# ©゙doubtnut 

## MATHS

## BOOKS - VGS BRILLIANT MATHS (TELUGU ENGLISH)

## QUADRATIC EQUATIONS

QUADRATIC EQUATIONS (MULTIPLE CHOICE QUESTION)

1. $2 x^{2}+3 x-1=0$ is a quadratic equation the roots are $\alpha, \beta$ then $\alpha^{2}+\beta^{2}=\ldots . . . . . .$.
A. $\frac{13}{4}$
B. $\frac{-13}{4}$
C. $\frac{4}{13}$
D. $\frac{-4}{13}$

## - Watch Video Solution

2. $3 x^{2}-5 x+2=0$ is a quadratic equation the roots are $\alpha, \beta$ then $\alpha^{3}+\beta^{3}$ is
A. $\frac{27}{35}$
B. $\frac{35}{27}$
C. $\frac{-35}{27}$
D. $\frac{-27}{35}$

## Answer: B

3. $x^{2}+p x+q=0$ is a quadratic equation, the roots are $\alpha, \beta$ then $\alpha^{4}+\beta^{4}$ is.
A. $p^{4}+4 p^{2} q+2 q^{2}$
B. $p^{4}+q^{4}-2 p^{2} q^{2}$
C. $p^{4}-4 p^{2} q+2 q^{2}$
D. $p^{4}+q^{4}+2 p^{2} q^{2}$

## Answer: C

## - Watch Video Solution

4. The quadratic equation whose roots are reciprocal of the roots of the equation $a x^{2}+b x+c=0$ is-
A. $c x^{2}-b x-a=0$
B. $c x^{2}-b x=0$
C. $c x^{2}+b x-a=0$
D. $c x^{2}+b x+a=0$

## Answer: D

## - Watch Video Solution

5. IF $a>0$ then the minimum value of $3 x^{2}+4 x+1$ is.......
A. $\frac{-1}{3}$
B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. $\frac{-2}{3}$
6. If $x>0$, then the minimum value of $\frac{11}{3}+5\left(x-\frac{7}{2}\right)^{2}$ is.........
A. $\frac{3}{11}$
B. $\frac{11}{3}$
C. $\frac{-3}{11}$
D. $\frac{-11}{3}$

## Answer: B

## - Watch Video Solution

7. Examine $3 y^{2}-8 x y-3 x^{2}-29 x+3 y-18$ is re-solvable into two linear factors.
A. $\Delta \neq 0$
B. $\Delta^{2}=0$
C. $\Delta=0$
D. $\Delta^{3}=0$

## Answer: C

## - Watch Video Solution

8. Solve: $x(x+y+z)=6$,

$$
y(x+y+z)=12, z(x+y+z)=18
$$

A. $x=0$
B. $x=-2$
C. $x=3$
D. $x= \pm 1$

## Watch Video Solution

9. The area of a rectangular plot is $528 \mathrm{~m}^{2}$. The length of the plot is one more than twice its breadth. The length and breadth of the plot are
A. $33 \mathrm{~m}, 16 \mathrm{~m}$
B. $32 \mathrm{~m}, 15 \mathrm{~m}$
C. $30 \mathrm{~m}, 14 \mathrm{~m}$
D. $28 \mathrm{~m}, 12 \mathrm{~m}$

## Answer: A

## - Watch Video Solution

10. IF $x^{2}-4 x+3=0, x^{2}-5 x+k=0$ have a common root, then k
A. 1,3
B. 4,6
C. 1,4
D. 3,6

## Answer: B

## - Watch Video Solution

11. IF one root of $x^{2}-x-k=0$ is square that of the other, then $\mathrm{k}=. . . . . .$.
A. 1
B. $2+\sqrt{5}$
C. $2-\sqrt{5}$
D. $2 \pm \sqrt{5}$

## Answer: D

## - Watch Video Solution

12. IF the sum of the roots of $a x^{2}+b x+c=0$ is equal to the sum of the squares of the roots, then
A. $b^{2}+a b=2 a c$
B. $a^{2}+b c=2 a b$
C. $c^{2}+a b=2 b c$
D. None

## D Watch Video Solution

13. IF $\alpha^{2}=5 \alpha-6, \beta^{2}=5 \beta-6, \alpha \neq \beta$ then the equation whose roots $\frac{\alpha}{\beta}, \frac{\beta}{\alpha}$ is......
A. $x^{2}+5 x+6=0$
B. $x^{2}+5 x-6=0$
C. $6 x^{2}-13 x+6=0$
D. $6 x^{2}+13 x+6=0$

## Answer: C

## - Watch Video Solution

14. $\sqrt{a+\sqrt{a+\sqrt{a+\ldots \ldots \infty}}}=\ldots \ldots .$.
A. a
B. $\frac{1+\sqrt{4 a+1}}{2}$
C. $\frac{1-\sqrt{4 a}}{2}$
D. None

## Answer: D

## - Watch Video Solution

15. If the sum of a number and its reciprocal is $\frac{17}{4}$, then that number is
A. 4 or $\frac{1}{4}$
B. 4 or $\frac{-1}{4}$
C. -4 or $\frac{1}{4}$
D. None

## - Watch Video Solution

16. IF 3 is one root of $x^{2}+k x-24=0$ then $\mathrm{k}=. . . . . . .$.
A. 3
B. 4
C. 5
D. 6

## Answer: C

17. IF the roots of $k x^{2}+x(k-1)+(k-1)=0$ are equal, then $\mathrm{k}=$
A. 1 or $\frac{1}{3}$
B. 1 or $\frac{-1}{3}$
C. -1 or $\frac{1}{3}$
D. -1 or $\frac{-1}{3}$

## Answer: B

## - Watch Video Solution

18. The roots of $2 x^{2}-3 x+5=0$ are
A. Rational are equal
B. Rational are not equal
C. Irrational
D. Not real

## Answer: D

## - Watch Video Solution

19. The condition that the roots of $a x^{2}+b x+c=0$ may be in the ratio m:n is $\qquad$
A. $m n b^{2}=a c(m+n)^{2}$
B. $m n c^{2}=a b(m+n)^{2}$
C. $m n b^{2}=2 a c(m+n)^{2}$
D. $m n c^{2}=2 a b(m+n)^{2}$

## Answer: A

20. The equation whose roots are greater by 1 than those of $2 x^{2}+3 x+5=0$.
A. $2 x^{2}-x+4=0$
B. $x^{2}+5 x+6=0$
C. $2 x^{2}+4 x+7=0$
D. $3 x^{2}+4 x+6=0$

## Answer: A

D View Text Solution

1. Check whether the following equations are quadratic or not. $x^{2}-6 x-4=0$

## - Watch Video Solution

2. Check whether the following equations are quadratic or not. $x^{3}-6 x^{2}+2 x-1=0$

## - Watch Video Solution

3. Check whether the following equations are quadratic or not.
$7 x=2 x^{2}$

- Watch Video Solution

4. Check whether the following equations are quadratic or not.
$x^{2}+\frac{1}{x^{2}}=2$

## - Watch Video Solution

5. Check whether the following equations are quadratic or not.
$(2 x+1)(3 x+1)=6(x-1)(x-2)$

## - Watch Video Solution

6. Check whether the following equations are quadratic or not.
$3 y^{2}=192$

## - Watch Video Solution

7. Represent the following situations mathematically :

Raju and Rajender together have 45 marbles. Both of then lost 5 marbles each. And the product of the number of marbles now they have is 124 .

## D Watch Video Solution

8. Represent the following situations mathematically

The hypotenuse of a right triangle is 25 cm . We know that the difference in lengths of the other two sides is 5 cm . We would like to find out the length of the two sides.

## - Watch Video Solution

9. Check whether the following are quadratic equations:
$(x-2)^{2}+1=2 x-3$

## - Watch Video Solution

10. Check whether the following are quadratic equations:
$x(x+1)+8=(x+2)(x-2)$

## - Watch Video Solution

11. Check whether the following are quadratic equations:
$x(2 x+3)=x^{2}+1$

## - Watch Video Solution

12. Check whether the following are quadratic equations:
$(x+2)^{3}=x^{3}-4$

- Watch Video Solution

13. Find the roots of the equation $2 x^{2}-5 x+3=0$ by factorisation.

## - Watch Video Solution

14. Find the roots of the quadratic equation $x-\frac{1}{3 x}=\frac{1}{6}$

## - Watch Video Solution

15. Find the width of the space for spectators

## - View Text Solution

16. Find the roots of the equation $5 x^{2}-6 x-2=0$ by the method of completing the square.
17. Find the roots of $4 x^{2}+3 x+5=0$ by the method of completing the square.

## - Watch Video Solution

18. Find two consecutive odd positive integers, sum of whose squares is 290.

## - Watch Video Solution

19. A rectangular park is to be designed whose breadth is 3 m less than its length. Its area is to be 4 square metres more than area of a park that has already been made in the shape of an isosceles
triangle with its base as the breadth of the reatangular park and of altitude 12 m . Find its length and breadth.

## - Watch Video Solution

20. Find the roots of the following quadratic equations, if they exist.
$x^{2}+4 x+5=0$

## - Watch Video Solution

21. Find the roots of the following quadratic equations, if they exist.
$2 x^{2}-2 \sqrt{2} x+1=0$

- Watch Video Solution

22. Find the roots of the following equations:
$x+\frac{1}{x}=3, x \neq 0$

## - Watch Video Solution

23. Find the roots of the following equations:
$\frac{1}{x}-\frac{1}{x-2}=3, x \neq 0,2$

## - Watch Video Solution

24. A motor boat whose speed is $18 \mathrm{~km} / \mathrm{h}$ in still water. It takes 1 hour more to go 24 km upstream than to return downstream to the same spot. Find the speed of the stream.

## - Watch Video Solution

25. Find the discriminant of the quadratic equation $2 x^{2}-4 x+3=0$ and hence find the nature of its roots.

## - Watch Video Solution

26. A pole has to be erected at a point on the boundary of a circular park of diameter 13 metres in such a way that the differences opposite fixed gates $A$ and $B$ on the boundary is 7 metres. Is it possible to do so ? If yes, at what distances from the two gates should the pole be erected ?

## - Watch Video Solution

27. Find the discriminant of the equation $3 x^{2}-2 x+\frac{1}{3}=0$ and hence find the nature of roots. Find them, If they are real.

## DO THIS

1. Solve the equations by completing the square.

$$
x^{2}-10 x+9=0
$$

## D Watch Video Solution

2. Solve the equations by completing the square
$x^{2}-5 x+5=0$

## D Watch Video Solution

3. Solve the equations by completing the square
$x^{2}+7 x-6=0$

## TRY THIS

1. Check whether the following equations are quadratic or not .
(i) $x^{2}-6 x-4=0$
(ii) $x^{3}-6 x^{2}+2 x-1=0$
(iii) $7 x=2 x^{2}$
(iv) $x^{2}+\frac{1}{x^{2}}=2$
(v) $(2 x+1)(3 x+1)=6(x-1)(x-2)$
(vi) $3 y^{2}=192$

## - Watch Video Solution

2. Verify that 1 and $\frac{3}{2}$ are the roots of the equation $2 x^{2}-5 x+3=0$.
3. Explain the benefits of evaluating the discriminant of a quadratic equation before attempting to solve it. What does its value signifies? $\left(A S_{2}, A S_{1}\right)$

## D View Text Solution

4. Write three quadratic equations one having two distinct real solutions, one having no real solution and one having exactly one real solution.
5. We have three methods to solve a quadratic equations. Among these three, which metod would you like to use? Why?

## - Watch Video Solution

## EXERCISE 5.1

1. Check whether the following are quadratic equations:
$(x+1)^{2}=2(x-3)$

## - Watch Video Solution

2. Check whether the following are quadratic equations:
$x^{2}-2 x=(-2)(3-x)$

- Watch Video Solution

3. Check whether the following are quadratic equations:
$(x-2)(x+1)=(x-1)(x+3)$

## - Watch Video Solution

4. Check whether the following are quadratic equations:
$(x-3)(2 x+1)=x(x+5)$

## - Watch Video Solution

5. Check whether the following are quadratic equations:

$$
(2 x-1)(x-3)=(x+5)(x-1)
$$

## - Watch Video Solution

6. Check whether the following are quadratic equations:

$$
x^{2}+3 x+1=(x-2)^{2}
$$

## - Watch Video Solution

7. Check whether the following are quadratic equations:
$(x+2)^{3}=2 x\left(x^{2}-1\right)$

## - Watch Video Solution

8. Check whether the following are quadratic equations:

$$
x^{3}-4 x^{2}-x+1=(x-2)^{3}
$$

## - Watch Video Solution

9. The area of a rectangular plot is $528 \mathrm{~m}^{2}$. The length of the plot is one more than twice its breadth. The length and breadth of the plot are

## - Watch Video Solution

10. The product of two consecutive positive integers is 306 . We need to find the integers.

## - Watch Video Solution

11. Rohan's mother is 26 years older than him. The product of their ages after 3 years will be 360 . Then write the required quadratic equation to find Rohan's present age.

## - Watch Video Solution

12. A train travels a distance of 480 km at a uniform speed. If the speed had been $8 \mathrm{~km} / \mathrm{h}$ less, then it would have taken 3 hours more to cover the same distance. We need to find the speed of the train.

## - Watch Video Solution

## EXERCISE 5.2

1. Find the roots of the following quadratic equations by factorisation.
$x^{2}-3 x-10=0$

## - Watch Video Solution

2. Find the roots of the following quadratic equations by factorisation
$2 x^{2}+x-6=0$

## - Watch Video Solution

3. Find the roots of the following quadratic equations by factorisation
$\sqrt{2} x^{2}+7 x+5 \sqrt{2}=0$

## D Watch Video Solution

4. Find the roots of the following quadratic equations by
factorisation
$2 x^{2}-x+\frac{1}{8}=0$

- Watch Video Solution

5. Find the roots of the following quadratic equations by factorisation
$100 x^{2}-20 x+1=0$

## - Watch Video Solution

6. Find the roots of the following quadratic equations by factorisation
$x(x+4)=12$

## ( Watch Video Solution

7. Find the roots of the following quadratic equations by factorisation
$3 x^{2}-5 x+2=0$
8. Find the roots of the following quadratic equations by factorisation
$x-\frac{3}{x}=2$

## ( Watch Video Solution

9. Find the roots of the following quadratic equations by factorisation

$$
3(x-4)^{2}-5(x-4)=12
$$

## - Watch Video Solution

10. Find two numbers whose sum is 27 and product is 182 .
11. Find two consecutive positive integers, sum of whose squares is 613.

