

then ΔABC istriangle.

A. scalene

B. isosceles

C. equilateral

D. none

Answer: C

125. Angle made by the line y = x with the positive direction of X-axis is

- A. $45^{\,\circ}$
- B. 60°
- C. 90°
- D. 70°

Answer: A

126. Number of medians of triangle is

A. 5

B. 4

C. 7

D. 3

Answer: D

127. Slope of line y = 7 is

A. 1

B. 7

C. 0

D. none

Answer: C

128. If A (p , q) , B (m , n) and C (p - m , q - n)

are collinear then pn =

A.
$$q^2$$
 m

$$\mathsf{C.}\,\frac{q}{m}$$

D. none

Answer: B

129. The area of below triangle issq.units.

A. 3

B. 8

C. 4

D. 6

Answer: A

Watch Video Solution

In the below figure $x = \dots$

- A) 1
- (B) 7
- C) 3

D) – 9

In the above problem y =

A. 3

130.

B. 7

C.-3

D. 8

Answer: A

Watch Video Solution

131. Area of trapezium = Sq.units.

A. ph

B.h(a+b)

C. $\frac{1}{2}$ h (a + b)

D.
$$\frac{1}{2}$$
 (a + b)

Answer: C

132. P (cos
$$\theta$$
, - cos θ), Q(sin θ , sin θ) then PQ =

A.
$$\cos \theta$$

B.
$$\sin^2 \theta$$

D. none

Answer: D

Watch Video Solution

133. A(t , 2t) , B(- 2, 6) , C(3 , 1) and Δ ABC = 5 sq.units then t =

A. 9

B. 4

 $\mathsf{C.}-9$

D. 2

Answer: D

Watch Video Solution

134. The diagonals of a parallelogram whose vertices are (2,3), (4,5), (4,9) and (2,7) will intersect at

A.(0,0)

B.(5,6)

C. (0, 9)

D. (3, 6)

Answer: B

Watch Video Solution

135. Slope of the line 3x - 2 = 0 is

A. 2

B. 3

C. 0

D. not defined

Answer: D

Watch Video Solution

136. Each angle of an equilateral triangle is......

A. 100°

B. $70\,^\circ$

C. 60°

D. 90°

Answer: C

Watch Video Solution

137. A(cot θ 1 ,) , B(O , O) then BA =

A. 5

B. 4

C. 1

D. none

Answer: D

Watch Video Solution

138. Slope of the line joining the points A(0,0)

, B
$$\left(\frac{1}{2},\frac{1}{2}\right)$$
 is

A. 4

B. 1

C. 3

D. 7

Answer: B

Watch Video Solution

139. (3 ,0) ,(8,0) ,
$$\left(\frac{1}{2},0\right)$$
 Points lie on

A. X-axis

B. Y-axis

C. (0,0)

D. none

Answer: A

140. (x, y)
$$\in Q_4$$
 then

A.
$$x = 0$$
, $y = 0$

B.
$$x < 0, y > 0$$

C.
$$x > 0, y < 0$$

D. none

Answer: C

141. y intercept of the line y = mx + c is

A. y

B. m

C. 1

D. none

Answer: D

142. The midpoint of line segment divides it in ratio

- A. 1:1
- B. 2:1
- C. 1: 2
- D. 1:4

Answer: A

- A. equal
- B. trisect
- C. bisect
- D. none

Answer: C

144. The line joining the mid point of one side of a triangle from opposite vertex in called

A. ortho centre

B. Median

C. centroid

D. none

Answer: B

= 5 sq.units.

A. 4

B. 3

C. 10

D. 9

Answer: C

146. x intercept of the line x - y + 1 = 0 is

A. 1

B. 2

C. 7

D. -1

Answer: D

147. In rhombus all sides are

A. equal

B. not equal

C. 3 cm

D. 8 cm

Answer: A

148. If the point (4, -p) lie on X - axis then

$$p^2+2p-1$$
 =

- A. 0
- B. 1
- C. -1
- D. 4

Answer: C

149. If the point (a , 5) lies on Y-axis , the value

of a =

A. a > 0

B. a < 0

C. a = 0

D. none

Answer: C

150. If the distance between the points (x_1,y_1) and (x_2,y_2) is $|x_1-x_2|$ then they are parallel to

- A. X axis
- B. XY axis
- C. X'Y = axis
- D. Y axis

Answer: A

151. The line that does not pass through origin and having a zero slope is

- A. Parallel to X axis
- B. Parpendicular to X axis
- C. Pependicular to Y axis
- D. Parallel to Y axis

Answer: A

Coordinate Geometry Multiple Choice Question

1. Find the perpendicular distance of that point (3,-4) from the line 2x - 5y + 2 = 0.

A.
$$\frac{28}{\sqrt{29}}$$
 units

B.
$$\sqrt{29}units$$

D. None

Answer: A

2. Write the equation

$$x\cosrac{\pi}{4}+y\sinrac{\pi}{4}+2=0$$
 in the intercept form......

