©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - VGS BRILLIANT MATHS (TELUGU

ENGLISH)

SIMILAR TRIANGLES

Examples

1. In $\triangle \mathrm{ABC}, D E| | B C$ and $\frac{A D}{D B}=\frac{3}{5}{ }^{\prime} \mathrm{AC}=5.6$. Find AE.
2. In the given figure , $L M|\mid A B \mathrm{AL}=\mathrm{x}-3, \mathrm{AC}=2 \mathrm{x}, \mathrm{BM}=\mathrm{x}-$

2 and $B C=2 x+3$, find the value of x.

D Watch Video Solution

3. The diagonals of a quadrilateral $A B C D$ intersect each other at point'O' such that $\frac{A O}{B O}=\frac{C O}{D O}$. Prove that $A B C D$ is a trapezium.
4. In trapezium ABCD, $A B|\mid D C$. E and F are points on non-parallel sides $A D$ and $B C$ respectively such that $E F|\mid A B$.

Show that $\frac{A E}{E D}=\frac{B F}{F C}$.

D Watch Video Solution

5. A Person 1.65 m m tall casts 1.8 m shadow. AT the same instance, a lamp post casts a shadow of 5.4 m .

Find the height of the lamp-post.

6. A man sees the top of a tower in a mirror which is at a distance of 87.6 m from the tower. The mirror is on the ground facing upwards. The man is 0.4 m away from the mirror and his height is 1.5 m . How tall is the tower?

- Watch Video Solution

7. Gopal is worrying that his neighbour can peep into his living room from the top floor of his house. He has decided to build a fence that is high enough to block the view from their top floor window. What should be
the height of the fence? The measurements are given in the figure.

- Watch Video Solution

8. Prove that if the area of two similar triangles are equal, then they are congruent.

- Watch Video Solution

9. $\triangle A B C \sim \triangle D E F$ and their areas are respectively 64 cm^{2} and $121 \mathrm{~cm}^{2}$. IF EF= 15.4 cm ., then find BC .
10. Diagonals of a trapezium ABCD with $A B|\mid D C$. Intersect each other at the point ' O '. IF $A B=2 C D$, find the ratio of areas of triangles $A O B$ and COD.

D Watch Video Solution

11. A folder 25 m long reaches a window of building 20 m above the ground. Determine the distance of the foot of the ladder from the building.
12. $B L$ and $C M$ are medians of a triangle $A B C$ right angled at A. Prove that $4\left(B L^{2}+C M^{2}\right)=5 B C^{2}$.

- Watch Video Solution

13. O^{\prime} is any point inside a rectangle $A B C D$.

Prove that $O B^{2}+O D^{2}=O A^{2}+O C^{2}$

D Watch Video Solution

14. The hypotenuse of a right Triangle is 6 m more than twice of the shortest side. IF the third side is 2 m ,
less than the hypotenuse, find the sides of the Triangle.

D Watch Video Solution

15. $A B C$ is a right Triangle right angled at C. Let $B C=a, C A=b, A B=c$ and let p be the length of the perpendicular fromt C on $A B$ Prove that $p \mathrm{c}=\mathrm{ab}$

- Watch Video Solution

16. $A B C$ is a right Triangle right angled at C. Let $B C=a, C A=b, A B=c$ and let p be the length of the
perpendicular fromt C on $A B$ Prove that
$\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$.

D Watch Video Solution

Try This

1. E and F are points on the sides $P Q$ and $P R$ respectively of $\triangle P Q R$. For each of the following state whether $E F|\mid Q R$ or not?
$\mathrm{PE}=3.9 \mathrm{~cm}$, $\mathrm{EQ}=3 \mathrm{~cm}$,
$\mathrm{PF}=3.6 \mathrm{~cm}$ and $\mathrm{FR}=2.4 \mathrm{~cm}$.
2. E and F are points on the sides $P Q$ and $P R$ respectively of $\Delta P Q R$. For each of the following state whether $E F|\mid Q R$ or not?
$P E=4 \mathrm{~cm}, Q E=4.5 \mathrm{~cm}$,
$\mathrm{PF}=8 \mathrm{~cm}$ and $\mathrm{RF}=9 \mathrm{~cm}$.

- Watch Video Solution

3. E and F are points on the sides $P Q$ and $P R$ respectively of $\triangle P Q R$. For each of the following state whether $E F|\mid Q R$ or not?
$\mathrm{PF}=1.28 \mathrm{~cm}, \mathrm{FR}=2.56 \mathrm{~cm}$,
$P E=1.8 \mathrm{~cm}$ and $\mathrm{EQ}=3.6 \mathrm{~cm}$.
4. In the following figure $D E|\mid B C$.

Find EC.

- Watch Video Solution

5. In the following figure $D E|\mid B C$.

Find AD.
6. Area the triangle similar? IF so, name the criterion of similarity. Write the similarity relation in symbolic form.

!! $\angle G=\angle I$ alt.int.angles for the $\angle F=\angle K$ parallel
lines $G F / / K I$

D Watch Video Solution

7. Area the triangle similar? IF so, name the criterion of similarity. Write the similarity relation in symbolic
form.

- Watch Video Solution

8. Area the triangle similar? IF so, name the criterion
of similarity. Write the similarity relation in symbolic
form.

D Watch Video Solution
9. Area the triangle similar? IF so, name the criterion of similarity. Write the similarity relation in symbolic
form.

D Watch Video Solution

10. Area the triangle similar? IF so, name the criterion of similarity. Write the similarity relation in symbolic
form.

D Watch Video Solution

11. Area the triangle similar? IF so, name the criterion of similarity. Write the similarity relation in symbolic
form.

D Watch Video Solution

12. Area the triangle similar? IF so, name the criterion of similarity. Write the similarity relation in symbolic
form.

D Watch Video Solution

13. Area the triangle similar? IF so, name the criterion of similarity. Write the similarity relation in symbolic
form.

- Watch Video Solution

14. Explain why the triangle are similar and then find the value of x.

(D) Watch Video Solution

15. Explain why the triangle are similar and then find
the value of x.

- Watch Video Solution

16. Explain why the triangle are similar and then find
the value of x.

- Watch Video Solution

17. Explain why the triangle are similar and then find
the value of x.

- Watch Video Solution

18. Explain why the triangle are similar and then find
the value of x.

- Watch Video Solution

19. Explain why the triangle are similar and then find
the value of x.

D Watch Video Solution
20. Explain why the triangle are similar and then find
the value of x.