## - Watch Video Solution

12. The altitude of a right triangle is 7 cm less then its base. If the hypotenuse is 13 cm , find the other two sides.

## - Watch Video Solution

13. A cottage industry produces a certain number of pottery articles in a day. It was observed on a particular day that the cost of production of each article (in rupees) was 3 more than twice the number of articles produced on that day. If the total cost of production on that day was Rs. 90, find the number of articles produced and the cost of each article.

## - Watch Video Solution

14. Find the dimensions of a rectangle whose perimeter is 28 meters. And whose area is 40 square meters.

## - Watch Video Solution

15. The base of a triangle is 4 cm longer than its altitude. If the area of the triangle is $48 \mathrm{sq} . \mathrm{cm}$, then find its base and altitude.

## - Watch Video Solution

16. Two trains leave a railway station at the same time. The first train travels towards west and the second train towards north.

The first train travels $5 \mathrm{~km} / \mathrm{hr}$ faster then the second train. If after
two hours they are 50 km . apart, find the average speed of each train.

## - Watch Video Solution

17. In a class of 60 students, each boy contributed rupees equal to the number of girls and each girl contributed rupees equal to the number of boys. If the total money then collected was Rs. 1600, how many boys are there in the class?

## - Watch Video Solution

18. A motor boat heads upstream a distance of 24 km on a river whose current is running at 3 km per hours. Assuming that the motor boat maintained a constant speed, what was its speed?
19. Find the roots of the following quadratic equations, if they exist, by the method of completing the square:
$2 x^{2}+x-4=0$

## - Watch Video Solution

2. Find the roots of the following quadratic equations, if they exist, by the method of completing the square:

$$
4 x^{2}+4 \sqrt{3} x+3=0
$$

## - Watch Video Solution

3. Find the roots of the following quadratic equations, if they exist, by the method of completing the square:
$5 x^{2}-7 x-6=0$

## - Watch Video Solution

4. Find the roots of the following quadratic equations, if they exist, by the method of completing the square:
$x^{2}+5=-6 x$

## - Watch Video Solution

5. Find the roots of the quadratic equation by applying the quadratic formula.
$2 x^{2}+x-4=0$

## - Watch Video Solution

6. Find the roots of the quadratic equation by applying the quadratic formula.

$$
4 x^{2}+4 \sqrt{3} x+3=0
$$

## - Watch Video Solution

7. Find the roots of the quadratic equation by applying the quadratic formula.
$5 x^{2}-7 x-6=0$

## D Watch Video Solution

8. Find the roots of the quadratic equation by applying the quadratic formula.

$$
x^{2}+5=-6 x
$$

9. Find the roots of the following equations :
$x-\frac{1}{x}=3, x \neq 0$

## - Watch Video Solution

10. Find the roots of the following equations :
$\frac{1}{x+4}-\frac{1}{x-7}=\frac{11}{30}, x \neq-4,7$

## - Watch Video Solution

11. The sum of the reciprocals of Rehman ages, (in years) 3 years ago and 5 year from now is $\frac{1}{3}$ Find his present age.

## - Watch Video Solution

12. In a class test, the sum of Moulika's marks in Mathematics and English is 30 . If she got 2 marks more in Mathematics and 3 marks less in English, the product of her marks would have been 210.

Find her marks in the two subjects.

## - Watch Video Solution

13. The diagonal of a rectangular field is 60 metres more than the shorter side. If the longer side is 30 metres more then the shorter side, find the sides of the field.

## - Watch Video Solution

14. The difference of squares of two numbers is 180 . The square of the smaller number is 8 times the larger number. Find the two numbers.
15. A train travels 360 km at a uniform speed. If the speed had been $5 \mathrm{~km} / \mathrm{h}$ more, if would have taken 1 hour less for the same journey. Find the speed of the train.

## - Watch Video Solution

16. Two water taps together can fill a tank in $9 \frac{3}{8}$ hours. The tap of larger diameter takes 10 hours less than the smaller one to fill the tank separately. Find the time in which each tap can separately fill the tank.

## - Watch Video Solution

17. An express train takes 1 hour less than a passenger train to travel 132 km between Mysore and Bangalore (without taking into consideration the time they stop at intermediate stations). If the average speed of the express train is $11 \mathrm{~km} / \mathrm{hr}$ more then that of the passenger train, find the average speed of the two trains.

## - Watch Video Solution

18. Sum of the areas of two squares is $468 \mathrm{~m}^{2}$ If the difference of their perimeters is 24 m , find the sides of the two squares.

## - Watch Video Solution

19. If a polygon of ' $n$ ' sides has $\frac{1}{2} n(n-3)$ diagonals. How many sides will a polygon having 65 diagonals ? Is there a polygon with 50 diagonals?

## - Watch Video Solution

## EXERCISE 5.4

1. Find the nature of the roots of the following quadratic equations. If real roots exist, find them.
$2 x^{2}-3 x+5=0$

## - Watch Video Solution

2. Find the nature of the roots of the following quadratic equations. If real roots exist, find them.
$3 x^{2}-4 \sqrt{3} x+4=0$

- Watch Video Solution

3. Find the nature of the roots of the following quadratic equations. If real roots exist, find them.
$2 x^{2}-6 x+3=0$

## - Watch Video Solution

4. Find the values of $k$ for each of the following quadratic equations so that they have two equal roots.
$2 x^{2}+k x+3=0$

## - Watch Video Solution

5. Find the values of $k$ for each of the following quadratic equations so that they have two equal roots.

$$
\therefore k=6
$$

6. Is it possible to desigh a rectangular mango grove whose length is twice its breadth, and the area is $800 \mathrm{~m}^{2}$ ? If so find its length and breadth.

## - Watch Video Solution

7. The sum of the ages of two friends is 20 years. Four years ago,the product of their ages in years was 48. Is the above situation possible ? If so, determine their present ages

## - Watch Video Solution

8. Is it possible to desigh a rectangular park of perimeter 80 m and area $400 m^{2}$ ? If so, find its length and breadth.

## OPTIONAL EXERCISE

1. Some points are plotted on a plane. Each point is joined with all remaining points by line segments. Find the number of points if the number of line segments are 15.

## - Watch Video Solution

2. A two digit number is such that the product of its digits, is 8 .

When 18 is added to the number, they interchange their places.
Determine the number.

## - Watch Video Solution

3. A piece of wire 8 m in length is cut into two pieces and each piece is bent into a squares. Where should the cut in the wire be made if the sum of the areas of these squares is to be $2 \mathrm{~m}^{2}$ ?

## - Watch Video Solution

4. Vinay and Praveen working together can paint the exterior of a house in 6 days. Vinay by himself can complete the job in 5 days less than praveen. How long will it take Vinay to complete the job by himself?

## D View Text Solution

5. Show that the sum of roots of a quadratic equation $a x^{2}+b x+c=0 \mathrm{is} \frac{-b}{a}$
6. The product of roots of quadratic equation $a x^{2}+b x+c=0$ is

## - Watch Video Solution

7. The denominator of a fraction is one more than twice the numerator. If the sum of the fraction and its reciprocal is $2 \frac{16}{21}$, find the fraction.

## - Watch Video Solution

8. A ball is thrown vertically upwards from the top of a building of height 29.4 m and with an initial velocity $24.5 \mathrm{~m} / \mathrm{sec}$. If the height H of the ball from the ground level is given by $H=29.4+24.5 t-4.9 t^{2}$, then find the time taken by the ball to reach the ground.

## ( Watch Video Solution

## OBSERVATION MATERIAL TO SOLVE VARIOUS QUESTIONS GIVEN IN THE PUBLIC EXAMINATION

1. $I f b^{2}-4 a c \geq 0$ then write the roots of a quadratic equation $a x^{2}+b x+c=0$

## ( Watch Video Solution

2. Find a quadratic polynomial with zeroes -2 and $\frac{1}{3}$.

## D Watch Video Solution

3. Two angles are complementary and one angle is $18^{\circ}$ more than
the other. Then find angles.

## - Watch Video Solution

4. $I f b^{2}-4 a c>0 \operatorname{in} a x^{2}+b x+c=0$, then what can you say about roots of the equation ? $(a \neq 0)$

## - Watch Video Solution

5. Find the value of $k$, if 2 is one of the roots of the quadratic equation

$$
x^{2}-k x+6=0
$$

## - Watch Video Solution

6. In a rectangle $A B C D, A B=x+y, B C=x-y, C D=9$ and $A D=3$. Find the values of $x$ and $y$.

## 

## ( Watch Video Solution

7. Write the nature of roots of the quadratic equation $2 x^{2}-5 x+6=0$

## ( Watch Video Solution

8. Write the nature of the roots of the quadratic equation $x^{2}-8 x+16=0$
9. Find sum and product of roots of the Quadratic equation
$x^{2} 4 \sqrt{3} x+9=0$

## - Watch Video Solution

10. Find the roots of $x+\frac{6}{x}=7, x \neq 0$

## - Watch Video Solution

11. Length of a rectangle is 2 units greater than its breadth. If the area of the rectangle is 120 sq. units then find its length.

## - Watch Video Solution

12. $I f 9 x^{2}+k x+1=0$ has equal roots, find the value of k .
13. If the measure of angles of a triangle are $x^{\circ}, y^{\circ}$ and $40^{\circ}$ and difference between the two measures of angles $x^{\circ}$ and $y^{\circ} i s 30^{\circ}$ then find the values of $x^{\circ}$ and $y^{\circ}$

## - Watch Video Solution

14. The sum of a number and its reciprocal is $\frac{10}{3}$ Find the number.

## - Watch Video Solution

15. Is it possible to design a rectangular genden, whose length is twice of its breadth and area is $200 m^{2}$ ? If so, find its length and breadth.
16. If the equation $k x^{2}-2 k x+6=0$ has equal roots, then find the value of $k$.

## - Watch Video Solution

17. Find the zeroes of the quadratic polynomial $x^{2}-x-30$ and verify the relation between the zeroes and its co-efficients.

## - Watch Video Solution

18. Find the roots of the following quadratic equations, if they exist, by the method of completing the square:
$5 x^{2}-7 x-6=0$

## - Watch Video Solution

19. Sum of the squares of two consecutive positive even integers is 100 , find those numbers by using quadratic equations.

## - Watch Video Solution

20. The perimeter of a right- angled triangle is 60 cm . and its
hypotenuse is 25 cm . Then find the remaining two sides.

## - Watch Video Solution

21. If - 4 is common root for the quadratic equations
$2 x^{2}+p x+8=0$ and $p\left(x^{2}+x\right)+k=0$ then find the value of 'k'.

## - Watch Video Solution

22. Sum of squares of two consecutive even numbers is 580 . Find the numbers by writing a sultable Quadratle equation.

## - Watch Video Solution

## OBSERVATION BITS TO SOLVE VARIOUS BITS GIVEN IN THE PUBLIC EXAMINATION

1. The general form of a quadratic equation in variable x is......
A. $a x^{2}+b x+c=0(a \neq 0)$
B. $a x+b x^{2}+c=0(b \neq 0)$
C. $a x^{2} b x=0(a \neq 0)$
D. $a^{2} x+b x+c=0(b \neq 0)$

## Answer: A

2. The possible number of roots to a quadratic equation are....
A. At a maximum of 3
B. At a maximum of 2
C. Infinite
D. At a maximum of 5

## Answer: B

## - Watch Video Solution

3. If the roots of a quadratic equation $p x^{2}+q x+r=0$ are imaginary then......
A. $q^{2}>4 p r$
B. $q^{2}<4 p r$
C. $q^{2}=4 p r$
D. $p=q+r$

## Answer: B

## - Watch Video Solution

4. The discriminant of quadratic equation $2 x^{2}+x-4=0$ is...
A. 35
B. 36
C. 33
D. 38

Answer: C
5. The product of roots of quadratic equation $a x^{2}+b x+c=0$ is
A. $\frac{c}{a}$
B. $\frac{-b}{a}$
C. $\frac{-c}{a}$
D. $\frac{b}{c}$

## Answer: A

## - Watch Video Solution

6. For what positive value of $x$ the quadratic equation $4 x^{2}-9=0$
A. $\frac{2}{3}$
B. $\frac{-2}{3}$
C. $\frac{-3}{2}$
D. $\frac{3}{2}$

## Answer: D

## - Watch Video Solution

7. Two angles are complementary. If the larger angle is twice the measure of a smaller angle, then smaller is...
A. $30^{\circ}$
B. $45^{\circ}$
C. $60^{\circ}$
D. $15^{\circ}$

## Answer: A

8. If one root of $2 x^{2}+k x-6 i s 2$, then $k=\ldots$.
A. 3
B. 4
C. 1
D. -1

## Answer: D

## - Watch Video Solution

9. If the roots of $x^{2}+6 x+5=0 \operatorname{are} \alpha$ and $\beta \operatorname{then} \alpha+\beta=$
A. 5
B. -6
C. 6
D. -1

## Answer: B

## - Watch Video Solution

10. A quadratic equation, whose roots are
$2+\sqrt{3}$ and $2-\sqrt{3}=$
A. $x^{2}-x-4=0$
B. $x^{2}-4 x+1=0$
C. $x^{2}+4 x+3=0$
D. $x^{2}+x-3=0$

## Answer: B

11. The adjacent diagram indicates.....

A. $b^{2}-4 a c>0$
B. $b^{2}-4 a c=0$
C. $b^{2}-4 a c<0$
D. None of the given

## - Watch Video Solution

12. If $\alpha, \beta$ are the roots of $x^{2}-10 x+9=0$, then $|\alpha-\beta|=$
A. 9
B. 8
C. -10
D. 10

## Answer: B

13. Which one of the following figures shows the quadratic equation $a x^{2}+b x+c=0(a \neq 0)$ having distinct roots?
A.

B.

C.

D.