A.
$$\frac{x}{2\sqrt{2}} + \frac{y}{2} = 1$$

$$\operatorname{B.}\frac{x}{-2\sqrt{2}}+\frac{y}{2\sqrt{2}}=1$$

$$\mathsf{C.}\,\frac{x}{2}+\frac{y}{3}=1$$

D.
$$\frac{x}{5\sqrt{2}}+\frac{y}{5\sqrt{2}}=1$$

Answer: B

3. Find the area of Δ^{le} formed by the straight line $x\cos lpha + y\sin lpha = p$ on the co-ordinate axes.

A.
$$\frac{p^2}{\cos \alpha}$$

B. p^2 . $\csc 2\alpha$ sq.units

C.
$$\frac{p^2}{\sin 2\alpha}$$
 sq.units

D. 0

Answer: C

Watch Video Solution

4. Find the distance between the parallel lines

$$3x-4y=12$$
 and $3x-4y=7$

A. 1 unit

B. 2 units

C. 3 units

D. 0

Answer: A

5. Find the incentre of the Δ^{le} with the vertices $(1,\sqrt{3})$,(0,0) and (2,0)

A.
$$(1, \sqrt{3})$$

B.
$$(\sqrt{3}, -\sqrt{3})$$

$$\mathsf{C.}\left(1,\,\frac{1}{\sqrt{3}}\right)$$

D. (1,1)

Answer: C

6. Line L has intercepts a and b on the coordinate axes. When the axes are rotated through a fixed given angle keeping the origin fixed, the same line L has intercepts P and q, then

A.
$$\dfrac{1}{p^2}+\dfrac{1}{q^2}$$

$$\mathsf{B.}\,\frac{1}{p^2}-\frac{1}{q^2}$$

$$\mathsf{C.}\,p^2+q^2=1$$

D. None

Answer: A

Watch Video Solution

7. Find the value of 'a' such that a^2+2a , 2a+3 and a^2+3a+8 and the sides of the Δ^{le} .

B.
$$a > 5$$

$$\mathsf{C}.\,a < 5$$

D.
$$a < 4$$

Watch Video Solution

8. Find the equation of a straight line passing through the point P(3,4) such that the portion between the axes is divided by P in the ratio 2:3.

A.
$$2x - y = 10$$

B.
$$2x + 3y = 10$$

$$C. 2x + y = 10$$

D.
$$4x + 5y = 10$$

Answer: C

Watch Video Solution

9. The co-ordinates of the vertex of a square ABCD are (1,2) and the equation of the diagonal BD is x+2y=10. Find the equation of other diagonal and the co-ordinates of the centre of the square.

A. y - 2x = 0

B.
$$2x + y = 0$$

C.
$$x + y = 0$$

D. None

Answer: A

Watch Video Solution

10. IF y+x(2p+1)+3=0 and 8y-x(2p-1)-5=0 are perpendicular find p.

A.
$$\pm \frac{2}{3}$$

$$\mathsf{B.}\pm\frac{3}{2}$$

$$\mathsf{C}.\pm3$$

D.
$$\pm 4$$

Answer: B

11. IF
$$3(k-1)y-6x=2$$
 and $4y-8x+10=0$ are parallel then find k.

A. 1

B. -2

C. 2

D. 0

Answer: C

Watch Video Solution

12. IF $2y - p^2x = 3$ and 2y - (4px + 1) = 0

are parallel find the value of p.