D Watch Video Solution

21. Explain why the triangle are similar and then find the value of x.

D Watch Video Solution

Exercise 81

1. In $\triangle P Q R, \mathrm{ST}$ is a line such that $\frac{P S}{S Q}=\frac{P T}{T R}$ and also $\angle P S T=\angle P R Q$. Prove that $\triangle P Q R$ is an isosceles Triangle.

D Watch Video Solution
2. In the given figure, $L M|\mid C B$ and $L N| \mid C D$
,Prove that $\frac{A M}{A B}=\frac{A N}{A D}$.

D Watch Video Solution
3. In the given figure, $D E|\mid A C$ and $D F| \mid A E$.

Prove that $\frac{B F}{F E}=\frac{B E}{E C}$.

D Watch Video Solution

4. Prove that a line drawn through the mid-point of one side of a Triangle parallel to another side bisects the third side (Using Basic proportionality theorem).
5. Prove that a line joining the mid points of any two sides of a Triangle is parallel to the third side. (Using

Converse of Basis Proportionality theorem)

D Watch Video Solution

6. In the given figure, $D E|\mid O Q$ and $D F| \mid O R$.

Show that $E F|\mid Q R$.

D Watch Video Solution
7. In the given figure A, B and C are points are $O P, O Q$ and OR respectively such that $A B|\mid P Q$ and $A C|\mid P R$. Show that $B C| \mid Q R$.

D Watch Video Solution

8. ABCD is a trapezium in which $A B|\mid D C$ and its
diagonal intersect each other at point ' O '. Show that
$\frac{A O}{B O}=\frac{C O}{D O}$.

D Watch Video Solution

9. Draw a line segment of length 7.2 cm and divide it in the ratio 5:3.Measure the two parts.

(D) Watch Video Solution

Exercise 82

1. In the given figure $\angle A D E=\angle B$

Show that $\triangle A B C \sim \triangle A D E$.

D Watch Video Solution

2. In the given figure $\angle A D E=\angle B$

IF $A D=3.8 \mathrm{~cm}, \mathrm{AE}=3.6 \mathrm{~cm}, \mathrm{BE}=2.1 \mathrm{~cm}, \mathrm{BC}=4.2 \mathrm{~cm}$, find DE .

D Watch Video Solution

3. The perimeters of two similar triangle are 30 cm and 20 cm respectively. IF one side of the first Triangle is 12 cm . determine the corresponding side of the second Triangle.
4. A girl of height 90 cm is walking away from the base of a lamp-post at a speed of $1.2 m / s e c$. IF the lamppost is 3.6 m above the ground, find the length of her shadow after 4seconds.

D Watch Video Solution

5. CM and RN are respectively the medians of similar triangle $\triangle A B C$ and $\triangle P Q R$. Prove that

$\Delta A M C \sim \Delta P N R$

- Watch Video Solution

6. $C M$ and $R N$ are respectively the medians of similar triangle $\triangle A B C$ and $\triangle P Q R$. Prove that

(D) Watch Video Solution

7. CM and RN are respectively the medians of similar triangle $\triangle A B C$ and $\triangle P Q R$. Prove that

$\Delta C M B \sim \Delta R N Q$

D Watch Video Solution

8. Diagonals $A C$ and $B D$ of a trapezium $A B C D$ with
$A B|\mid D C$ intersect each other at the point ' O 'Using the criterion of similarity for two tri-angles,
show that $\frac{O A}{O C}=\frac{O B}{O D}$.
9. $A B, C D, P Q$ are perpendicular to $B D . A B=x . C D=y$ and
$\mathrm{PQ}=\mathrm{z}$, prove that $\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$.

- Watch Video Solution

10. A flag pole 4 cm tall casts a 6 m , shadow. At the same time, a nearby building casts a shadow of 24 m . How tall is the building?

D Watch Video Solution

11. CD and GH are respectively the bisectors of $\angle A C B$ and $\angle E G F$ such that D and H lie on sides AB and FE
$\triangle A B C \sim \triangle F E G$ then show that
$\frac{C D}{G H}=\frac{A C}{F G}$

D Watch Video Solution

12. CD and GH are respectively the bisectors of $\angle A C B$ and $\angle E G F$ such that D and H lie on sides AB and FE of $\triangle A B C$ and $\triangle F E G \quad$ respectively. IF
$\triangle A B C \sim \triangle F E G$ then show that
$\Delta D C B \sim \Delta H G E$
(D) Watch Video Solution
13. CD and GH are respectively the bisectors of $\angle A C B$ and $\angle E G F$ such that D and H lie on sides AB and FE of $\triangle A B C$ and $\triangle F E G \quad$ respectively. IF
$\triangle A B C \sim \triangle F E G$ then show that
$\Delta D C A \sim \Delta H G F$

D Watch Video Solution

14. AX and DY are altitudes of two similar triangle
$\triangle A B C$ and $\triangle D E F$. Prove that $A X: D Y=A B: D E$
15. Construct a Triangle shadow similar on the given $\triangle A B C$, with its sides equal to $\frac{5}{3}$ of the corresponding sides of the triangle $A B C$.

- Watch Video Solution

16. Construct a Triangle of sides $4 \mathrm{~cm}, 5 \mathrm{~cm}$ and 6 cm .

Then, construct a Triangle similar to it, whose sides are $2 / 3$ of the corresponding sides of the first Triangle.
(D) Watch Video Solution
17. Construct is an isosceles Triangle whise base is 8 cm and altitude is 4 cm , Then, draw another Triangle whose sides are $1^{1} / 2$ times the corresponding sides of the isosceles Triangle.

D Watch Video Solution

Exercise 83

1. Equilateral triangle are drawn on the three sides of
a right angled Triangle. Show that the area of the
Triangle on the hypotenuse is equal to the sum of the areas of triangle on the other two sides.
2. Prove that the area of the equilateral Triangle described on the side of a square is half the area of the equilateral triangle described on its diagonal.