Answer: B
14.
A. 2
B. -2
C. 3
D. -3

Answer: A

## - Watch Video Solution

15. The number of diagonals for an n sided polygon is
A. $\frac{n(n+1)}{2}$
B. $\frac{n(n-1)}{2}$
C. $\frac{n(n-3)}{2}$
D. $\frac{n(n+3)}{2}$

## Answer: C

## - Watch Video Solution

16. A quadratic equation $a x^{2}+b x+c=0$ has two distinct real roots, if....
A. $b^{2}-4 a c>0$
B. $b^{2}-4 a c<0$
C. $b^{2}-4 a c=0$
D. None of the given

## Watch Video Solution

17. The discriminant of the quadratic equation $p x^{2}+q x+r=0$
is....
A. $p^{2}-4 q r$
B. $q^{2}-4 p r$
C. $q^{2}+4 p r$
D. $r^{2}-4 p q$

## Answer: B

## - Watch Video Solution

18. The discriminant of $6 x^{2}-5 x+1=0$ is
A. 1
B. 2
C. 6
D. $-\frac{5}{6}$

## Answer: A

- Watch Video Solution

19. One root of the equation $x-\frac{3}{x}=2$ is.
A. 1
B. 2
C. 3
D. 4

Answer: C

## - Watch Video Solution

20. The quadratic polynomial, whose zeroes are $\sqrt{2}$ and $-\sqrt{2}$ is
A. $x^{2}-2$
B. $x^{2}+2$
C. $x^{2}+\sqrt{2}$
D. $x-2$

Answer: A

- Watch Video Solution

21. If the equation $x^{2}+5 x+K=0$ has real and distinct roots, then....
A. $K=6$
B. $K<6.25$
C. $K>6$
D. $K>25$

## Answer: B

## - Watch Video Solution

22. The quadratic polynomial, whose zeros are 2 and 3 , is.....
A. $x^{2}-5 x-6$
B. $x^{2}+5 x-6$
C. $x^{2}-5 x+6$
D. $x^{2}+5 x+6$

## Answer: C

## - Watch Video Solution

23. Observe the given rectangular figure, then its area in polynomial function is ....

A. $A(x)=x^{2}+7 x+30$
B. $A(x)=-x^{2}+7 x+30$
C. $A(x)=x^{2}-7 x+30$
D. $A(x)=-x^{2}-7 x+30$

## Answer: B

## - Watch Video Solution

24. Which of the following is a quadratic equation?
A. $x^{3}-6 x^{2}+2 x-1=0$
B. $x^{2}+\frac{1}{x^{2}}=2$
C. $x+\frac{1}{x}=3$
D. $(x+1)(x+2)(x+3)=0$

## Answer: C

25. Observe the following graphs.




Which as them are the graphs of quadratic polynomials?
A. (i), (ii) and (iii)
B. (i) and (iii)
C. (i) and (iv)
D. (i), (iii) and (iv)

## Answer: C

26. Which of the following quadratle. Equations the roots are equal?
A. $x^{2}-5=0$
B. $x^{2}-10 x+25=0$
C. $x^{2}+5 x+6=0$
D. $x^{2}-1=0$

## Answer: B

## - Watch Video Solution

27. The quadratic polynomial having $\frac{1}{3}$ and $\frac{1}{2}$ as its zeroes, is.....
A. $x^{2}+\frac{5 x+1}{6}$
B. $-6 x^{2}-5 x+1$
C. $x^{2}-\frac{5 x-1}{6}$
D. $6 x^{2}-5 x-1$

## Answer: C

## - Watch Video Solution

28. If $x^{2}-p x+q=0(p, q \in R$ and $p \neq 0, q \neq 0)$ has distinct real roots. Then...
A. $p^{2}<4 q$
B. $p^{2}>4 q$
C. $p^{2}=4 q$
D. $p^{2}+4 q=0$
29. In a quadratic equation $a x^{2}+b x+c=0 \mathrm{iff} b^{2}-4 a c>0$ then their roots are ....
A. real and distinct
B. real and equal
C. imaginary
D. none

## Answer: A

## - Watch Video Solution

30. If a number is 132 smaller than its square, then the number is
A. 11
B. 8
C. 9
D. 12

## Answer: D

- Watch Video Solution


## CREATIVE BITS FOR CCE MODEL EXAMINATION

1. One of the roots of the Q.E. $6 x^{2}-x-2=0$ is
A. $\frac{1}{3}$
B. $-\frac{1}{3}$
C. $-\frac{2}{3}$
D. $\frac{2}{5}$

## Answer: B

## - Watch Video Solution

2. If the sum of the squares of two consecutive odd numbers is 74 , then the smaller number is
A. 11
B. 3
C. 7
D. 5

## Answer: D

3. The roots of the equation $4 x^{2}+4 \sqrt{3} x+3=0$ are
A. $\frac{\sqrt{3}}{2}$
B. $\frac{-\sqrt{3}}{2}$
C. -4
D. -2

## Answer: B

## - Watch Video Solution

4. The sum of a number and its reciprocal is $\frac{50}{7}$,then the number is
A. $\frac{1}{7}$
B. 5
C. $\frac{2}{7}$
D. $\frac{3}{7}$

## Answer: A

## - Watch Video Solution

5. The roots of the equation $3 x^{2}-2 \sqrt{6} x+2=0$ are
A. $\frac{2}{\sqrt{3}}, \frac{-2}{\sqrt{3}}$
B. $\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}$
C. $\sqrt{\frac{2}{3}}, \sqrt{\frac{2}{3}}$
D. $\frac{1}{\sqrt{3}}, \frac{5}{\sqrt{3}}$

## Answer: C

6. $I f x^{2}-2 x+1=0 \operatorname{then} x+\frac{1}{x}=$
A. 0
B. 2
C. 1
D. None

## Answer: B

## ( Watch Video Solution

7. The roots of the Q.E. $\sqrt{3} x^{2}-2 x-\sqrt{3}=0$ are
A. real and distinct
B. real and equal
C. Not real

## D. Can't be determined

## Answer: A

## D Watch Video Solution

8. One solution of the Q.E. $2 x^{2}-5 x-3=0$ is
A. $x=2$
B. $x=-1$
C. $x=-3$
D. $x=3$

## Answer: D

9. $I f 5 x^{2}-k x+11=0$ has a root $\mathrm{x}=3$, then $\mathrm{k}=$
A. $\frac{16}{3}$
B. $\frac{56}{3}$
C. $\frac{-17}{3}$
D. 15

## Answer: B

## - Watch Video Solution

10. The sum of the roots of the equation $3 x^{2}-7 x+11=0$
A. $\frac{11}{3}$
B. $\frac{-7}{3}$
C. $\frac{7}{3}$
D. $\frac{3}{7}$

## Answer: C

## D Watch Video Solution

11. The positive root of $\sqrt{3 x^{2}+6}=9$ is
A. 3
B. 5
C. 4
D. $\frac{2}{5}$

## Answer: B

12. The value of $p$ for which $4 x^{2}-2 p x+7=0$ has a real root is
A. $p>2 \sqrt{7}$
B. $p>\sqrt{7}$
C. $p>\sqrt{5}$
D. $p>\sqrt{3}$

## Answer: A

## - Watch Video Solution

13. The roots of $5 x^{2}-x+1=0$ are
A. Real and equal
B. Real and unequal
C. imaginary
D. None

## Answer: C

## - Watch Video Solution

14. Which of the following Q.E has real and equal roots?
A. $x^{2}-4 x+4=0$
B. $2 x^{2}-4 x+3=0$
C. $3 x^{2}-5 x+2=0$
D. $x^{2}-2 \sqrt{2} x-6=0$

## Answer: A

15. The standard form of a Q.E. is
A. $a x+b=0$
B. $a x^{2}+b x+c=0, a \neq 0$
C. $a x^{3}+b x^{2}+c x+d=0$
D. $a^{2} x+b^{2} y^{2}=c^{2}$

## Answer: B

## - Watch Video Solution

16. The roots of the Q.E. $(\sqrt{5} x-3)(\sqrt{5} x-3)=0$ are
A. $\frac{3}{\sqrt{5}}, \frac{3}{\sqrt{5}}$
B. $\frac{-3}{\sqrt{5}}, \frac{-3}{\sqrt{5}}$
C. $\frac{3}{\sqrt{5}}, \frac{-3}{\sqrt{5}}$
D. $\frac{\sqrt{3}}{\sqrt{5}}, \frac{\sqrt{3}}{\sqrt{5}}$

## Answer: A

## - Watch Video Solution

17. The roots of the Q.E. $(7 x-1)(2 x+3)=0$ are
A. 1,3
B. $\frac{1}{7}, \frac{3}{2}$
C. $\frac{1}{7}, \frac{-3}{2}$
D. $\frac{-1}{7}, \frac{-3}{2}$

## Answer: C

18. Which of thr following is a Q.E.
A. $(x+1)^{2}=3(x+7)$
B. $(x-1)(x+3)=(x-2)(x+1)$
C. $x^{2}+5 x-7=(x-4)^{2}$
D. $x^{3}-9=0$

## Answer: A

## ( Watch Video Solution

19. The roots of the Q.E.
$\frac{9}{x^{2}-27}=\frac{25}{x^{2}-11}$ are
A. $\pm 11$
B. $\pm 3$
C. $\pm 9$
D. $\pm 6$

## Answer: D

## - Watch Video Solution

20. The roots of the QE
$(3 x+4)^{2}-49=0$ are
A. $1, \frac{-11}{3}$
B. $\frac{1}{3}, \frac{11}{3}$
C. $\frac{-1}{3}, \frac{-11}{3}$
D. $1,-11$

## Answer: A

21. The sum of a number and its recip-rocal is $\frac{5}{2}$ then the number is
A. 2 or $\frac{1}{3}$
B. 3 or $\frac{1}{2}$
C. 2 or $\frac{1}{2}$
D. 5 and $\frac{1}{5}$

## Answer: C

## - Watch Video Solution

22. The roots of the Q.E. $\left(x-\frac{1}{3}\right)^{2}=9$
A. 10,8
B. $\frac{-10}{3}, \frac{8}{3}$
C. $\frac{10}{3}, \frac{-8}{3}$
D. $(-3,3)$

## Answer: C

## - Watch Video Solution

23. Product of the roots of the Q.E.
$3 x^{2}-6 x+11=0$ is
A. 2
B. $\frac{-11}{3}$
C. $\frac{-11}{6}$
D. $\frac{11}{3}$

## Watch Video Solution

24. The Q.E. whose roots are $-2,-3$ is
A. $x^{2}-5 x+6=0$
B. $x^{2}+5 x+6=0$
C. $x^{2}-5 x-6=0$
D. $x^{2}+5 x-6=0$

## Answer: B

## - Watch Video Solution

25. If the equation $x^{2}-k x+1=0$ has equal roots. Then
A. $k=1$
B. $k=-1$
C. $\mathrm{k}=2$
D. $\mathrm{k}=-4$

## Answer: C

## - Watch Video Solution

26. If $(x-3)(x+3)=16$ then the value of $x$ is
A. $\pm 4$
B. $\pm 3$
C. $\pm 6$
D. $\pm 5$
27. If the sum of the roots of the Q.E. $3 x^{2}+(2 k+1) x-(k+5)=0$ is equal to the product of the roots, then the value of $k$ is
A. 3
B. 4
C. 2
D. 6

## Answer: B

- Watch Video Solution

28. The Q.E. whose one root is $2-\sqrt{3}$ is
A. $x^{2}-4 x+1=0$
B. $x^{2}+4 x-1=0$
C. $x^{2}-4 x-1=0$
D. $x^{2}-2 x-3=0$

## Answer: A

## - Watch Video Solution

29. Form a quadratic equation whose roots are k and $\frac{1}{k}$
A. $x^{2}+\left(k+\frac{1}{k}\right) x+1=0$
B. $x k^{2}-k x+1=0$
C. $x^{2}-(k+k) x+1=0$
D. $x^{2}-\left(k+\frac{1}{k}\right) x+1=0$

Answer: D

## - Watch Video Solution

30. The roots of a quadratic equation $\frac{x}{p}=\frac{p}{x}$ are
A. $\pm p$
B. $p, 2 p$
C. $-p, 2 p$
D. $-p,-2 p$

Answer: A

- Watch Video Solution

31. The roots of a quadratic equation
$a x^{2}+b x+c=0$ is
A. $\frac{-b+\sqrt{b^{2}-4 a c}}{a c}$
B. $\frac{-b-\sqrt{b^{2}-4}}{3}$
C. $\frac{-b-\sqrt{b-4 a c}}{2}$
D. $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Answer: D

## - Watch Video Solution

32. The product of the roots of the quadratic equation
$\sqrt{2} x^{2}-3 x+5 \sqrt{2}=0$
A. $\frac{-5}{3}$
B. $\sqrt{2}$
C. 5
D. 3

## Answer: C

## - Watch Video Solution

33. In the above problem sum of the roots is...
A. $\frac{3}{\sqrt{2}}$
B. $-\frac{3}{\sqrt{2}}$
C. 3
D. 5

Answer: A
34. The sum of the roots of the quadratic equation $5 x^{2}+4 \sqrt{3} x-11=0$ is
A. $\frac{-11}{5}$
B. $\frac{11}{4}$
C. $\frac{-4}{3}$
D. $\frac{-4}{5} \sqrt{3}$

## Answer: D

- Watch Video Solution

35. The product of zeroes in the above equation is....
A. $\frac{5}{-11}$
B. $\frac{11}{5}$
C. $\frac{-11}{5}$
D. $\frac{1}{5}$

## Answer: C

## D View Text Solution

36. The quadratic equation whose roots are -3 and -4 is ...
A. $7 x^{2}+x+1=0$
B. $x^{2}+7 x+12=0$
C. $x^{2}-3 x+1=0$
D. none

Answer: B
37. If one root of a quadratic equation is $7-\sqrt{3}$ then the quadratic equation is ....
A. $x^{2}-7 x+3=0$
B. $x^{2}-4 x+6=0$
C. $x^{2}-7 x+1=0$
D. $x^{2}-14 x+46=0$

## Answer: D

## - Watch Video Solution

38. The nature of the roots of a quadratic equation $4 x^{2}+5 x+1=0$ is.....
A. real and distinct
B. real and equal
C. imaginary
D. none

## Answer: A

## - Watch Video Solution

39. The nature of the roots of quadratic equation $3 x^{2}+x+8=0$ is...
A. real and distinct
B. real and equal
C. imaginary
D. none

## - Watch Video Solution

40. The nature of the roots of a quadratic equation $4 x^{2}-12 x+9=0$ is....
A. Real and equal
B. real and distinct
C. imaginary
D. none

Answer: A
41. The roots of a quadratic equation $(\sqrt{2} x+3)(5 x-\sqrt{3})=0$ are.....
A. $\frac{1}{3}, \frac{1}{\sqrt{2}}$
B. $\frac{1}{2}, \frac{3}{\sqrt{5}}$
C. $\frac{-3}{\sqrt{2}}, \frac{1}{5}$
D. $\frac{-3}{\sqrt{2}}, \frac{\sqrt{3}}{5}$