A. 1

B. 2

C. 3

D. 4

Answer: D

13. IF the points (a,1),(1,2) and (0,b+1) are collinear. Then
$$\frac{1}{a} + \frac{1}{b} = \ldots$$

- **A.** 1
- B. 2
- C. -2
- D. -1

Watch Video Solution

14. Find the gradient of the line joining the pair of points $(\sqrt{3}+1,2), (\sqrt{3}+3,4).$

- A. -1
- B. 1
- C. 2
- D. -2

Watch Video Solution

15. If the points P=(a,2),Q=(1,3) and R=(5,b) are such that PQ=QR. Find 'a' and 'b' if P,Q and R are collinear.

Answer: C

Watch Video Solution

16. Find the co-ordinates of incentre of the triangle whose vertices are (-36,7),(20,7) and (0,-8)

- A. (-1,0)
- B. (1,2)
- C. (-1,-2)
- D. (4,5)

Watch Video Solution

17. The three vertices of Rhombus are (2,-1),

(3,4) and (-2,3). Find the fourth vertex.

- A. (-1,-2)
- B. (-3,-2)
- C. (1,2)
- D.(0,0)

Watch Video Solution

18. Find the ratio in which the point A=(16,-8) divides the line segment joining B=(1,2) and C= (10,-4).

- A. 5: -2
- B. 1:2
- C. 5: 2
- D. 3:4`

Watch Video Solution

19. IF the distance of the point P(x,y) from A= (a,0) be (a+x) then y^2 =......

- A. 4
- B. 4a
- C. 4ax
- D. x

Answer: C

Watch Video Solution

20. IF the point P(x,y) be equidistant from the point A=(m+n,n-m),

B=(m-n,m+n) then nx=.....

A. my

B. m

C. y

D. none

Answer: A

Watch Video Solution

21. Find the distance between the two points $(at_1^2, 2at_1), (at_2^2, 2at^2), t_2 > t_1.$

A.
$$a.\ (t_2-t_1).\ \sqrt{(t_1+t_2)^2+4}$$

B. $(t_2-t_1)\sqrt{(t_1+t_2)^2-4}$

C. $(t_2-t_1)\sqrt{4(t_1+t_2)}$

Answer: A

22. Find the equation of the line passing through the point (4,5) and making an angle of
$$\frac{\pi}{4}$$
 with the line $2x - y + 7 = 0$.

A.
$$x + 3y + 10 = 0$$

B.
$$x - 3y + 11 = 0$$

C.
$$2x + 3y + 4 = 0$$

D.
$$x + y + 1 = 0$$

Watch Video Solution

23. A line passes through the point (22,-6). IF the intercept on the x-axis exceeds the intercept on the y-axis by 5. Find its equation.

$$A. x + 2y = 3$$

$$\mathsf{B.}\,5x+45y=7$$

$$\mathsf{C.}\,6x+11y=66$$

D.
$$x + y + 1 = 0$$

Answer: C

Watch Video Solution

24. the points IF A(1+t,1), B(1+2t,3), C(2t+2,2t) are

collinear find 't'.

$$\mathsf{D.}-\frac{1}{2}$$

Answer: D

Watch Video Solution

25. The straight line x+y=0, 3x+y-4=0 and x+3y-4=0

4=0 from a triangle which is

- A. Isosceles
- B. Right angle
- C. Equilateral
- D. Scalene triangle

Watch Video Solution

26. The vertices of a Δ^{le} are A=(-2,8), B=(1,2), C=

(7,-1). Find the equation of median through A.

$$\mathsf{A.}\,5x+4y=22$$

B.
$$x + y + 1 = 0$$

$$\mathsf{C.}\,2x+3y=0$$

D. None

Answer: A

Watch Video Solution

27. If the three vertices of a Rectangle are the points (2,-2),(8,4) and (5,7) find the coordinates of fourth vertex.

B. (1,-1)

C.(0,0)

D. (1.2)

Answer: A

28. Given
$$\frac{1}{a}+\frac{1}{b}=k$$
, find the fixed point which passes through the straight line $\frac{x}{a}+\frac{x}{b}=1$

B. (k,k)

$$\mathsf{C.}\left(\frac{1}{k},\frac{1}{k}\right)$$

D. (0,0)

Answer: C

View Text Solution

29. IF a,b,c are in A.P then the striaght line ax+by+c=0 will always pass through a fixed point. Find it.

- A. (1.2)
- B. (1,-2)
- C.(2,3)
- D.(0,0)

Watch Video Solution

30. A line is such that its segment between the axes is bisected at the point $(x_1\!:\!y_1)$ Find the equation of that line.

A.
$$\dfrac{x}{2x_1}+\dfrac{y}{2y_1}=1$$

$$\operatorname{B.}\frac{x}{2}+\frac{y}{3}=1$$

$$\mathsf{C.}\,ax+by=c$$

D.
$$y^2=4ax$$