- Watch Video Solution

3. $\mathrm{D}, \mathrm{E}, \mathrm{F}$ are midpoints of sides $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ of $\triangle A B C$.

Find the ratio of areas of $\triangle D E F$ and $\triangle A B C$.

- Watch Video Solution

4. In $\triangle A B C X Y|\mid A C$ and XY divides the Triangle into two parts of equal area. Find the ratio of $\frac{A X}{X B}$.

- Watch Video Solution

5. Prove that the ratio of areas of two similar triangle is equal to the square of the ratio of their corresponding medians.

D Watch Video Solution

6. $\triangle A B C \sim \triangle D E F, \mathrm{BC}=3 \mathrm{~cm}, \mathrm{EF}=4 \mathrm{~cm}$ and area of
$\triangle A B C=54 \mathrm{~cm}^{2}$. Determine the area of $\triangle A B C$.

- Watch Video Solution

7. $A B C$ is a Triangle and $P Q$ is a straight line meeting
$A B$ in P and $A C$ in Q. IF $A P=1 \mathrm{~cm}$ and $B P=3 \mathrm{~cm}, A Q=1 . .5$
$\mathrm{cm}, \mathrm{CQ}=4.5 \mathrm{~cm}$. Prove that area of $\triangle A P Q=\frac{1}{16}$ (area of $\triangle A B C)$.

- Watch Video Solution

8. The areas of two similar triangle are $81 \mathrm{~cm}^{2}$ and $49 \mathrm{~cm}^{2}$ respectively. IF the altitude of the bigger

Triangle is 4.5 cm . Find the corresponding altitude of
the smaller Triangle.

B D C

Q S R

D Watch Video Solution

Exercise 84

1. Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.
2. $A B C$ is a right Triangle right angled at B.Let D and E
be any points on $A B$ and $B C$ respectively. Prove that
$A E^{2}+C D^{2}=A C^{2}+D E^{2}$.

- Watch Video Solution

3. Prove that three times the square of any side of an equilateral Triangle is equal to four times the square of the altitude.

D Watch Video Solution

4. $P Q R$ is a Triangle right angled at P and M is a point on $Q R$ such that $P M \perp Q R$. Show that $P M^{2}=Q M . M R$.

D Watch Video Solution
5. ABD is a Triangle right angle at A and $A C \perp B D$.

Show that (i) $A B^{2}=B C \cdot B D$
(ii) $A D^{2}=B D \cdot C D$
(iii) $A C^{2}=B C \cdot D C$

D Watch Video Solution
6. $A B C$ is an isosceles Triangle right angled at C. Prove that $A B^{2}=2 A C^{2}$.

D Watch Video Solution

7. O^{\prime} is any point in the interior of a triangle $A B C$.
$O D \perp B C, O E \perp A C$ and $O F \perp A B$, Show that
$O A^{2}+O B^{2}+O C^{2} \tilde{n} O D^{2} \tilde{n} O F^{2}=A F^{2}+B D^{2}+C E^{2}$
Cles)
8. A wire attached to vertical pole of height 18 m is 24 m
long and has a stake attached to the other end. How
far from the base of the pole should the stake be driven so that the wire will be taut?

- Watch Video Solution

9. Two poles of heights 6 m and 11 m stand on a plane ground. IF the distance between the feet of the poles is 12 m , find the distance between their tops.
10. In an equilateral Triangle $A B C, D$ is a point on side $B C$ such that $B D=\frac{1}{3} B C$. Prove that $9 A D^{2}=7 A B^{2}$

- Watch Video Solution

11. In the given figure, $A B C$ is a Triangle right angled at
B.D and E are points on $B C$ trisect it. Prove that
$8 A E^{2}=3 A C^{2}+5 A D^{2}$.

(Watch Video Solution

12. $A B C$ is an isosceles triangle right angled at B.

Similar triangles ACD and ABE are constructed on sides $A C$ and $A B$. Find the ratio between the areas of

- Watch Video Solution

Optional Exercise

1. Ravi is 1.82 m tall. He wants to find the height of a
tree in his backyard, From the tree's base he walked
12.20 m along the tree's shadow to a position where
the end of his shadow exactly overlaps the end of the
tree's shadow. He is now 6.10 m from the end of the

D Watch Video Solution
2. The diagonal $A C$ of a parallelogram $A B C D$ intersects

DP at the point Q , where ' P ' is any point on side AB .
Prove that $C Q \times P Q=Q A \times Q D$.

D Watch Video Solution

3. $\triangle A B C$ and $\triangle A M P$ are two right triangle right

 angled at B and M respectively. Prove that (i)$\Delta A B C \sim \Delta A M P$ (ii) $\frac{C A}{P A}=\frac{B C}{M P}$

D Watch Video Solution
4. An aeroplane leaves an airport and flies due north at a speed of 1000 kmph . At the same time another aeroplane leaves the same airport and flies due west at a speed of 1200 kmph . How far apart will the two planes be after $1 \frac{1}{2}$ hour?

- Watch Video Solution

5. In a right Triangle ABC right angled at C.P and Q are points on sides $A C$ and $C B$ respectively which divide these sides in the ratio of 2:1. Prove that

$$
9 A Q^{2}=9 A C^{2}+4 B C^{2}
$$

6. In a right Triangle ABC right angled at C.P and Q are points on sides $A C$ and $C B$ respectively which divide these sides in the ratio of 2:1. Prove that

$$
9 B P^{2}=9 B C^{2}+4 A C^{2}
$$

D Watch Video Solution

7. In a right Triangle ABC right angled at C.P and Q are points on sides $A C$ and $C B$ respectively which divide these sides in the ratio of 2:1. Prove that

$$
9\left(A Q^{2}+B P^{2}\right)=13 A B^{2}
$$

Part A Observation Material To Solve Various Question Given In The Public Examination 1 Mark Question

1. Is a square similar to a rectangle? Justify your answer.

- Watch Video Solution

2. In a $\triangle D E F, \mathrm{~A}, \mathrm{~B}$ and C are mid points of EF, FD and

DE respectively. IF the area of $\triangle D E F$ is $14.4 \mathrm{~cm}^{2}$ then find the area of $\triangle A B C$.
3. In $\triangle P Q R$ and $\triangle X Y Z$ it is given that
$\triangle P Q R \sim \Delta X Y Z, \angle Y+\angle Z=90^{\circ}$ and $\mathrm{XY}: \mathrm{XZ}=3: 4$.
Then find the ratio of sides $\ln \triangle P Q R$.