Answer: D

## - Watch Video Solution

42. The roots of the quadratic equation $\frac{x^{2}-8}{x^{2}+20}=\frac{1}{2}$ are...
A. $\pm 2$
B. $\pm 6$
C. $\pm 13$
D. $\pm 7$

## Answer: B

## - Watch Video Solution

43. The discriminant of $5 x^{2}-3 x-2=0$ is...
A. 49
B. 89
C. 20
D. none

## Answer: A

44. $I f b^{2}-4 a c<0$ then the roots of the quadratic equation are...
A. distinct
B. equal
C. imaginary
D. none

## Answer: C

## - Watch Video Solution

45. $\mathrm{If} b^{2}-4 a c=0$ then the roots of the quadratic equation are...
A. real and distinct
B. real and equal
C. imaginary
D. none

## Answer: B

## - Watch Video Solution

46. $\mathrm{If} b^{2}-4 a c>0$ then the roots of the quadratic equation are...
A. real and distinct
B. real and equal
C. imaginary
D. none

## Answer: A

47. If the roots of a quadratic equation $a x^{2}+b x+c=0$ are real and equal then $b^{2}=. .$.
A. $4 a b$
B. 4 ac
C. $a \frac{c}{4}$
D. $a^{2} c^{2}$

## Answer: B

## - Watch Video Solution

48. Find the nature of the roots of $4 x^{2}-20 x+25=0$
A. Real and equal
B. imaginary
C. real and distinct
D. none

## Answer: A

## - Watch Video Solution

49. The nature of roots of $3 x^{2}+6 x-2=0$ is....
A. real and distinct
B. real and equal
C. complex
D. none

## Answer: A

50. The roots of $7 x^{2}+3 x+8=0$ are...
A. real
B. not real
C. real and equal
D. none

## Answer: B

## - Watch Video Solution

51. Sum of the roots of $a x^{2}+b x+c=0$ is..
A. $\frac{c}{a}$
B. $\frac{b}{a}$
C. $\frac{a}{b}$
D. none

## Answer: D

- Watch Video Solution

52. Product of the roots of $a x^{2}+b x+c=0$ is...
A. $\frac{c}{a}$
B. $\frac{-b}{a}$
C. $\frac{-c}{a}$
D. none

## Answer: A

53. $3 x^{2}+(-k x)+8=0$ has real roots if ...
A. $k<4 \sqrt{6}$
B. $k>4 \sqrt{6}$
C. $k=6$
D. $\mathrm{k}=0$

## Answer: B

## - Watch Video Solution

54. $4 x^{2}+k x-2=0$ has no real roots if.....
A. $k>-\sqrt{32}$
B. $k=10$
C. $k<-\sqrt{32}$
D. none

## Answer: C

## - Watch Video Solution

55. The quadratic equation whose roots are 2,3 is...
A. $x^{2}-5 x+1=0$
B. $x^{2}-5 x-6=0$
C. $x^{2}-3 x+1=0$
D. $x^{2}-5 x+6=0$

## Answer: D

56. The quadratic equation whose roots are -2 and -3 is...
A. $x^{2}+6 x+1=0$
B. $x^{2}+5 x+6=0$
C. $x^{2}-5 x+1=0$
D. none

## Answer: B

## - Watch Video Solution

57. If $x^{2}-8 k x+16=0$ has equal roots then ....
A. $k= \pm \sqrt{2}$
B. $k= \pm 7$
C. $k= \pm 1$
D. none

## Answer: C

## - Watch Video Solution

58. $\frac{x}{x-y}-\frac{y}{x+y}=\ldots$
A. $\frac{x^{2}+y^{2}}{x^{2}-y^{2}}$
B. $\frac{x^{2}+y^{2}}{x+y}$
C. $\frac{x^{2} y^{2}}{x+y}$
D. none

## Answer: A

59. $\frac{2 a^{2}+a-1}{a+1}+\frac{3 a^{2}+5 a+2}{3 a+2}+\frac{4-a^{2}}{a+2}=\ldots$
A. $\frac{a}{2}+2$
B. $\frac{a+1}{2}$
C. $2(a+1)$
D. none

## Answer: C

## - Watch Video Solution

60. $\frac{1}{a+3}+\frac{1}{a-3}+\frac{6}{9-a^{2}}=$.
A. $\frac{1}{a+3}$
B. $\frac{3}{a+2}$
C. $\frac{2}{a+1}$
D. $\frac{2}{a+3}$

## Answer: D

## - Watch Video Solution

61. $\frac{1-\frac{1}{1+x}}{\frac{1}{1+x}}=$.
A. 1
B. $x^{2}$
C. $x$
D. 0

## Answer: C

62. $\left(x+\frac{1}{x}\right)^{2}-\left(y+\frac{1}{y}\right)^{2}-\left(x y-\frac{1}{x y}\right) \cdot\left(\frac{x}{y}-\frac{y}{x}\right)=. . . .$.
A. 0
B. 1
C. $x y$
D. $\frac{1}{x y}$

## Answer: A

## ( Watch Video Solution

63. Sum of the roots of $b x^{2}+a x+c=0$ is
A. $\frac{-b}{2}$
B. $\frac{c}{a}$
C. $\frac{a}{b}$
D. $\frac{-a}{b}$

## Answer: D

## - Watch Video Solution

64. $(x-\alpha)(x-\beta)=0$ then
A. $x^{2}-(\alpha) x+\beta=0$
B. $x^{2}-(\alpha+\beta) x+\alpha \beta=0$
C. $\alpha x^{2}-x \beta+\alpha \beta=0$
D. none

## Answer: B

## - Watch Video Solution

65. Sum of the roots of $-7 x+3 x^{2}-1=0$ is
A. $\frac{3}{4}$
B. $\frac{1}{7}$
C. $\frac{7}{3}$
D. $\frac{1}{2}$

## Answer: C

## ( Watch Video Solution

66. Product of the roots of $1=x^{2}$ is..
A. -1
B. 7
C. 0
D. 1

## Answer: A

## - Watch Video Solution

67. The nature of roots of $3 x^{2}+13 x-2=0$
A. real and uneual
B. real and equal
C. complex
D. none

## Answer: A

68. $\operatorname{If}(2 x-1)(2 x+3)=0$ then $x$.
A. $\frac{1}{2}$ or $\frac{-1}{2}$
B. $\frac{1}{2}$ or $\frac{-3}{2}$
C. $\frac{1}{2}$ or $\frac{2}{3}$
D. none

## Answer: B

## ( Watch Video Solution

69. The roots of $(x-a)(x-b)=b^{2}$ are...
A. real
B. not real
C. complex
D. none

Answer: A

- Watch Video Solution

70. Product of the roots of $x^{2}+7 x=0$ is...
A. 1
B. -7
C. -3
D. 0

## Answer: D

71. For what values of $m$ are the roots of the equation $m x^{2}+(m+3) x+4=0$ are equal?
A. 1 or 5
B. -1 or 2
C. 8 or 1
D. 9 or 1

## Answer: D

## - Watch Video Solution

72. If $\alpha$ and $\beta$ are the roots of the quadratic equation $2 x^{2}+3 x-7=0$ then $\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}=$
A. $\frac{-37}{16}$
B. $\frac{-37}{4}$
C. $\frac{-37}{14}$
D. $\frac{37}{8}$

## Answer: C

## - Watch Video Solution

73. If $\alpha$ and $\beta$ are the roots of $x^{2}-2 x+3=0$ then $\alpha^{2} \beta^{2}=$
A. 1
B. 4
C. 8
D. none

Answer: D
74. In the above problem, $\alpha^{2} \beta+\beta^{2} \alpha=$
A. (-3)
B. 8
C. 6
D. none

## Answer: C

D View Text Solution
75. In Q.No. 73, the value of $\alpha^{3}+\beta^{3}=$
A. $(-10)$
B. 10
C. 8
D. 12

## Answer: A

## D View Text Solution

76. If $\alpha$ and $\beta$ are the roots of $x^{2}+x+1=0$ then $\alpha^{2}+\beta^{2}=$
A. 8
B. (-1)
C. 12
D. 0

## Answer: B

77. 

If $\alpha$ and $\beta$ are the roots of $x^{2}-5 x+6=0$ then the value of $\alpha-\beta=$
A. $\pm 1$
B. $\pm 2$
C. (-3)
D. none

## Answer: A

## - Watch Video Solution

78. In the quadratic equation $x^{2}+x-2=0, a+b+c=$
A. 7
B. 0
C. 8
D. 1

## Answer: B

## - Watch Video Solution

79. The degreee of any quadratic equation is..
A. 4
B. 1
C. 2
D. 3

## Answer: C

80. Check whether the following are quadratic equations:
$x(2 x+3)=x^{2}+1$
A. $x^{2}+3 x-1=0$
B. $x^{2}-3 x-2=0$
C. $x^{2}+x+1=0$
D. none

## Answer: A

## - Watch Video Solution

| 81. Form a $\quad$ quadratic | equation | from |
| :--- | :--- | :--- | :--- |
| $x^{3}-4 x^{2}-x+1=(x-2)^{3}=$ |  |  |

A. $2 x^{2}-x+1=0$
B. $2 x^{2}-13 x+9=0$
C. $x^{2}+x+1=0$
D. none

## Answer: B

## - Watch Video Solution

82. If $x+\frac{1}{x}=2$ then $x^{2}+\frac{1}{x^{2}}=\ldots$
A. 8
B. 0
C. 4
D. 2

Answer: D
83. The product of two consecutive positive integers is 306 . We need to find the integers.
A. 12
B. 16
C. 18
D. 10

## Answer: C

- Watch Video Solution

84. In the above problem, smallest number is...
A. 16
B. 13
C. 19
D. 17

## Answer: D

## D View Text Solution

85.1 and $\frac{3}{2}$ are the roots of...
A. $2 x^{2}-5 x+3=0$
B. $x^{2}-5 x+1=0$
C. $2 x^{2}-x+3=0$
D. all

Answer: A
86. Find the roots of the following quadratic equations by factorisation
$\sqrt{2} x^{2}+7 x+5 \sqrt{2}=0$
A. $\frac{-5}{\sqrt{2}}$ or 7
B. $\frac{-5}{\sqrt{2}}$ or $-\sqrt{2}$
C. $-\sqrt{2}$ or $\frac{5}{\sqrt{3}}$
D. all

## Answer: B

- Watch Video Solution

87. The roots of $2 x^{2}-x+\frac{1}{8}=0$ are...
A. $\frac{1}{4}, \frac{1}{2}$
B. $\frac{1}{3}, \frac{1}{7}$
C. $\frac{1}{2}, \frac{1}{8}$
D. $\frac{1}{4}, \frac{1}{4}$

Answer: D

- Watch Video Solution

88. $x(x+4)=12$ then $\mathrm{x}=.$.
A. -6 or 2
B. 6 or 2
C. 8 or -9
D. none

Answer: A

## - Watch Video Solution

89. $x^{2}-7 x-60=0$ then $x=.$.
A. 12,17
B. $12,-5$
C. 8,11
D. 12,16

## Answer: B

90. Find the roots of the following quadratic equations by factorisation
$3(x-4)^{2}-5(x-4)=12$
A. $6 \frac{-1}{17}$
B. $8, \frac{-1}{2}$
C. 3,4
D. $3, \frac{-4}{3}$

## Answer: D

## - Watch Video Solution

91.9 and 1 are the roots of....
A. $x^{2}-10 x+9=0$
B. $x^{2}-x+1=0$
C. $x^{2}+3 x+4=0$
D. none

Answer: A

## - Watch Video Solution

92. On solving $x^{2}+5=-6 x$ we get $\mathrm{x}=$
A. 5 or -2
B. -1 or -5
C. -3 or -7
D. none

Answer: B
93. The equation $5 x^{2}+2 x+8=0$ has...
A. no real roots
B. real roots
C. equal roots
D. none

## Answer: A

- Watch Video Solution

94. The discriminant of $3 x^{2}-2 x=\frac{-1}{3}$ is
A. 1
B. $-\frac{1}{3}$
C. 8
D. 0

## Answer: D

## D Watch Video Solution

95. Discriminant of the quadratic equation $p x^{2}+q x+r=0$ is..
A. $q^{2}-p r$
B. $q-4 p r$
C. $q^{2}-4 p r$
D. none

## Answer: C

96. Number of distinct line segments that can be formed out of $n$ points is...
A. $\frac{n(n-1)}{2}$
B. $\frac{n}{2}$
C. $\frac{n+1}{2}$
D. $\frac{n^{2}(n-1)}{2}$

## Answer: A

## - Watch Video Solution

97. $\operatorname{If} k x(x-2)+6=0$ has equal roots then $\mathrm{k}=$
A. 3
B. -6
C. 7
D. 6

## Answer: D

## - Watch Video Solution

98. Which of the following is a quadratic equation ?
A. $x^{2}-3 x+1$
B. $8 x^{3}+7 x^{2}+1$
C. $x^{2}-x+1=0$
D. all

## Answer: C

99. If $\alpha$ is a root of $a x^{2}+b x+c=0$ then $a \alpha^{2}+b \alpha+c=\ldots$.
A. $-c$
B. 0
C. 8
D. 1

## Answer: B

## - Watch Video Solution

100. Diagonal of rectangle is units.
A. $\sqrt{l}+b^{2}$
B. $\sqrt{l}+b$
C. $\sqrt{l} b$
D. $\sqrt{l^{2}+b^{2}}$

## Answer: D

## - Watch Video Solution

101. $(\alpha+\beta)^{2}-2 \alpha \beta=$
A. $\alpha^{2}+\beta^{2}+1$
B. $\alpha+\beta^{2}$
C. $\alpha^{2}+\beta^{2}$
D. $\alpha \beta$

## Answer: C

102. From the figure, $x=. .$.

A. 7
B. 3
C. 10
D. none

## Answer: C

103. Discriminant of the quadratic equation $x+\frac{1}{x}=3$ is... A. -10
B. 9
C. 6
D. 5

## Answer: D

## - Watch Video Solution

104. If $\alpha, \beta$ are the roots of $x^{2}-p x+q=0$ then $\alpha^{3}+\beta^{3}=$
A. $p+q^{3}$
B. $p-3 p^{3} q$
C. $p^{3}-3 p q$
D. $p^{2}-3 p q$

