

MATHS

BOOKS - VGS BRILLIANT MATHS (TELUGU ENGLISH)

QUADRATIC EQUATIONS (MULTIPLE CHOICE QUESTION)

Quadratic Equations Multiple Choice Question

1. $2x^2+3x-1=0$ is a quadratic equation the roots are $lpha,\,eta$ then $lpha^2+eta^2$ =......

A.
$$\frac{13}{4}$$

B.
$$\frac{-13}{4}$$

c.
$$\frac{4}{13}$$

D.
$$\frac{-4}{13}$$

Answer: A

2. $3x^2 - 5x + 2 = 0$ is a quadratic equation

the roots are α , β then $\alpha^3 + \beta^3$ is......

A.
$$\frac{27}{35}$$

B.
$$\frac{35}{27}$$

$$\mathsf{C.}\,\frac{-\,35}{27}$$

D.
$$\frac{-27}{35}$$

Answer: B

3. $x^2+px+q=0$ is a quadratic equation, the roots are $lpha,\,eta$ then $lpha^4+eta^4$ is......

A.
$$p^4+4p^2q+2q^2$$

$$\mathsf{B.}\, p^4 + q^4 - 2p^2q^2$$

C.
$$p^4-4p^2q+2q^2$$

D.
$$p^4 + q^4 + 2p^2q^2$$

Answer: C

4. The quadratic equation whose roots are reciprocal of the roots of the equation $ax^2+bx+c=0$ is-

$$A. cx^2 - bx - a = 0$$

$$B. cx^2 - bx = 0$$

$$\mathsf{C.}\,cx^2+bx-a=0$$

$$D. cx^2 + bx + a = 0$$

Answer: D

5. IF a>0 then the minimum value of

$$3x^2 + 4x + 1$$
 is.....

$$\text{A.}\,\frac{-1}{3}$$

B.
$$\frac{1}{3}$$

$$\mathsf{C.}\,\frac{2}{3}$$

D.
$$\frac{-2}{3}$$

Answer: A

6. If x > 0, then the minimum value of

$$\frac{11}{3} + 5\left(x - \frac{7}{2}\right)^2$$
 is......

A.
$$\frac{3}{11}$$

B.
$$\frac{11}{3}$$

c.
$$\frac{-3}{11}$$

D.
$$\frac{-11}{3}$$

Answer: B

7. Examine $3y^2 - 8xy - 3x^2 - 29x + 3y - 18$

is re-solvable into two linear factors.

A.
$$\Delta
eq 0$$

$$\operatorname{B.}\Delta^2=0$$

$$\mathsf{C}.\,\Delta=0$$

D.
$$\Delta^3=0$$

Answer: C

8. Solve:x(x+y+z)=6,

$$y(x + y + z) = 12, z(x + y + z) = 18$$

- A. x=0
- B. x=-2
- C. x=3
- D. $x=\pm 1$

Answer: D

9. The area of a rectangular plot is $528m^2$. The length of the plot is one more than twice its breadth. The length and breadth of the plot are

- A. 33m,16m
- B. 32m,15m
- C. 30m,14m
- D. 28m,12m

Answer: A

10. IF $x^2-4x+3=0, x^2-5x+k=0$ have

a common root, then k

- A. 1,3
- B. 4,6
- C. 1,4
- D. 3,6

Answer: B

11. IF one root of $x^2-x-k=0$ is square that of the other, then k=......

- **A.** 1
- $\mathsf{B.}\,2+\sqrt{5}$
- $\mathsf{C.}\,2-\sqrt{5}$
- D. $2\pm\sqrt{5}$

Answer: D

12. IF the sum of the roots of $ax^2 + bx + c = 0$ is equal to the sum of the squares of the roots, then......

A.
$$b^2 + ab = 2ac$$

$$B. a^2 + bc = 2ab$$

$$\mathsf{C.}\,c^2 + ab = 2bc$$

D. None

Answer: A

13. IF $lpha^2=5lpha-6, eta^2=5eta-6, lpha
eq eta$ then

the equation whose roots $\frac{\alpha}{\beta}$, $\frac{\beta}{\alpha}$ is.....

A.
$$x^2 + 5x + 6 = 0$$

B.
$$x^2 + 5x - 6 = 0$$

$$\mathsf{C.}\,6x^2 - 13x + 6 = 0$$

D.
$$6x^2 + 13x + 6 = 0$$

Answer: C

14.
$$\sqrt{a + \sqrt{a + \sqrt{a + \dots \infty}}} = \dots$$

A. a

$$\mathsf{B.} \; \frac{1+\sqrt{4a+1}}{2}$$

$$\mathsf{C.}\,\frac{1-\sqrt{4a}}{2}$$

D. None

Answer: D

15. If the sum of a number and its reciprocal is

$$\frac{17}{4}$$
, then that number is......

A. 4 or
$$\frac{1}{4}$$

B. 4 or
$$\frac{-1}{4}$$

C.
$$-4 \text{ or } \frac{1}{4}$$

D. None

Answer: A

16. IF 3 is one root of $x^2 + kx - 24 = 0$ then

k=.....

A. 3

B. 4

C. 5

D. 6

Answer: C

17.

IF the

roots

of

 $kx^2+x(k-1)+(k-1)=0$ are equal,

then k=.....

A. 1 or
$$\frac{1}{3}$$

B. 1 or
$$\frac{-1}{3}$$

C.
$$-1 \text{ or } \frac{1}{3}$$

D.
$$-1 \text{ or } \frac{-1}{3}$$

Answer: B

18. The roots of $2x^2-3x+5=0$ are

A. Rational are equal

B. Rational are not equal

C. Irrational

D. Not real

Answer: D

19. The condition that the roots of $ax^2+bx+c=0$ may be in the ratio m:n is......

A.
$$mnb^2 = ac(m+n)^2$$

$$\mathtt{B.}\, mnc^2 = ab(m+n)^2$$

$$\mathsf{C.}\, mnb^2 = 2ac(m+n)^2$$

D.
$$mnc^2=2ab(m+n)^2$$

Answer: A

20. The equation whose roots are greater by 1

than those of $2x^2 + 3x + 5 = 0$.

A.
$$2x^2 - x + 4 = 0$$

B.
$$x^2 + 5x + 6 = 0$$

C.
$$2x^2 + 4x + 7 = 0$$

D.
$$3x^2 + 4x + 6 = 0$$

Answer: A

View Text Solution