- Watch Video Solution

4. It is given that $\triangle A B C \sim \triangle D E F$. Is it true to say
that $\frac{B C}{D E}=\frac{A B}{E F}$? Justify your answer.

D Watch Video Solution

5. Find the value of ' x ' in the given figure where
$\triangle A B C \sim \Delta A D E$.

- Watch Video Solution

6. Draw the diagram corresponding to Basis proportionality Theorem.

- Watch Video Solution

7. Srivani walks 12 m due East and turns left and walks
another 5 m , how far is she from the place she started?

8. In $\quad \triangle A B C, L M| | B C$ and

$\frac{A L}{L B}=\frac{2}{3}, A M=5 \mathrm{~cm}$. Find AC

- Watch Video Solution

Part A Observation Material To Solve Various Question Given In The Public Examination 2 Mark Question

1. Given two diferent examples of pair of (i) similar figures. (ii) Non-similar figures.
2. Observe the below figure.

In a $\triangle P Q R$, if $X Y / / Q R$ and $\mathrm{PX}=\mathrm{x}-2, \mathrm{XQ}=\mathrm{x}+5, \mathrm{PY}=\mathrm{x}-3$ and $Y R=x+3$, then find the value of ' x '.
3. Observe the below diagram and find the values of x and y .

D Watch Video Solution

4. ABC is an isosceles Triangle and $\angle B=90^{\circ}$, then show that $A C^{2}=2 A B^{2}$.

D Watch Video Solution

5. In a $\triangle A B C, A D \perp B C$ and $A D^{2}=B D \times C D$, prove that $\triangle A B C$ is an right angled Triangle.

D Watch Video Solution

6. In $\triangle A B C, \overline{P Q}| | \overline{B C}$ and $\mathrm{AP}=3 \mathrm{x}-19, \mathrm{~PB}=\mathrm{x}-5$,

$A Q=x+3, Q C=3 \mathrm{~cm}$. Find x.

- Watch Video Solution

Part A Observation Material To Solve Various Question Given In The Public Examination 4 Mark Question

1. Construct a Triangle of sides $4.2 \mathrm{~cm}, 5.1 \mathrm{~cm}$ and 6 cm .

Then construct a Triangle similar to it, whose sides are
$2 / 3$ of corresponding sides of the first triangle.

D Watch Video Solution

2. Observe the figure given below in $\triangle P Q R$ if
$X Y / / P Q, \frac{P X}{X R}=\frac{5}{3}$ and $Q \mathrm{Q}=7.2$. Then find the length of RY.

3. $A B C$ is a right angled triangle which is right angled at C. Let $A B=c, B C=a, C A=b$ and let p be the length of perpendicular from C and AB . Prove that $c=\frac{a b}{p}$.

- Watch Video Solution

4. Draw a line segment of length 8.1 cm and divide it in
the ratio of $5: 4$. Then measure the divide two parts
(this problem should be done by construction).

- Watch Video Solution

5. Construct a triangle of sides $5 \mathrm{~cm}, 6 \mathrm{~cm}$ and 7 cm then construct a triangle similar to it, whose sides are $2 / 3$ of a corresponding sides of the triangle.

- Watch Video Solution

6. Construct a trianlge of sides $5 \mathrm{~cm}, 6 \mathrm{~cm}$ and 7 cm .

Then construct a triangle similar to it. Whose sides are $1^{1} / 2$ times the corresponding sides of the first triangle.
7. ABCD is a trapezium in which $A B|\mid D C$ the diagonals AC and BD are intersecting at E . IF $\triangle A E D$
is similar to $\triangle B E C$, then prove that $\mathrm{AD}=\mathrm{BC}$.

D Watch Video Solution

8. Diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B|\mid D C$ intersect each other at the point
'O'.Using the criterion of similarity for two tri-angles ,
show that $\frac{O A}{O C}=\frac{O B}{O D}$.

D Watch Video Solution

9. Construct an equilateral triangle XYZ of side 5 cm and construct another triangle similar to $\triangle X Y Z$, such that each of its sides is $4 / 5$ of the sides of $\Delta X Y Z$.

- Watch Video Solution

10. Construct a triangle $P Q R$, where $Q R=5.5 \mathrm{~cm}$,
$\angle Q=65^{\circ}$ and $\mathrm{PQ}=6 \mathrm{~cm}$. Then draw another triangle,
whose sides are $\frac{2}{3}$ times of the corresponding sides of $\triangle P Q R$.

D Watch Video Solution

Creative Question For Cce Model Examination

1. State and prove basic Proportional theorem.

D Watch Video Solution

2. Divide the line segment $A B=6 \mathrm{~cm}$ in the ratio of 3:2.

Explain the construction procedure.
3. In the given figure $B C|\mid D E$ and $\mathrm{AD}=\mathrm{DB}=3.4$ and
$\mathrm{AC}=14$.

So, find $A E$ and $E C$.

D Watch Video Solution
4. In the given $\triangle A B C$, points D and E are mid points of $A B$ and $A C$ and also $B C=6 \mathrm{~cm}$ then find $D E$.

D Watch Video Solution

5. In the given figure, $A B\|C D\| E F$ given $\mathrm{AB}=7.5 \mathrm{~cm}$, $D C=y \mathrm{~cm}, E F=4.5 \mathrm{~cm}, \mathrm{BC}=\mathrm{xcm}$. Calculate the values of x and y.