## Answer: C

## - Watch Video Solution

105. If one root of $x^{2}-(p-1) x+10=0$ is 5 then $\mathrm{p}=$
A. 8
B. 7
C. -3
D. none

## Answer: A

106. The coefficient of $x$ in a pure quadratic equation is...
A. 2
B. 0
C. 8
D. none

## Answer: B

## - Watch Video Solution

107. $\frac{x}{a-b}=\frac{a}{x-b}$ then $\mathrm{x}=.$.
A. $b-a$ or $\frac{a}{2}$
B. $b-a$ or $-a$
C. $b+a$ or $-a$
D. all

## Answer: B

## - Watch Video Solution

108. $P(x)=x^{2}+2 x+1$ then $P\left(x^{2}\right)=$
A. $x^{4}+2 x^{2}+1$
B. $x^{4}+2 x+1$
C. $x^{30+2 x+1}$
D. none

## Answer: A

109. $(1-5 x)(x+1)=$
A. $3 x^{2}+1+X$
B. $8 X^{2}=5 x+1$
C. $1-4 x+5 x^{2}$
D. $1-4 x-5 x^{2}$

## Answer: D

## - Watch Video Solution

110. If the sum of the roots of $k x^{2}-3 x+1=0$ is $\frac{-4}{3}$ then $\mathrm{k}=\ldots$
A. $\frac{-4}{9}$
B. $\frac{9}{5}$
C. $\frac{-9}{4}$
D. none

## Answer: C

## - Watch Video Solution

## 111. $\sqrt{k+1}=3$ then $\mathrm{k}=.$.

A. 24
B. 16
C. 19
D. none

## Answer: D

112. If 2 is a root of $x^{2}+5 x+r=0$ then $\mathrm{r}=.$.
A. -4
B. -14
C. 16
D. 8

## Answer: B

## D Watch Video Solution

113. The roots of $x=\frac{1}{x}$ are...
A. 2 or - 2
B. 2 or $\frac{1}{2}$
C. 1 or -1
D. all

## Answer: C

## ( Watch Video Solution

114. If $\alpha$ and $\beta$ are the roots of the quadratic equation
$x^{2}-3 x+1=0 \operatorname{then} \frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}$
A. 7
B. 8
C. -3
D. none

Answer: A
115. "If " $a x^{\wedge} 2-4 x+3=1$ "then" $x=\ldots$....and $a=\ldots$
A. -1 or -2
B. 2 or 7
C. 8 or $\frac{1}{2}$
D. 2 or -3

## Answer: A

## ( Watch Video Solution

116. if $\frac{-7}{3}$ is a root of $6 x^{2}-13 x-63=0$ then other root is....
A. 8
B. $\frac{1}{3}$
C. $\frac{2}{9}$
D. $\frac{9}{2}$

## Answer: D

## - Watch Video Solution

117. $\sqrt{x}=\sqrt{2 x-1}$ then $x=\ldots$
A. 1
B. 4
C. 2
D. none

## Answer: A

118. $\frac{n(n+1)}{2}=55$ then $\mathrm{n}=. .$.
A. 13
B. 16
C. 10
D. 12

## Answer: C

## - Watch Video Solution

119. $\sqrt{a \sqrt{a \sqrt{a} \ldots \infty}}=\ldots$
A. $a^{1 / 2}$
B. a
C. $a^{3}$
D. $a / 2$

## Answer: B

## - Watch Video Solution

120. $\sqrt{a+\sqrt{a+\sqrt{a+\ldots \ldots \infty}}}=\ldots \ldots$.
A. $\frac{1+\sqrt{1+4 a}}{2}$
B. $\frac{1-\sqrt{4 a-2}}{3}$
C. $\frac{1+\sqrt{2}}{2}$
D. $\frac{1-\sqrt{4 a-2}}{3}$

## Answer: A

121. The quadratic inequation with $2<x<3$ is...
A. $x^{2}+6 x+5<0$
B. $x^{2}-5 x+6>0$
C. $x^{2}-5 x+6<0$
D. none

## Answer: C

## - Watch Video Solution

122. IF one root of $x^{2}-x-k=0$ is square that of the other, then $\mathrm{k}=$
A. 2
B. 3
C. -4
D. none

## Answer: D

## - Watch Video Solution

123. $x^{2}+(x+2)^{2}=290$ then $\mathrm{x}=.$.
A. 9 or -13
B. 8 or -12
C. 11 or -13
D. all

## Answer: C

124. If $\frac{1}{x-2}+\frac{2}{x-1}=\frac{6}{x}$ then $\mathrm{x}=\ldots$.
A. 3 or $\frac{4}{3}$
B. 3 or $\frac{-1}{3}$
C. 1 or $\frac{2}{3}$
D. 8 or $\frac{7}{2}$

## Answer: A

## - Watch Video Solution

125. A pentagon has... diagonals.
A. 6
B. 7
C. 9
D. none

## Answer: D

## - Watch Video Solution

126. $\frac{1}{x+4}-\frac{1}{x-7}=\frac{11}{30}, x \neq-4,7$
A. -2 or 1
B. 2 or 1
C. -1 or 3
D. 7 or $\frac{1}{2}$

## Answer: B

127. The roots of $2 x^{2}+x-4=0$ are...
A. $\frac{-1 \pm \sqrt{33}}{4}$
B. $\frac{-1 \pm \sqrt{31}}{2}$
C. $\frac{-1 \pm \sqrt{29}}{2}$
D. none

## Answer: A

## - Watch Video Solution

128. Sum of the roots of a pure quadratic equation is..
A. -13
B. 12
C. -9
D. 0

## Answer: D

- Watch Video Solution

129. $\mathrm{If} 3 y^{2}=192$ then $\mathrm{y}=$
A. 12
B. 6
C. 8
D. none

Answer: C

- Watch Video Solution

130. If $b^{2}<4 a c$ then shape of graph is....


Answer: A

## - Watch Video Solution

1. Check whether the following equations are quadratic or not.

$$
x^{2}-6 x-4=0
$$

## - Watch Video Solution

2. Check whether the following equations are quadratic or not.

$$
x^{3}-6 x^{2}+2 x-1=0
$$

## - Watch Video Solution

3. Check whether the following equations are quadratic or not.
$7 x=2 x^{2}$

- Watch Video Solution

4. Check whether the following equations are quadratic or not.
$x^{2}+\frac{1}{x^{2}}=2$

## - Watch Video Solution

5. Check whether the following equations are quadratic or not.
$(2 x+1)(3 x+1)=6(x-1)(x-2)$

## - Watch Video Solution

6. Check whether the following equations are quadratic or not.
$3 y^{2}=192$

## - Watch Video Solution

7. Represent the following situations mathematically :

Raju and Rajender together have 45 marbles. Both of then lost 5 marbles each. And the product of the number of marbles now they have is 124 .

## ( Watch Video Solution

8. Represent the following situations with suitable mathematical equations.

The hypotenuse of a right triangle is 25 cm . We know that the difference in lengths of the other two sides is 5 cm . We would like to find out the length of the two sides?

## - Watch Video Solution

9. Check whether the following are quadratic equations:
$(x-2)^{2}+1=2 x-3$

## - Watch Video Solution

10. Check whether the following are quadratic equation:
$x(x+1)+8=(x+2)(x-2)$

## - Watch Video Solution

11. Check whether the following are quadratic equation:
$x(2 x+3)=x^{2}+1$

D Watch Video Solution
12. Check whether the following are quadratic equation:
$(x+2)^{3}=x^{3}-4$

## - Watch Video Solution

13. Check whether the following are quadratic equations:
$(x+1)^{2}=2(x-3)$

## - Watch Video Solution

14. Chek whether the following are quadratic equation:

$$
x^{2}-2 x=(-2)(3-x)
$$

15. Chek whether the following are quadratic equation:
$(x-2)(x+1)=(x-1)(x+3)$

## - Watch Video Solution

16. Chek whether the following are quadratic equation:
$(x-3)(2 x+1)=x(x+5)$

## - Watch Video Solution

17. Chek whether the following are quadratic equation:

$$
(2 x-1)(x-3)=(x+5)(x-1)
$$

## - Watch Video Solution

18. Chek whether the following are quadratic equation:

$$
x^{2}+3 x+1=(x-2)^{2}
$$

## - Watch Video Solution

19. Chek whether the following are quadratic equation:
$(x+2)^{3}=2 x\left(x^{2}-1\right)$

## - Watch Video Solution

20. Chek whether the following are quadratic equation:
$x^{3}-4 x^{2}-x+1=(x-2)^{3}$

## - Watch Video Solution

21. Represent the following situations in the form of quadratic equation:

The area of a rectangular plot is $528 \mathrm{~m}^{2}$. The length of the plot is one metre more than twice its breadth. We need to find the length and breadth of the plot.

## ( Watch Video Solution

22. The product of two consecutive positive integers is 306 . We need to find the integers.

## - Watch Video Solution

23. Represent the following situations in the form of quadratic equation:

Rohan's mother is 26 years older than him. The product of their
ages after 3 years will be 360 years. We need to find Rohan's present age

## - Watch Video Solution

24. A train travels a distance of 480 km at a uniform speed. If the speed had been $8 \mathrm{~km} / \mathrm{h}$ less, then it would have taken 3 hours more to cover the same distance. We need to find the speed of the train.

## - Watch Video Solution

25. Find the roots of the equation using factorisation method.
$x^{2}+5 x+6=0$

## - Watch Video Solution

26. Find the roots of the equation using factorisation method.
$x^{2}-5 x+6=0$

## - Watch Video Solution

27. Find the roots of the equation using factorisation method.
$x^{2}+5 x-6=0$

## - Watch Video Solution

28. Find the roots of the equation using factorisation method.
$x^{2}-5 x-6=0$

D Watch Video Solution
29. Verify that 1 and $\frac{3}{2}$ are the roots of the equation $2 x^{2}-5 x+3=0$.

## - Watch Video Solution

30. Find the roots of the equation $2 x^{2}-5 x+3=0$ by factorisation.

## - Watch Video Solution

31. Find the roots of the quadratic equation $x-\frac{1}{3 x}=\frac{1}{6}$

## - Watch Video Solution

32. The altitude of a right triangle is 7 cm less than its base. If the hypotenuse is 13 cm , find the other two sides.

## - Watch Video Solution

33. A cottage industry produces a certain number of pottery articles in a day. It was observed on a particular day that the cost of production of each article (in rupees) was 3 more than twice the number of articles produced on that day. If the total cost of production on that day was Rs. 90, find the number of articles produced and the cost of each article.

## - Watch Video Solution

34. Find the dimensions of a rectangle whose perimeter is 28 meters. And whose area is 40 square meters.

## - Watch Video Solution

35. The base of a triangle is 4 cm longer than its altitude. If the area of the triangle is $48 \mathrm{sq} . \mathrm{cm}$, then find its base and altitude.

## - Watch Video Solution

36. Two trains leave a railway station at the same time. The first train travels towards west and the second train towards north.

The first train travels $5 \mathrm{~km} / \mathrm{hr}$ faster then the second train. If after two hours they are 50 km . apart, find the average speed of each train.

## - Watch Video Solution

37. In a class of 60 students, each boy contributed rupees equal to the number of girls and each girl contributed rupees equal to the
number of boys. If the total money then collected was Rs. 1600 , how many boys are there in the class?

## - Watch Video Solution

38. A motor boat heads upstream a distance of 24 km on a river whose current is running at 3 km per hours. Assuming that the motor boat maintained a constant speed, what was its speed ?

## - Watch Video Solution

39. Solve the equations by completing the square.
$x^{2}-10 x+9=0$

## - Watch Video Solution

40. Solve the equations by completing the square $x^{2}-5 x+5=0$

## - Watch Video Solution

41. Solve the equations by completing the square

$$
x^{2}+7 x-6=0
$$

## - Watch Video Solution

42. If one can induce parthenocarpy through the application of growth substances, which fruits would you select to induce parthenocarpy and why?

## - Watch Video Solution

43. Find the roots of the equation $5 x^{2}-6 x-2=0$ by the method of completing the square.

## - Watch Video Solution

44. Find the roots of $4 x^{2}+3 x+5=0$ by the method of completing the square.

## - Watch Video Solution

45. The two consecutive positive odd integers such that the sum of their squares is 290 are

## - Watch Video Solution

46. A rectangular park is to be designed whose breadth is 3 m less than its length. Its area is to be 4 square metres more than area of a park that has already been made in the shape of an isosceles triangle with its base as the breadth of the reatangular park and of altitude 12 m . Find its length and breadth.

## - Watch Video Solution

47. Find the roots of the following quadratic equations, if they exist.

$$
x^{2}+4 x+5=0
$$

## - Watch Video Solution

48. Find the roots of the following quadratic equations, if they exist.
$2 x^{2}-2 \sqrt{2} x+1=0$

## - Watch Video Solution

49. Find the roots of the following equations:
$x+\frac{1}{x}=3, x \neq 0$

## - Watch Video Solution

50. Find the roots of the following equations:
$\frac{1}{x}-\frac{1}{x-2}=3, x \neq 0,2$

## (D) Watch Video Solution

51. A motor boat whose speed is $18 \mathrm{~km} / \mathrm{h}$ in still water. It takes 1 hour more to go 24 km upstream than to return downstream to
the same spot. Find the speed of the stream.

## - Watch Video Solution

52. Find the roots of the following quadratic equations, if they exist.
$2 x^{2}+x-4=0$

## - Watch Video Solution

53. Find the roots of the following quadratic equations, if they exist.
$4 x^{2}+4 \sqrt{3} x+3=0$

- Watch Video Solution

54. Find the roots of the following quadratic equations, if they exist.
$5 x^{2}-7 x-6=0$

## - Watch Video Solution

55. Find the roots of the following quadratic equations, if they exist.
$x^{2}+5=-6 x$

## ( Watch Video Solution

56. Find the roots of the quadratic equation by applying the quadratic formula.
$2 x^{2}+x-4=0$
57. Find the roots of the quadratic equation by applying the quadratic formula.
$4 x^{2}+4 \sqrt{3} x+3=0$

## ( Watch Video Solution

58. Find the roots of the quadratic equation by applying the quadratic formula.
$5 x^{2}-7 x-6=0$

## - Watch Video Solution

59. Find the roots of the quadratic equation by applying the quadratic formula.
$x^{2}+5=-6 x$

## Watch Video Solution

60. Find the roots of the following equations:
$x-\frac{1}{x}=3, x \neq 0$

## - Watch Video Solution

61. Find the roots of the following equations:
$\frac{1}{x+4}-\frac{1}{x-7}=\frac{11}{30}, x \neq-4,7$

## - Watch Video Solution

62. The sum of the reciprocals of Rehman ages, (in years) 3 years ago and 5 year from now is $\frac{1}{3}$ Find his present age.
63. In a class test, the sum of Moulika's marks in Mathematics and

English is 30 . If she got 2 marks more in Mathematics and 3 marks less in English, the product of her marks would have been 210.