Observation Bits To Solve Various Bits In The Given In The Public Examination

1. The maximum nuber of possible tangents that can be draw to a circle is
A. Infinity
B. 4
C. 100
D. 2

Answer: A
2. $\triangle A B C \sim \triangle D E F$ and areas of $\triangle A B C, \triangle D E F$ are $64 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$ then the ratio of corresponding sides.
A. $11: 8$
B. 8: 11
C. 3: 11
D. 19:8

Answer: B

- Watch Video Solution

3. Area of a regular hexagon whose side is 'a' cm is.
A. $\left(\frac{\sqrt{3}}{4} a^{2}\right)$
B. $6\left(\frac{3}{4} a^{2}\right)$
C. $\sqrt{6}\left(\frac{3}{4} a^{2}\right)$
D. $6\left(\frac{\sqrt{3}}{4} a^{2}\right)$

Answer: D

- Watch Video Solution

4. IF a man walks 6 m to East and 8 m to North. Now he is at a distance offrom origin point.
A. 10 m
B. 48 m
C. 14 m
D. $2 m$

Answer: A

D Watch Video Solution
5. Example for the sides of a Right angled triangle is
A. 5,6,9
B. 5,12,13
C. 5,11,12
D. $7,8,9$

Answer: B

- Watch Video Solution

6. Height of an equilateral triangle whose sides is 'a'
cm is is
A. $\frac{\sqrt{3}}{2} a$
B. $\frac{2}{\sqrt{3}} a^{2}$
C. $\sqrt{\frac{3}{2}} a$
D. $\frac{\sqrt{3}}{2} a^{2}$

Answer: A

- Watch Video Solution

7. $\triangle A B C \sim \triangle X Y Z, \angle C=60^{\circ}, \angle B=70^{\circ}$ then $\angle X$
=..............
A. $\angle X=70^{\circ}$
B. $\angle X=50^{\circ}$
C. $\angle X=60^{\circ}$
D. $\angle X=10^{\circ}$

Answer: B

- Watch Video Solution

8. $\triangle A B C \sim \triangle D E F$ and their areas are respectively $64 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$ IF EF $=15.4 \mathrm{~cm}$ then $\mathrm{BC}=. \mathrm{cm}$.
A. $\frac{11}{8}$
B. $\frac{8}{11}$
C. $\frac{64}{121}$
D. $\frac{121}{64}$

Answer: B

9. Areas of 2 similar triangles are $100 \mathrm{~cm}^{2}$ and $64 \mathrm{~cm}^{2}$.

IF the median of bigger triangle is 10 cm , then the median of the smaller triangle is
A. 10 cm
B. 6 cm
C. 4 cm
D. 8 cm

Answer: D

10. In Heron's formula , area of triangle
$=\sqrt{s(s-a)(s-b)(s-c)}, \quad \mathrm{s}$ isof the triangle.
A. Perimeter
B. Height
C. Half of perimeter
D. None

Answer: C
11. If $\triangle P Q R \sim \triangle X Y Z$ and $\angle X=30^{\circ}, \angle Q=50^{\circ}$, then $\angle Z=$.
A. 100°
B. $\angle R$
C. both A and B
D. not known

Answer: C

- Watch Video Solution

12. Height of an equilateral triangle whose sides is 'a'
cm is is
A. $\frac{\sqrt{3}}{2} x$
B. $\frac{2}{\sqrt{3}} x$
C. $\frac{\sqrt{3}}{4} x^{2}$
D. $\frac{\sqrt{3}}{2} x^{2}$

Answer: A

- Watch Video Solution

13. From the given figure, ar $(\triangle A D E)$: ar $(\triangle A B C)=$
A. $25: 9$
B. 9:64
C. 25:64
D. 9: 25

Answer: D
14. In $\triangle A B C$, E and F are the points on the sides AB and AC respectively. $\mathrm{IF} \mathrm{AE}=2 \mathrm{~cm}, \mathrm{~EB}=2.5 \mathrm{~cm}, \mathrm{AF}=4 \mathrm{~cm}$, and $\mathrm{FC}=5 \mathrm{~cm}$, then
A. $E F \perp B C$
B. $E F \perp A B$
C. $E F|\mid B C$
D. $E F|\mid A B$

Answer: C
15. $\triangle A B C \sim \triangle P Q R$ and $\angle A+\angle B=115^{\circ}$, then $\angle R$

=.............

A. 55°
B. 65°
C. 75°
D. 45°

Answer: B

- Watch Video Solution

16. When we construct a triangle similar to a given triangle as per given scale factor, we construct on the basis of
A. SSS similarity
B. AAA similarity
C. Basis Proportionality theorem
D. A and C are correct

Answer: C

- Watch Video Solution

17. $\triangle A B C \sim \triangle D E F$ is given then which of the following is correct.
A.
B.
C.
D. None

Answer: A

- View Text Solution

18. In $\triangle A B C \angle C=90^{\circ}, \mathrm{BC}=\mathrm{a}, \mathrm{AB}=\mathrm{c}, \mathrm{AC}=\mathrm{b}$ and ' p ' is length of height drawn from ' C ' to $A B$ thenis correct.

$$
\begin{aligned}
& \text { A. } \frac{1}{p^{2}}=\frac{1}{a^{2}}-\frac{1}{b^{2}} \\
& \text { B. } \frac{1}{p^{2}}=\frac{1}{b^{2}}-\frac{1}{a^{2}} \\
& \text { C. } \frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}} \\
& \text { D. } \frac{2}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}
\end{aligned}
$$

Answer: C
19. In $\triangle A B C \mathrm{AC}=12 \mathrm{~cm}, \mathrm{AB}=5 \mathrm{~cm}$ and $\angle B A C=30^{\circ}$, then area of the $\triangle A B C$ is \qquad
A. $30 \mathrm{~cm}^{2}$
B. $15 \mathrm{~cm}^{2}$
C. $60 \mathrm{~cm}^{2}$
D. $20 \mathrm{~cm}^{2}$

Answer: B

- Watch Video Solution

20. Express ' x ' in terms of a, b and c in the following
figure.

A. $x=\frac{a c}{b+c}$
B. $x=\frac{b c}{b+c}$
C. $x=\frac{b+c}{a c}$
D. $x=\frac{a b}{a+c}$

Answer: A
21. In a right angled triangle with integral sides at least one of its measurements must be.
A. multiple of 3
B. multiple of 9
C. mulitple of 2
D. multiple of 7

Answer: A::C
22. In the figure $\triangle A B C, D E| | B C, \mathrm{AD}=1.5 \mathrm{~cm}, \mathrm{DB}=6$
$\mathrm{cm}, \mathrm{AE}=\mathrm{xcm}, \mathrm{EC}=8 \mathrm{~cm}$, then $\mathrm{x}=$

A. 2.5 cm
B. 2 cm
C. 3 cm
D. 3.5 cm

Answer: B
23. IF $\triangle A B C \sim \Delta D E F$ and area ($\triangle A B C$): area (
$\Delta D E F)=49: 100$.
Then $\mathrm{DE}: \mathrm{AB}=$.
A. $9: 10$
B. 10:7
C. 10:9
D. 7: 10

Answer: B
24. IF $\Delta P Q R \sim \Delta X Y Z, Q R=3 \mathrm{~cm}, \mathrm{YZ}=4 \mathrm{~cm} \Delta P Q R$ area
$=54 \mathrm{~cm}^{2}$. Then $\triangle X Y Z$ area $=$
A. $13.5 \mathrm{~cm}^{2}$
B. $46 \mathrm{~cm}^{2}$
C. $96 \mathrm{~cm}^{2}$
D. $12 \mathrm{~cm}^{2}$

Answer: C

D Watch Video Solution
25. In $\triangle A B C$ with $\angle A=90^{\circ}$, from A, perpendicular
$A D$ is drawn on $B C$, which one of the following is NOT correct?

A. $\triangle A B C \sim \Delta D A C$
B. $\triangle D A C \sim \triangle D B A$
C. $\triangle A B C \sim \Delta D B A$
D. $\triangle A B C \sim \Delta D B A \sim \Delta D A C$

Answer: A::C::D

- View Text Solution

26. The perimeter of two similar triangles are in $4: 9$
ratio, the ratio of their corresponding sides is. \qquad
A. 9: 4
B. 2: 3
C. 16: 81
D. 4:9

Answer: D

- Watch Video Solution

27. The theorem applied to divide the line segment in
the given ratio is \qquad
A. Pythagorus theorem
B. Thales theorem
C. Euclid's theorem
D. Brahmagupta theorem

Answer: B

D Watch Video Solution

28. Reciprocal of $\tan \theta$ is
A. $\sec \theta$

B. $\cot \theta$

C. $\cos e c \theta$
D. $-\tan \theta$

Answer: B

(D) Watch Video Solution

29. $\left(\sec ^{2} \theta-1\right)(\operatorname{cosec} 2 \theta-1)=\ldots$.
A. 0
B. 1
C. $\tan ^{2} \theta$
D. $\cot ^{2} \theta$

Answer: B

D Watch Video Solution

Creative Bits For Cce Model Examination

1. From the figure,$\angle D A C$.

A. 35°
B. 55°
C. 45°
D. 60°

Answer: A
2. The ratio of the corresponding sides of two similar triangles is $5: 3$. Then the ratio of their areas
A. 5: 3
B. 3: 5
C. 6: 10
D. $25: 9$

Answer: D

- Watch Video Solution

3. $\triangle A B C \sim \triangle D E F, B C=4 \mathrm{~cm}, \mathrm{EF}=5 \mathrm{~cm}$ and area of $\triangle A B C=80 \mathrm{~cm}^{2}$ then area of $\Delta D E F=\ldots \ldots \ldots . . . \mathrm{cm}^{2}$
A. $100 \mathrm{~cm}^{2}$
B. $150 \mathrm{~cm}^{2}$
C. $125 \mathrm{~cm}^{2}$
D. $225 \mathrm{~cm}^{2}$

Answer: C

D Watch Video Solution
4. In the given figure, $D E / B C$ and $\mathrm{AD}: \mathrm{DB}=5: 4$, then $\frac{\Delta D E F}{\Delta C F B}=$
A. $\frac{81}{25}$
. 5
B.
C. $\frac{5}{4}$
D. $\frac{25}{81}$

Answer: D
5. In the figure, $\triangle A B C$ is an isosceles triangle right angled at B. Two equilateral triangles are constructed with sides AC and BC . Then $\triangle B C D=$

A. $\triangle A C E$
B. $\triangle A B C$
C. $\frac{1}{2}(\triangle A B C)$
D. $\frac{1}{2}(\triangle A C E)$

Answer: D

- Watch Video Solution

6. In the figure, $D E / B C$ and $A D: D B=1: 2$ then $\triangle A D E: \triangle A B C=$
A. 1: 4
B. $4: 1$
C. 1:9
D. 2:9

Answer: C
7. $\triangle A B C \sim \triangle P Q R, \mathrm{M}$ is the midpoint of BC and N is the midpoint of QR . IF $\triangle A B C=100 \mathrm{~cm}^{2}$ and $\triangle P Q R=144 \mathrm{~cm}^{2}$ and $\mathrm{AM}=4 \mathrm{~cm}$, then $\mathrm{PN}=$
A. 5 cm
B. 4.8 cm
C. 4 cm
D. 3.8 cm

Answer: B
8. In the figure, $\triangle P Q R$ and $\Delta S Q R$ are two triangles on the same base QR. IF PS intersects QR at'O' , then $\Delta P Q R: \Delta S Q R=$
A. PO:SO
B. PQ:QS
C. PR:SR
D. $\mathrm{PQ}: \mathrm{SR}$

Answer: A
9. In $\triangle P Q R, P Q=6 \sqrt{3} \mathrm{~cm}, \mathrm{PR}=12 \mathrm{~cm}$ and $\mathrm{QR}=6 \mathrm{~cm}$, then $\angle Q=$
A. 30°
B. 45°
C. 90°
D. 60°

Answer: B

D Watch Video Solution
10. The lengths of diagonals of a rhombus are 24 cm and 32 cm , then the perimeter of the rhombus
A. 80
B. 120
C. 220
D. 112

Answer: A

(D) Watch Video Solution

11. Which of the following are not the sides of a right triangle?
A. $9 \mathrm{~cm}, 15 \mathrm{~cm}, 12 \mathrm{~cm}$
B. $9 \mathrm{~cm}, 5 \mathrm{~cm}, 7 \mathrm{~cm}$
C. $400 \mathrm{~mm}, 300 \mathrm{~mm}, 500$,
D. $2 \mathrm{~cm}, \sqrt{5} \mathrm{~cm}, 1 \mathrm{~cm}$