Find her marks in the two subjects.

## - Watch Video Solution

64. The diagonal of a rectangular field is 60 metres more than the shorter side. If the longer side is 30 metres more then the shorter side, find the sides of the field.

## D Watch Video Solution

65. The difference of squares of two numbers is 180 . The square of the smaller number is 8 times the larger number.Find the two numbers.

## D Watch Video Solution

66. A train travels 360 km at a uniform speed. If the speed had been $5 \mathrm{~km} / \mathrm{h}$ more, if would have taken 1 hour less for the same journey. Find the speed of the train.

## - Watch Video Solution

67. Two water taps together can fill a tank in $9 \frac{3}{8}$ hours. The tap of larger diameter takes 10 hours less than the smaller one to fill the tank separately. Find the time in which each tap can separately fill the tank.

## - Watch Video Solution

68. An express train takes 1 hour less than a passenger train to travel 132 km between Mysore and Bangalore (without taking into consideration the time they stop at intermediate stations). If the average speed of the express train is $11 \mathrm{~km} / \mathrm{hr}$ more then that of the passenger train, find the average speed of the two trains.

## - Watch Video Solution

69. Sum of the areas of two squares is $468 m^{2}$ If the difference of their perimeters is 24 m , find the sides of the two squares.

## - Watch Video Solution

70. Sum of the areas of two squares is $468 \mathrm{~m}^{2}$. If the difference of their perimeters is 24 m , find the sides of the two squares.
71. A stone is thrown vertically upwards with an initial velocity of $10 \mathrm{~ms}^{-1}$ from the top of a cliff of height 40 m . How much time it take to reach the ground?

## - Watch Video Solution

72. If a polygon of ' $n$ ' sides has $\frac{1}{2} n(n-3)$ diagonals. How many sides will a polygon having 65 diagonals ? Is there a polygon with 50 diagonals?

## - Watch Video Solution

73. Find the discriminant of the quadratic equation
$2 x^{2}-4 x+3=0$ and hence find the nature of its roots.
74. A pole has to be erected at a point on the boundary of a circular park of diameter 13 metres in such a way that the differences opposite fixed gates $A$ and $B$ on the boundary is 7 metres. Is it possible to do so ? If yes, at what distances from the two gates should the pole be erected ?

## - Watch Video Solution

75. Find the discriminant of the equation $3 x^{2}-2 x+\frac{1}{3}=0$ and hence find the nature of roots. Find them, If they are real.

## - Watch Video Solution

76. Explain the benefits of evaluating the discriminant of a quadratic equation before attempting to solve it. What does its

## value signifies?

## - Watch Video Solution

77. Write three quadratic equations one having two distinct real solutions, one having no real solution and one having exactly one real solution.

## - Watch Video Solution

78. Find the nature of the roots of the following quadratic equations. If real roots exist, find them.
$2 x^{2}-3 x+5=0$

## - Watch Video Solution

79. Find the nature of the roots of the following quadratic equations. If real roots exist, find them.

$$
3 x^{2}-4 \sqrt{3} x+4=0
$$

## - Watch Video Solution

80. Find the nature of the roots of the following quadratic equations. If real roots exist, find them.
$2 x^{2}-6 x+3=0$

## - Watch Video Solution

81. Find the values of $k$ for each of the following quadratic equations, so that they have two equal roots. $2 x^{2}+k x+3=0$
82. Find the values of $k$ for each of the quadratic equations, so that they have two equal roots.

$$
k x(x-2)+6=0(k \neq 0)
$$

## - Watch Video Solution

83. Is it possible to desigh a rectangular mango grove whose length is twice its breadth, and the area is $800 \mathrm{~m}^{2}$ ? If so find its length and breadth.

## - Watch Video Solution

84. The sum of the ages of two friends is 20 years. Four years ago,the product of their ages in years was 48. Is the above situation possible? If so, determine their present ages
85. Is it possible to desigh a rectangular park of perimeter 80 m and area $400 \mathrm{~m}^{2}$ ? If so, find its length and breadth.

## - Watch Video Solution

86. Some points are plotted on a plane. Each point is joined with all remaining points by line segments. Find the number of points if the number of line segments are 15.

## - Watch Video Solution

87. A two digit number is such that the product of its digits, is 8 .

When 18 is added to the number, they interchange their places.
Determine the number.
88. A piece of wire 8 m in length is cut into two pieces and each piece is bent into a squares. Where should the cut in the wire be made if the sum of the areas of these squares is to be $2 \mathrm{~m}^{2}$ ?

## - Watch Video Solution

89. Vinay and Praveen working together can paint the exterior of a house in 6 days. vinay by himself can complete the job in 5 days less than Praveen. How long will it take Vinay to complete the job?

## - Watch Video Solution

90. Show that the sum of roots of a quadratic equation $a x^{2}+b x+c=0(a \neq 0)$ is $\frac{-b}{a}$.
91. Show that the product of the roots of a quadratic equation $a x^{2}+b x+c=0(a \neq 0)$ is $\frac{c}{a}$.

## - Watch Video Solution

92. The denominator of a fraction is one more than twice the numerator. If the sum of the fraction and its reciprocal is $2 \frac{16}{21}$, find the fraction.

## ( Watch Video Solution

93. Verify that 1 and $\frac{3}{2}$ are the roots of the equation $2 x^{2}-5 x+3=0$.
94. $I f b^{2}-4 a c>0 \operatorname{in} a x^{2}+b x+c=0$, then what can you say about roots of the equation ? $(a \neq 0)$

## ( Watch Video Solution

95. Find the value of $k$, if 2 is one of the roots of the quadratic
equation
$x^{2}-k x+6=0$

## - Watch Video Solution

96. In a rectangle $A B C D, A B=x+y, B C=x-y, C D=9$ and $A D=3$. Find the values of $x$ and $y$.

- Watch Video Solution

97. Write the nature of roots of the quadratic equation $2 x^{2}-5 x+6=0$

## (D) Watch Video Solution

98. Write the nature of the roots of the quadratic equation $x^{2}-8 x+16=0$
99. Find sum and product of roots of the Quadratic equation $x^{2} 4 \sqrt{3} x+9=0$

## - Watch Video Solution

100. Find the roots of the Quadratic equation $x^{2}+2 x-3=0$.

## - Watch Video Solution

101. Find the values of $k$ for which the quadratic equation $4 x^{2}+5 k x+25=0$ has equal roots.

## - Watch Video Solution

102. Find the discriminant of the quadratic equation $3 x^{2}-5 x+2=0$ and hence write the nature of its roots.

## - Watch Video Solution

103. $I f 9 x^{2}+k x+1=0$ has equal roots, find the value of k .

## - Watch Video Solution

104. If the measure of angles of a triangle are $x^{\circ}, y^{\circ}$ and $40^{\circ}$ and difference between the two measures of angles $x^{\circ}$ and $y^{\circ} i s 30^{\circ}$ then find the values of $x^{\circ}$ and $y^{\circ}$

## - Watch Video Solution

105. The sum of a number and its reciprocal is $\frac{10}{3}$ Find the number.
106. Is it possible to design a rectangular genden, whose length is twice of its breadth and area is $200 m^{2}$ ? If so, find its length and breadth.

## - Watch Video Solution

107. If the equation $k x^{2}-2 k x+6=0$ has equal roots, then find the value of $k$.

## - Watch Video Solution

108. A quadratic equation, whose roots are
$2+\sqrt{3}$ and $2-\sqrt{3}=$

## - Watch Video Solution

109. Without calculating the roots of $x^{2}-5 x+6=0$, explain the nature of roots.

## - Watch Video Solution

110. Find the roots of quadratic equation $x^{2}+4 x+3=0$ by "Completing Square method".

## - Watch Video Solution

111. Shashanka said that $(x+1)^{2}=2(x-3)$ is a quadratic equation. Do you agree ?

## - Watch Video Solution

112. Sum of the squares of two consecutive positive even integers is 100 , find those numbers by using quadratic equations.

## - Watch Video Solution

113. The perimeter of a right- angled triangle is 60 cm . and its hypotenuse is 25 cm . Then find the remaining two sides.

## - Watch Video Solution

114. If - 4 is common root for the quadratic equations $2 x^{2}+p x+8=0$ and $p\left(x^{2}+x\right)+k=0$ then find the value of 'k'.

## - Watch Video Solution

115. Sum of squares of two consecutive even numbers is 580 . Find the numbers by writing a sultable Quadratle equation.

## - Watch Video Solution

116. Sum of the areas of two squares is $850 \mathrm{~m}^{2}$. If the difference if their perimeters is 40 m , find the sides of two squares.

## - Watch Video Solution

117. Sum of the present ages of two friends are 23 years, five years ago product of their ages was 42 . Find their ages 5 years hence.

## - Watch Video Solution

118. If a number when increased by 12 , equals 160 times of its reciprocal, then find the numbers.

## - Watch Video Solution

119. A train travels 360 km at a uniform speed. If the speed had been $5 \mathrm{~km} / \mathrm{h}$ more, if would have taken 1 hour less for the same journey. Find the speed of the train.

## - Watch Video Solution

120. Write the roots of quadratic equation $a x^{2}+b x+c=0$ when $b^{2}-4 a c>0$.

## - Watch Video Solution

121. Write the two roots of quadratic equation $a x^{2}+b x+c=0$ when $b^{2}-4 a c=0$ is given.

## - Watch Video Solution

122. Find a quadratic polynomial with zeroes -2 and $\frac{1}{3}$.

## - Watch Video Solution

123. Find the roots of the equation $5 x^{2}-7 x-6=0$ by the method of completing the square.

## - Watch Video Solution

124. The quadratic polynomial, whose zeros are 2 and 3 , is.....
A. $x^{2}-5 x-6$
B. $x^{2}+5 x-6$
C. $x^{2}-5 x+6$
D. $x^{2}+5 x+6$

## - Watch Video Solution

125. Observe the given rectangular figure, then its area in polynomial function is

A. $A(x)=x^{2}+7 x+30$
B. $A(x)=-x^{2}+7 x+30$
C. $A(x)=x^{2}-7 x+30$
D. $A(x)=-x^{2}-7 x+30$

D Watch Video Solution
126. Which of the following is a quadratic equation?
A. $x^{3}-6 x^{2}+2 x-1=0$
B. $x^{3}-6 x^{2}+2 x-1=0$
C. $x^{2}+\frac{1}{x^{2}}=2$
D. $(x+1)(x+2)(x+3)=0$

## - Watch Video Solution

127. Observe the following graphs. Which of them are the graphs
of quadratic polynomials?




A. (i), (ii) and (iii)
B. (i) and (iii)
C. (i) and (iv)
D. (i), (iii) and (iv)

## - Watch Video Solution

128. Which of the following quadratle. Equations the roots are equal?
A. $x^{2}-5=0$
B. $x^{2}-10 x+25=0$
C. $x^{2}+5 x+6=0$
D. ${ }^{\wedge} x^{\wedge} 2-1=0$

## Watch Video Solution

129. The quadratic polynomial having $\frac{1}{3}$ and $\frac{1}{2}$ as its zeroes, is.....
A. $x^{2}+\frac{5 x+1}{6}$
B. $-6 x^{2}-5 x+1$
C. $x^{2}-\frac{5 x-1}{6}$
D. $6 x^{2}-5 x-1$

## D Watch Video Solution

130. If $x^{2}-p x+q=0(p, q \in R$ and $p \neq 0, q \neq 0)$ has distinct real roots. Then...
A. $p^{2}<4 q$
B. $p^{2}>4 q$
C. $p^{2}=4 q$
D. $p^{2}+4 q=0$

## - Watch Video Solution

131. In a quadratic equation $a x^{2}+b x+c=0 \mathrm{if} b^{2}-4 a c>0$ then their roots are ....
A. real and distinct
B. real and equal
C. imaginary
D. none
132. If a number is 132 smaller than its square, then the number is
A. 11
B. 8
C. 9
D. 12

## - Watch Video Solution

133. If both roots are common to the Quadratic equations $x^{2}-4=0$ and $x^{2}+p x-4=0$, then $\mathrm{p}=$
A. 2
B. 0
C. 4
D. 1

## - Watch Video Solution

134. The sum of the roots of $6 x^{2}=1$ is
A. 0
B. $\frac{1}{6}$
C. $-\frac{1}{6}$
D. 6
135. If the sum of a number and its reciprocal is $\frac{17}{4}$, then that number is. $\qquad$
A. 3
B. 4
C. 5
D. 17

## - Watch Video Solution

136. The roots of a quadratic equation $a x^{2}-b x+c=0, a \neq 0$
are
A. $\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}, \frac{-b+\sqrt{b^{2}+4 a c}}{2 a}$
B. $\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}, \frac{-b-\sqrt{b^{2}+4 a c}}{2 a}$
C. $\frac{b+\sqrt{b^{2}-4 a c}}{2 a}, \frac{b-\sqrt{b^{2}-4 a c}}{2 a}$
D. $\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}, \frac{-b-\sqrt{b^{2}-4 a c}}{2 a}$

## - Watch Video Solution

137. One of the roots of the Q.E. $6 x^{2}-x-2=0$ is
A. $\frac{1}{3}$
B. $\frac{-1}{3}$
C. $\frac{-2}{3}$
D. $\frac{2}{3}$
138. If the sum of the squares of two consecutive odd numbers is

74 , then the smaller number is
A. 11
B. 3
C. 7
D. 5

## - Watch Video Solution

139. The roots of the equation $4 x^{2}+4 \sqrt{3} x+3=0$ are
A. $\frac{\sqrt{3}}{2}$
B. $\frac{-\sqrt{3}}{2}$
C. -4
D. -2

## ( Watch Video Solution

140. The sum of a number and its reciprocal is $\frac{50}{7}$,then the number is
A. $\frac{1}{7}$
B. 5
C. $\frac{2}{7}$
D. $\frac{3}{7}$
141. The roots of the equation $3 x^{2}-2 \sqrt{6} x+2=0$ are
A. $\frac{2}{\sqrt{3}}, \frac{-2}{\sqrt{3}}$
B. $\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}$
C. $\sqrt{\frac{2}{3}}, \sqrt{\frac{2}{3}}$
D. $\frac{1}{\sqrt{3}}, \frac{5}{\sqrt{3}}$