Answer: B

- Watch Video Solution

12. In an isosceles $\triangle P Q R, \mathrm{PR}=\mathrm{QR}$ and $P Q^{2}=2 P R^{2}$,
then $\angle R=$
A. 60°
B. 30°
C. 90°
D. 45°

Answer: C

D Watch Video Solution

13. In $\triangle A B C$ the midpoints are D, E and F of the sides
AB, BC and CA , then $\triangle D E F: \triangle A B C$ is
A. 1:1
B. 1:3
C. 1:2
D. 1: 4

Answer: D

D Watch Video Solution
14. In the following figure, $D E / B C$ then $\mathrm{x}=$

A. $\sqrt{3}$
B. $\sqrt{7}$
C. $\sqrt{6}$
D. $\sqrt{5}$

Answer: B

D Watch Video Solution

15. The areas of two similar triangle are $25 \mathrm{~cm}^{2}$ and $36 \mathrm{~cm}^{2}$. IF the median of smaller triangle is 10 m , then the median of the larger triangle is
A. 15 m
B. 18 m

C. 16 m

D. 12 m

Answer: D

D Watch Video Solution

16. IN $\triangle A B C$ AD bisects $\angle A$. $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BD}=8 \mathrm{~cm}$ and $D C=6 \mathrm{~cm}$ then $\mathrm{AC}=. \mathrm{cm}$.
A. 4.5 cm
B. 4 cm
C. 4.8 cm
D. 5.6 cm

D Watch Video Solution

17. $\triangle A B C$ and $\triangle B D E$ are two equilateral triangles
such that D is the midpoint of $B C$. Ratio of the areas of
triangles $\triangle A B C$ and $\triangle B D E$ is
A. 2:1
B. 1:2
C. 4:1
D. 2:3

D Watch Video Solution

18. In a right triangle
A. hypotenuse=Adj side +Opp. Side
B. hypotenuse $=(\text { Adj. side })^{2}+(\text { Opp. side })^{2}$
C. hypotenuse $^{2}=$ Adj.side + Opp.side
D. hypotenuse $^{2}=(\text { Adj. side })^{2}+(\text { Opp. side })^{2}$

Answer: D

- Watch Video Solution

19. IF in two triangles, corresponding sides are in the same ratio then the two triangles are similar, this is calledcriterion.
A. SAS
B. ASA
C. SSS
D. None

Answer: C

- Watch Video Solution

20. IF $\triangle A B C \sim \triangle X Y Z, \angle C=60^{\circ}, \angle B=75^{\circ}$, then
$\angle Z=$
A. 90°
B. 75°
C. 45°
D. 60°

Answer: D

- Watch Video Solution

21. The areas of two similar triangles are $36 \mathrm{~cm}^{2}$ and $64 \mathrm{~cm}^{2}$. IF one side of the first triangle is 6 cm then the corresponding side of the latter triangle is .cm.
A. 12
B. 10
C. 8
D. 6

Answer: C

- Watch Video Solution

22. In the figure, D, E are mid-points of $A B$ and $A C$ then
$\triangle A D E: \square B C E D=$

A. 1: 4
B. 1:3
C. 2:1
D. $3: 2$

D Watch Video Solution

23. The sides $P Q$ and $P R$ of right triangle $P Q R$ are such that $\mathrm{PQ}=5 \mathrm{~cm}, \mathrm{PR}=13 \mathrm{~cm}$. IF $\angle Q=90^{\circ}$ then $\mathrm{QR}=$
A. 8 cm
B. 12 cm
C. 18 cm
D. 10 cm

Answer: B

24. In the figure D, E are the midpoints of the sides $A B$

 and AC . IF $\mathrm{DE}=4 \mathrm{~cm}$, then $\mathrm{BC}=$
A. 4 cm
B. 6 cm
C. 8 cm

D. 12 cm

Answer: C

- Watch Video Solution

25. The height of an equilateral triangle whose side is a units is
A. $\frac{a}{2}$
B. $\frac{\sqrt{3}}{2} a$
C. $\sqrt{3} a$
D. $\frac{\sqrt{3}}{4} a$

Answer: B

D Watch Video Solution

26. In the figure, $D E$ divides $A B$ and $A C$ in the ratio 1:3

IF DE=2.4 cm, then $B C=$
A. 4.8 cm
B. 7.2 cm
C. 9.6 cm
D. 12.0 cm

Answer: B

D Watch Video Solution

27. In the figure, $A B=2.5 \mathrm{~cm}, A C=3.5 \mathrm{~cm}$. IF $A D$ is the bisector of $\angle B A C$, then $\mathrm{BD}: \mathrm{DC}=.$.

A. $5: 3$
B. $3: 5$
C. $5: 7$
D. 2:7

Answer: C

28. If the diagonal of a square is $7 \sqrt{2} \mathrm{~cm}$, then its area
is
A. $28 \mathrm{~cm}^{2}$
B. $14 \sqrt{2} \mathrm{~cm}^{2}$
C. $21 \mathrm{~cm}^{2}$
D. $49 \mathrm{~cm}^{2}$

Answer: D

D Watch Video Solution
29. In the figure $\angle B A D=\angle C A D, \mathrm{AB}=3.4 \mathrm{~cm}$, $B D=4 \mathrm{~cm}, B C=10 \mathrm{~cm}$, then $A C=$

A. 5.1 cm
B. 3.4 cm
C. 6 cm
D. 5.3 cm

Answer: A
30. The diagonals of a rhombus are 24 cm and 32 cm , then its perimeter is
A. 80 cm
B. 45 cm
C. 38.4 cm
D. 56 cm

Answer: A

- Watch Video Solution

31. $\triangle A B C \sim \triangle P Q R, \mathrm{M}$ is the midpoint of BC and N is
the midpoint of Q R. IF $\triangle A B C=100 \mathrm{~cm}^{2}$ and
$\Delta P Q R=144 \mathrm{~cm}^{2}$ and $\mathrm{AM}=4 \mathrm{~cm}$, then $\mathrm{PN}=$
A. 12 cm
B. 4 cm
C. 4.8 cm
D. 5.6 cm