## - Watch Video Solution

142. $I f x^{2}-2 x+1=0 \operatorname{then} x+\frac{1}{x}=$
A. 0
B. 2
C. 1

## ( Watch Video Solution

143. The roots of the Q.E. $\sqrt{3} x^{2}-2 x-\sqrt{3}=0$ are
A. Real and distinct
B. Real and equal
C. Not real
D. Can't be determined

## ( Watch Video Solution

144. One solution of the Q.E. $2 x^{2}-5 x-3=0$ is
A. $x=2$
B. $x=-1$
C. $x=-3$
D. $x=3$

## - Watch Video Solution

145. $I f 5 x^{2}-k x+11=0$ has a root $\mathrm{x}=3$, then $\mathrm{k}=$
A. $\frac{16}{3}$
B. $\frac{56}{3}$
C. $\frac{-17}{3}$
D. 15
146. The sum of the roots of the equation $3 x^{2}-7 x+11=0$
A. $\frac{11}{3}$
B. $\frac{-7}{3}$
C. $\frac{7}{3}$
D. $\frac{3}{7}$

## D Watch Video Solution

147. The positive root of $\sqrt{3 x^{2}+6}=9$ is
A. 3
B. 5
C. 4
D. $\frac{2}{5}$

## D Watch Video Solution

148. The value of p for which $4 x^{2}-2 p x+7=0$ has a real root is
A. $p>2 \sqrt{7}$
B. $p>\sqrt{7}$
C. $p>\sqrt{5}$
D. $p>\sqrt{3}$
149. The roots of $5 x^{2}-x+1=0$ are
A. Real and equal
B. Real and unequal
C. Imaginary
D. None

## - Watch Video Solution

150. Which of the following Q.E has real and equal roots?
A. $x^{2}-4 x+4=0$
B. $2 x^{2}-4 x+3=0$
C. $3 x^{2}-5 x+2=0$
D. $x^{2}-2 \sqrt{2} x-6=0$

## ( Watch Video Solution

151. The standard form of a Q.E. is
A. $a x+b=0$
B. $a x^{2}+b x+c=0, a \neq 0$
C. $a x^{3}+b x^{2}+c x+d=0$
D. $a^{2} x+b^{2} y^{2}=c^{2}$

## ( Watch Video Solution

152. The roots of the Q.E. $(\sqrt{5} x-3)(\sqrt{5} x-3)=0$ are
A. $\frac{3}{\sqrt{5}}, \frac{3}{\sqrt{5}}$
B. $\frac{-3}{\sqrt{5}}, \frac{-3}{\sqrt{5}}$
C. $\frac{3}{\sqrt{5}}, \frac{-3}{\sqrt{5}}$
D. $\frac{\sqrt{3}}{\sqrt{5}}, \frac{\sqrt{3}}{\sqrt{5}}$

## - Watch Video Solution

153. The roots of the Q.E. $(7 x-1)(2 x+3)=0$ are
A. 1, 3
B. $\frac{1}{7}, \frac{3}{2}$
C. $\frac{1}{7}, \frac{-3}{2}$
D. $\frac{-1}{7}, \frac{-3}{2}$
154. Which of thr following is a Q.E.
A. $(x+1)^{2}=3(x+7)$
B. $(x-1)(x+3)=(x-2)(x+1)$
C. $x^{2}+5 x-7=(x-4)^{2}$
D. $x^{3}-9=0$

- Watch Video Solution

155. The roots of the Q.E.
$\frac{9}{x^{2}-27}=\frac{25}{x^{2}-11}$ are
A. $\pm 11$
B. $\pm 3$
C. $\pm 9$
D. $\pm 6$

Watch Video Solution
156. The roots of the QE

$$
(3 x+4)^{2}-49=0 \text { are }
$$

A. $1, \frac{-11}{3}$
B. $\frac{1}{3}, \frac{11}{3}$
C. $\frac{-1}{3}, \frac{-11}{3}$
D. 1, -11
157. The sum of a number and its recip- rocal is $\frac{5}{2}$ then the number is
A. 2 or $\frac{1}{3}$
B. 3 or $\frac{1}{2}$
C. 2 or $\frac{1}{2}$
D. 5 and $\frac{1}{5}$

## - Watch Video Solution

158. The roots of the Q.E. $\left(x-\frac{1}{3}\right)^{2}=9$
A. 10,8
B. $\frac{-10}{3}, \frac{8}{3}$
C. $\frac{10}{3}, \frac{-8}{3}$
D. $(-3,3)$

## - Watch Video Solution

159. Product of the roots of the Q.E.
$3 x^{2}-6 x+11=0$ is
A. 2
B. $\frac{-11}{3}$
C. $\frac{-11}{6}$
D. $\frac{11}{3}$
160. The Q.E. whose roots are $-2,-3$ is
A. $x^{2}-5 x+6=0$
B. $x^{2}+5 x+6=0$
C. $x^{2}-5 x-6=0$
D. $x^{2}+5 x-6=0$

## - Watch Video Solution

161. If the equation $x^{2}-k x+1=0$ has equal roots. Then
A. $k=1$
B. $k=-1$
C. $\mathrm{k}=2$
D. $k=-4$

D Watch Video Solution
162. If $(x-3)(x+3)=16$ then the value of $x$ is
A. $\pm 4$
B. $\pm 3$
C. $\pm 6$
D. $\pm 5$
163. If the sum of the roots of the Q.E. $3 x^{2}+(2 k+1) x-(k+5)=0$ is equal to the product of the roots, then the value of $k$ is
A. 3
B. 4
C. 2
D. 6

- Watch Video Solution

164. The Q.E. whose one root is $2-\sqrt{3}$ is
A. $x^{2}-4 x+1=0$
B. $x^{2}+4 x-1=0$
C. $x^{2}-4 x-1=0$
D. $x^{2}-2 x-3=0$

## (D) Watch Video Solution

165. Form a quadratic equation whose roots are k and $\frac{1}{k}$
A. $x^{2}+\left(k+\frac{1}{k}\right) x+1=0$
B. $x k^{2}-k x+1=0$
C. $x^{2}-(k+k) x+1=0$
D. $x^{2}-\left(k+\frac{1}{k}\right) x+1=0$
166. The roots of a quadratic equation $\frac{x}{p}=\frac{p}{x}$ are
A. $\pm p$
B. $p, 2 p$
C. $-p, 2 p$
D. $-\mathrm{p},-2 \mathrm{p}$

## - Watch Video Solution

167. The roots of a quadratic equation
$a x^{2}+b x+c=0$ is
A. $\frac{-b+\sqrt{b^{2}-4 a c}}{a c}$
B. $\frac{-b-\sqrt{b^{2}-4}}{3}$
C. $\frac{-b-\sqrt{b-4 a c}}{2}$
D. $\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$

## ( Watch Video Solution

168. The product of the roots of the quadratic equation
$\sqrt{2} x^{2}-3 x+5 \sqrt{2}=0$
A. $\frac{-5}{3}$
B. $\sqrt{2}$
C. 5
D. 3
169. In the above problem $a_{5}=\ldots$
A. $\frac{3}{\sqrt{2}}$
B. $\frac{-3}{\sqrt{2}}$
C. 3
D. 5

## - Watch Video Solution

170. The sum of the roots of the quadratic equation $5 x^{2}+4 \sqrt{3} x-11=0$ is
A. $\frac{-11}{5}$
B. $\frac{11}{4}$
C. $\frac{-4}{3}$
D. $\frac{-4}{5} \sqrt{3}$

## - Watch Video Solution

171. Find the zeroes of the quadratic polynomials given below. Find the sum and product of the zeroes and verify relationship to the coeffcients of terms of terms in the polynomial.

$$
p(x)=x^{2}-4
$$

A. $\frac{5}{-11}$
B. $\frac{11}{5}$
C. $\frac{-11}{5}$
D. $\frac{1}{5}$
172. The quadratic equation whose roots are -3 and -4 is ...
A. $7 x^{2}+X+1=0$
B. $x^{2}+7 x+12=0$
C. $x^{2}-3 x+1=0$
D. none

## - Watch Video Solution

173. If one root of a quadratic equation is $7-\sqrt{3}$ then the quadratic equation is ....
A. $x^{2}-7 x+3=0$
B. $x^{2}-4 x+6=0$
C. $x^{2}-7 x+1=0$
D. $x^{2}-14 x+46=0$

## (D) Watch Video Solution

174. The nature of the roots of a quadratic equation $4 x^{2}+5 x+1=0$ is.....
A. real and distinct
B. real and equal
C. imaginary
D. none
175. The nature of the roots of quadratic equation $3 x^{2}+x+8=0$ is...
A. real and distinct
B. real and equal
C. imaginary
D. none

## - Watch Video Solution

176. The nature of the roots of a quadratic equation $4 x^{2}-12 x+9=0$ is....
A. real and equal
B. real and distinct
C. imaginary
D. none

## (D) Watch Video Solution

177. The roots of a quadratic equation $(\sqrt{2} x+3)(5 x-\sqrt{3})=0$ are.....
A. $\frac{1}{3}, \frac{1}{\sqrt{2}}$
B. $\frac{1}{2}, \frac{3}{\sqrt{5}}$
C. $\frac{-3}{\sqrt{2}}, \frac{1}{5}$
D. $\frac{-3}{\sqrt{2}}, \frac{\sqrt{3}}{5}$
178. The roots of the quadratic equation $\frac{x^{2}-8}{x^{2}+20}=\frac{1}{2}$ are...
A. $\pm 2$
B. $\pm 6$
C. $\pm 13$
D. $\pm 7$

## - Watch Video Solution

179. The discriminant of $5 x^{2}-3 x-2=0$ is...
A. 49
B. 89
C. 20
D. none

## - Watch Video Solution

180. $I f b^{2}-4 a c<0$ then the roots of the quadratic equation are...
A. distinct
B. equal
C. imaginary
D. none
181. If $b^{2}-4 a c=0$ then the roots of the quadratic equation are...
A. real and distinct
B. real and equal
C. imaginary
D. none

## - Watch Video Solution

182. For what positive value of $x$ the quadratic equation $4 x^{2}-9=0$
A. $\frac{2}{3}$
B. $\frac{-2}{3}$
C. $\frac{-3}{2}$
D. $\frac{3}{2}$

## - Watch Video Solution

183. If the roots of a quadratic equation $a x^{2}+b x+c=0$ are real and equal then $b^{2}=. .$.
A. 4 ab
B. 4 ac
C. $\frac{a c}{4}$
D. $a^{2} c^{2}$
184. The roots of $4 x^{2}-20 x+25=0$ are
A. real and equal
B. imaginary
C. real and distinct
D. none

## - Watch Video Solution

185. The nature of roots of $3 x^{2}+6 x-2=0$ is....
A. real and distinct
B. real and equal
C. complex
D. none

## - Watch Video Solution

186. The roots of $7 x^{2}+3 x+8=0$ are...
A. real
B. not real
C. real and equal
D. none
187. Sum of the roots of $a x^{2}+b x+c=0$ is..
A. $\frac{c}{a}$
B. $\frac{b}{a}$
C. $\frac{a}{b}$
D. none

## - Watch Video Solution

188. Product of the roots of $a x^{2}+b x+c=0$ is...
A. $\frac{c}{a}$
B. $\frac{-b}{a}$
C. ${ }^{(-c) / a}$
D. none
189. $3 x^{2}+(-k x)+8=0$ has real roots if ...
A. $k<4 \sqrt{6}$
B. $k>4 \sqrt{6}$
C. $\mathrm{k}=6$
D. $k=0$

- Watch Video Solution

190. $4 x^{2}+k x-2=0$ has no real roots if.....
A. $k<-\sqrt{32}$
B. $k=10$
C. $k<\sqrt{32}$
D. none

## ( Watch Video Solution

191. The quadratic equation whose roots are 2,3 is...
A. $x^{2}-5 x+1=0$
B. $x^{2}-5 x-6=0$
C. $x^{2}-3 x+1=0$
D. $x^{2}-5 x+6=0$
192. If one root of $2 x^{2}+k x-6$ is 2 , then $k=\ldots$.
A. 3
B. 4
C. 1
D. -1

- Watch Video Solution

193. If $x^{2}-8 k x+16=0$ has equal roots then ....
A. $k= \pm \sqrt{2}$
B. $k= \pm 7$
C. $k= \pm 1$
D. none

## ( Watch Video Solution

194. $\frac{x}{x-y}-\frac{y}{x+y}=\ldots$
A. $\frac{x^{2}+y^{2}}{x^{2}-y^{2}}$
B. $\frac{x^{2}+y^{2}}{x+y}$
C. $\frac{x^{2} y^{2}}{x+y}$
D. none

## D Watch Video Solution

195. $\frac{2 a^{2}+a-1}{a+1}+\frac{3 a^{2}+5 a+2}{3 a+2}+\frac{4-a^{2}}{a+2}=.$.
A. $\frac{a}{2}+2$
B. $\frac{a+1}{2}$
C. $2(a+1)$
D. none

## - Watch Video Solution

196. $\frac{1}{a+3}+\frac{1}{a-3}+\frac{6}{9-a^{2}}=.$.
A. $\frac{1}{a+2}$
B. $\frac{3}{a+2}$
C. $\frac{2}{a+1}$
D. $\frac{2}{a+3}$
197. $\frac{1-\frac{1}{1+x}}{\frac{1}{1+x}}=\ldots$
A. 1
B. $x^{2}$
C. $x$
D. 0

## - Watch Video Solution

198. $\left(x+\frac{1}{x}\right)^{2}-\left(y+\frac{1}{y}\right)^{2}-\left(x y-\frac{1}{x y}\right) \cdot\left(\frac{x}{y}-\frac{y}{x}\right)=. . . .$.
A. 0
B. 1
C. $x y$
D. $\frac{1}{x y}$

## - Watch Video Solution

199. Sum of the roots of $b x^{2}+a x+c=0$ is
A. $\frac{-b}{a}$
B. $\frac{c}{a}$
C. $\frac{a}{b}$
D. $\frac{-a}{b}$
200. $(x-\alpha)(x-\beta)=0$ then
A. $x^{2}-(\alpha) x+\beta \alpha=0$
B. $x^{2}-(\alpha+\beta) x+\alpha \beta=0$
C. $\alpha x^{2}-x \beta+\alpha \beta-0$
D. none

## - Watch Video Solution

201. Sum of the roots of $-7 x+3 x^{2}-1=0$ is
A. $\frac{3}{4}$
B. $\frac{1}{7}$
C. $\frac{7}{3}$
D. $\frac{1}{2}$

D Watch Video Solution
202. Product of the roots of $1=x^{2}$ is..
A. -1
B. 7
C. 0
D. 1
203. The nature of roots of $3 x^{2}+13 x-2=0$

# A. real and-unequal 

B. real and equal
C. complex
D. none

## - Watch Video Solution

204. $\operatorname{If}(2 x-1)(2 x+3)=0$ then $x$.
A. $\frac{1}{2}$ or $\frac{-1}{2}$
B. $\frac{1}{2}$ or $\frac{-3}{2}$
C. $\frac{1}{2}$ or $\frac{2}{3}$
D. none
205. The roots of $(x-a)(x-b)=b^{2}$ are...
A. real
B. not real
C. complex
D. none

- Watch Video Solution

206. Product of the roots of $x^{2}+7 x=0$ is...
A. 1
B. -7
C. -3
D. 0

## - Watch Video Solution

207. For what values of $m$ are the roots of the equation $m x^{2}+(m+3) x+4=0$ are equal?
A. 1 or 5
B. -1 or 2
C. 8 or 1
D. 9 or 1
208. If $\alpha$ and $\beta$ are the roots of the quadratic equation $2 x^{2}+3 x-7=0$ then $\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}=$
A. $\frac{-37}{16}$
B. $\frac{-37}{4}$
C. $\frac{-37}{14}$
D. $\frac{37}{8}$

## - Watch Video Solution

209. If $\alpha$ and $\beta$ are the roots of $x^{2}-2 x+3=0$ then $\alpha^{2}+\beta^{2}=$
A. -2
B. 4
C. 8
D. none

## - Watch Video Solution

210. If $\alpha$ and $\beta$ are the roots of $x^{2}-2 x+3=0$ then $\alpha^{2} \beta+\beta^{2} \alpha$
$=. .$.
A. -3
B. 8
C. 6
D. none
211. If $\alpha$ and $\beta$ are the roots of $x^{2}-2 x+3=0$ the value of $\alpha^{3}+\beta^{3}=\ldots \ldots$.
A. -10
B. 10
C. 8
D. 12

## - Watch Video Solution

212. If $\alpha$ and $\beta$ are the roots of $x^{2}+x+1=0$ then $\alpha^{2}+\beta^{2}=$
A. 8
B. -1
C. 12
D. 0

## - Watch Video Solution

213. 

If $\alpha$ and $\beta$ are the roots of $x^{2}-5 x+6=0$ then the value of $\alpha-\beta=$
A. $\pm 1$
B. $\pm 2$
C. -3
D. none
214. In the quadratic equation $x^{2}+x-2=0, a+b+c=$
A. 7
B. 0
C. 8
D. 1

## - Watch Video Solution

215. The degreee of any quadratic equation is..
A. 4
B. 1
C. 2
D. 3

## ( Watch Video Solution

216. Check whether the following are quadratic equation:
$x(2 x+3)=x^{2}+1$
A. $x^{2}+3 x-1=0$
B. $x^{2}-3 x-2=0$
C. $x^{2}+x+1=0$
D. none
217. 

$$
x^{3}-4 x^{2}-x+1=(x-2)^{3}=
$$

A. $2 x^{2}-x+1=0$
B. $2 x^{2}-13 x+9=0$
C. $x^{2}+x+1=0$
D. none

## - Watch Video Solution

218. If $x+\frac{1}{x}=2$ then $x^{2}+\frac{1}{x^{2}}=\ldots$
A. 8
B. 0
C. 4
D. 2

## ( Watch Video Solution

219. The product of two consecutive positive integers is 306 . We need to find the integers.
A. 12
B. 16
C. 18
D. 10
220. A square carrom board has a perimeter of 320 cm . How much is its area?

## - Watch Video Solution

221. 1 and $\frac{3}{2}$ are the roots of...
A. $2 x^{2}-5 x+3=0$
B. $x^{2}-5 x+1=0$
C. $2 x^{2}-x+3=0$
D. all
222. The roots of $\sqrt{2} x^{2}+7 x+5 \sqrt{2}=0$ are
A. $\frac{-5}{\sqrt{2}}$ or 7
B. $\frac{-5}{\sqrt{2}}$ or $-\sqrt{2}$
C. $-\sqrt{2}$ or $\frac{5}{\sqrt{3}}$
D. all

## - Watch Video Solution

223. The roots of $2 x^{2}-x+\frac{1}{8}=0$ are...
A. $\frac{1}{4}, \frac{1}{2}$
B. $\frac{1}{3}, \frac{1}{7}$
C. $\frac{1}{2}, \frac{1}{8}$
D. $\frac{1}{4}, \frac{1}{4}$

## ( Watch Video Solution

224. $x(x+4)=12$ then $\mathrm{x}=.$.
A. -6 or 2
B. 6 or 7
C. 8 or -9
D. none
225. $x^{2}-7 x-60=0$ then $\mathrm{x}=$..
A. 12,17
B. $12,-5$
C. 8,11
D. 12,16

## - Watch Video Solution

226. Find the roots of the quadratic equations by factorisation:
$3(x-4)^{2}-5(x-4)=12$
A. $6, \frac{-1}{17}$
B. $8, \frac{-1}{2}$
C. 3,4
D. $3, \frac{-4}{3}$

## Watch Video Solution

227.9 and 1 are the roots of....
A. $x^{2}-10 x+9=0$
B. $x^{2}-x+1=0$
C. $x^{2}+3 x+4=0$
D. none

- Watch Video Solution

228. On solving $x^{2}+5=-6 x$ we get $\mathrm{x}=$
A. 5 or -2
B. -1 or -5
C. -3 or -7
D. none

## D Watch Video Solution

229. The equation $5 x^{2}+2 x+8=0$ has...
A. no real roots
B. real roots
C. equal roots
D. none
230. The discriminant of $3 x^{2}-2 x=\frac{-1}{3}$ is
A. 1
B. $-\frac{1}{3}$
C. 8
D. 0

## - Watch Video Solution

231. Discriminant of the quadratic equation $p x^{2}+q x+r=0$ is..
A. $q^{2}-p r$
B. $q-4 p r$
C. $q^{2}-4 p r$
D. none

## ( Watch Video Solution

232. Number of distinct line segments that can be formed out of n-points is...
A. $\frac{n(n-1)}{2}$
B. $\frac{n}{2}$
C. $\frac{n+1}{2}$
D. $\frac{n^{2}(n-1)}{2}$
233. If $k x(x-2)+6=0$ has equal roots then $\mathrm{k}=$
A. 3
B. -6
C. 7
D. 6

## - Watch Video Solution

234. Which of the following is a quadratic equation ?
A. $x^{2}-3 x+1$
B. ${ }^{`} 8 x^{\wedge} 3+7 x^{\wedge} 2+1$
C. $x^{2}-x+1-0$
D. all

## - Watch Video Solution

235. If $\alpha$ is a root of $a x^{2}+b x+c=0$ then $a \alpha^{2}+b \alpha+c=\ldots$.
A. -c
B. 0
C. 8
D. 1

- Watch Video Solution

236. Diagonal of rectangle is units.
A. $\sqrt{l}+b^{2}$
B. $\sqrt{l}+b$
C. $\sqrt{l b}$
D. $\sqrt{l^{2}+b^{2}}$

## - Watch Video Solution

237. $(\alpha+\beta)^{2}-2 \alpha \beta=$
A. $\alpha^{2}+\beta^{2}+1$
B. $\alpha+\beta^{2}$
C. $\alpha 2+\beta 2$
D. $\alpha \beta$
238. From the
figure, x =..........

A. 7
B. 3
C. 10
D. none

## Watch Video Solution

239. Discriminant of the quadratic equation $x+\frac{1}{x}=3$ is... A. -10
B. 9
C. 6
D. 5

## - Watch Video Solution

240. If $\alpha, \beta$ are the roots of $x^{2}-p x+q=0$ then $\alpha^{3}+\beta^{3}=$
A. $p+q^{3}$
B. $p-3 p^{3} q$
C. $p^{3}-3 p q$
D. $p^{2}-3 p q$

## D Watch Video Solution

241. If one root of $x^{2}-(p-1) x+10=0$ is 5 then $\mathrm{p}=$
A. 8
B. 7
C. -3
D. none
242. The coefficient of $x$ in a pure quadratic equation is...
A. 2
B. 0
C. 8
D. none

## - Watch Video Solution

243. $\frac{x}{a-b}=\frac{a}{x-b}$ then $\mathrm{x}=$. .
A. $b-a$ or $\frac{a}{2}$
B. $b-a$ or $-a$
C. $b+a$ or $-a$

## - Watch Video Solution

244. $P(x)=x^{2}+2 x+1$ then $P\left(x^{2}\right)=$
A. $x^{4}+2 x^{2}+1$
B. $x^{4}+2 x+1$
C. $x^{3}+2 x+1$
D. none

## - Watch Video Solution

245. $(1-5 x)(x+1)=$
A. $3 x^{2}+1+x$
B. $8 x^{2}-5 x+1$
C. $1-4 x+5 x^{2}$
D. $1+4 x-5 x^{2}$

## ( Watch Video Solution

246. If the sum of the roots of $k x^{2}-3 x+1=0$ is $\frac{-4}{3}$ then $\mathrm{k}=\ldots$
A. $\frac{-4}{9}$

9
B. $\overline{5}$
C. $\frac{-9}{4}$
D. none
247. $\sqrt{k+1}=3$ then $\mathrm{k}=\ldots$
A. 24
B. 16
C. 19
D. none

- Watch Video Solution

248. If 2 is a root of $x^{2}+5 x+r=0$ then $\mathrm{r}=$...
A. -4
B. -14
C. 16
D. 8

## - Watch Video Solution

249. The roots of $x=\frac{1}{x}$ are...
A. 2 or -2
B. 2 or $\frac{1}{2}$
C. 1 or -1
D. all
250. If $\alpha$ and $\beta$ are the roots of the quadratic equation $x^{2}-3 x+1=0 \operatorname{then} \frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}$
A. 7
B. 8
C. -3
D. none

- Watch Video Solution

251. "If " $a x^{\wedge} 2-4 x+3=1$ "then" $x=$....and $a=\ldots$
A. 1 or 3
B. 2 or 7
C. 8 or $\frac{1}{2}$
D. 2 or -3

## ( Watch Video Solution

252. if $\frac{-7}{3}$ is a root of $6 x^{2}-13 x-63=0$ then other root is....
A. 8
B. $\frac{1}{3}$
C. $\frac{2}{9}$
D. $\frac{9}{2}$
253. $\sqrt{x}=\sqrt{2 x-1}$ then $x=\ldots$
A. 1
B. 4
C. 2
D. none

## - Watch Video Solution

254. $\frac{n(n+1)}{2}=55$ then $\mathrm{n}=\ldots$
A. 13
B. 16
C. 10
D. 12
255. $\sqrt{a \sqrt{a \sqrt{a} \ldots \infty}}=\ldots$
A. $a^{1 / 2}$
B. $a$
C. $a^{3}$
D. $a / 2$

## - Watch Video Solution

256. $\sqrt{a+\sqrt{a+\sqrt{a+\ldots \ldots . \infty}}}=\ldots \ldots .$.
A. $\frac{1+\sqrt{1+4 a}}{2}$
B. $\frac{1-\sqrt{4 a-2}}{3}$
C. $\frac{1+\sqrt{2}}{2}$
D. none

## D Watch Video Solution

257. The quadratic inequation with $2<x<3$ is...
A. $x^{2}+6 x+5<0$
B. $x^{2}-5 x+6>0$
C. $x^{2}-5 x+6<0$
D. none

- Watch Video Solution

258. IF one root of $x^{2}-x-k=0$ is square that of the other, then $\mathrm{k}=$
A. 2
B. -3
C. -4
D. none

## - Watch Video Solution

259. $x^{2}+(x+2)^{2}=290$ then $\mathrm{x}=.$.
A. 9 or -13
B. 8 or -12
C. 11 or - 13
D. all

## ( Watch Video Solution

260. If $\frac{1}{x-2}+\frac{2}{x-1}=\frac{6}{x}$ then $\mathrm{x}=\ldots$.
A. 3 or $\frac{4}{3}$
B. 3 of $\frac{-1}{3}$
C. 1 or $\frac{2}{3}$
D. 8 or $\frac{7}{2}$

## - Watch Video Solution

261. A pentagon has... diagonals.
A. 6
B. 7
C. 9
D. none

## - Watch Video Solution

262. Find the roots of the following equations :
$\frac{1}{x+4}-\frac{1}{x-7}=\frac{11}{30}, x \neq-4,7$
A. -2 or 1
B. 2 or 1
C. -1 or 3
D. 7 or $\frac{1}{2}$

## ( Watch Video Solution

263. The roots of $2 x^{2}+x-4=0$ are...
A. $\frac{-1 \pm \sqrt{33}}{4}$
B. $\frac{-1 \pm \sqrt{31}}{2}$
C. $\frac{-1 \pm \sqrt{29}}{2}$
D. none

## - Watch Video Solution

264. Sum of the roots of a pure quadratic equation is..
A. -13
B. 12
C. -9
D. 0

## - Watch Video Solution

265. If $3 y^{2}=192$ then $\mathrm{y}=$
A. 12
B. 6
C. 8
D. none

O
Watch Video Solution
266. If $b^{2}-4 a c<0$ then shape of graph is.........


A. (Picture)
B. (Picture)

## C. (Picture)

D. none

## ( Watch Video Solution

267. The general form of a quadratic equation in variable x is......
A. $a x^{2}+b x+. c=0(a \operatorname{ne} 0)^{\prime}$
B. $a x+b x^{2}+c=0(b \neq 0)$
C. $a x^{2}+b x=0(a \neq 0)$
D. $a^{2} x+b x+c=0(b \neq 0)$
268. The possible number of roots to a quadratic equation are....
A. At a maximum of 3
B. At a maximum of 2
C. Infinite
D. At a maximum of 5

## - Watch Video Solution

269. If the roots of a quadratic equation $p x^{2}+q x+r=0$ are imaginary then
A. $q^{2}>4 p r$
B. $q^{2}<4 p r$
C. $q^{2}=4 p r$
D. $p .=q+r$

- Watch Video Solution

270. The discriminant of quadratic equation $2 x^{2}+x-4=0$ is...
A. 35
B. 36
C. 33
D. 38