Answer: C
32. All circles are.
A. not similar
B. similar
C. congruent
D. none

Answer: B

- Watch Video Solution

33. All squares are.......
A. congruent

B. not similar

C. similar

D. None

Answer: C

D Watch Video Solution

34. All.............triangles similar.
A. equilateral
B. scalene
C. isosceles
D. none

Answer: A

D Watch Video Solution

35. Two polygons are similar if........
A. corresponding angles are equal
B. corresponding sides are equal
C. both $A \& B$
D. None

- Watch Video Solution

36. The ratio of areas of two similar triangles is equal to the ratio of the squares of corresponding.......
A. sides
B. areas
C. angles
D. none

Answer: A
(D) Watch Video Solution
37. A perpendicular is drawn from the vertex of a right angle to the hypotenuse then triangles on each side of the perpendicular are.
A. similar
B. not similar
C. square
D. none

Answer: A
38. IF one angle of a triangle is equal to one angle of another triangle and the sides including these angles are proportional, the two triangles are similar. This property is. \qquad
A. SSS
B. ASA
C. AAA
D. SAS

Answer: D

39. IF the sides of two similar triangles are in the ratio
$7: 2$ then the ratio of their areas is...........
A. 9:2
B. 8:9
C. $4: 49$
D. $49: 4$

Answer: D

D Watch Video Solution

40. $\triangle A B C \sim \triangle P Q R, \angle A=32^{\circ}, \angle R=65^{\circ}$ then $\angle B$
=.........
A. 64°

B. 73°

C. 83°
D. none

Answer: C

D Watch Video Solution

IF $\triangle A B C \sim \Delta P Q R$ then $\mathrm{y}+\mathrm{z}=. . . .$.
A. $1+3 \sqrt{3}$
B. $4+3 \sqrt{3}$
C. $3 \sqrt{3}+7$
D. $9+\sqrt{3}$

Answer: B

- Watch Video Solution

42. In $\triangle L M N, \angle L=60^{\circ}, \angle M=50^{\circ} \quad$ and $\Delta L M N \sim \Delta P Q R$ then $\angle R=.$.
A. 70°
B. 80°
C. 90°
D. None

Answer: A

D Watch Video Solution
43. The perimeter of $\triangle A B C \sim \Delta L M N$ are 60 cm and 48 cm of $L M=8 \mathrm{~cm}$ then $A B=. c m$.
A. 19
B. 11
C. 7
D. 10

Answer: D

- Watch Video Solution

44. IN $\triangle A B C, B C^{2}+A B^{2}=A C^{2}$ then...........is the

 right angle.A. $\angle B$
B. $\angle A$
C. $\angle C$
D. None

Answer: A

- Watch Video Solution

45. The bisector of $\angle A$ of $\triangle A B C$ intersects BC at D . IF $B D: D C=4: 7$ and $A C=3.5$. Then $A B=.$.
A. 2
B. 8
C. 10
D. 11

Answer: A

- Watch Video Solution

46. $\triangle A B C \sim \triangle P Q R, \angle A=50^{\circ}$ then $\angle Q+\angle R$

=............
A. 120°
B. 110°
C. 130°
D. 80°

Answer: C

D Watch Video Solution
47. The ratio of corresponding sides of two similar triangles is 3:2 then the ratio of their corresponding heights is
A. 3:2
B. 2:3
C. 1: 4
D. $1: 7$

Answer: A
48. In the figure $\angle A B C=.$.

A. 30°
B. 70°
C. 50°
D. 60°

Answer: D
49. In $\triangle A B C, X Y| | B C, \quad \mathrm{AX}: \mathrm{XB}=2: 1 \quad$ then $\triangle A X Y: \triangle A B C=.$.
A. 9: 4
B. 4:9
C. 1:9
D. 2:3

Answer: B

- Watch Video Solution

50. In a square, the diagonal is.............times of its side.
A. $\sqrt{7}$
B. $\sqrt{3}$
C. $\sqrt{2}$
D. 2

Answer: C

- Watch Video Solution

51. The side of an equilateral triangle is 'a' units. Its height is............units.
A. $\frac{\sqrt{3} a}{2}$
B. $\frac{\sqrt{3}}{4} a$
C. $\frac{3}{a} \sqrt{2}$
D. $\frac{3}{2}$

Answer: A

(Watch Video Solution

52. The ratio of the areas of two similar triangles is $1: 4$
then the ratio of their corresponding sides
A. $9: 1$
B. 1: 1
C. $2: 1$
D. 1:2

Answer: D

- Watch Video Solution

53. $\triangle A B C \sim \Delta P Q R$ then $\mathrm{AB}: \mathrm{PQ}=$
A. AC:PR
B. $A C: P Q$
C. AB:PR
D. None

D Watch Video Solution

54. $\triangle A B C$ is an isosceles triangle $\angle C=90^{\circ}$ then
$A B^{2}=$
A. $A B^{2}+B C^{2}$
B. $A C^{2}+B C^{2}$
C. $A C^{2}+2$
D. none

Answer: B
55. Each angle of an equilateral triangle is
A. 60°
B. 80°
C. 100°
D. 70°

Answer: A

- Watch Video Solution

56. Each exterior angle of an equilateral triangle is
A. 180°
B. 130°
C. 110°
D. 120°

Answer: D

(D) Watch Video Solution
57. The longest side in a right triangle is
A. smaller
B. hypotenuse
C. adjacent side
D. none

Answer: B

D Watch Video Solution

58. In the figure, $\triangle A B C, D E / / B C$ and $\frac{A D}{D B}=\frac{3}{5}$, $A C=5.6$ then $A E=. c m$.

A. 1.8
B. 3.5
C. 1.2
D. 2.1

Answer: D
(D) Watch Video Solution
59. From the figure, $A D=$...........cm.

A. 2.4
B. 4.2
C. 8.2
D. 9.2

Answer: A

D Watch Video Solution
60. In the figure, $L M / / C B$ and $L N / / C D$ then
$\frac{A M}{A B}=\ldots$.

A. $\frac{A N}{A D}$

AN
B. $\frac{A}{N D}$
C. $\frac{L C}{N D}$
D. none

Answer: A

(D) Watch Video Solution

61. In a trapezium, diagonals divide each other.
A. proportionally
B. not proportional
C. congruent
D. none

- Watch Video Solution

62. In $\triangle A B C, \mathrm{AB}=\mathrm{BC}=\mathrm{AC}$ then $\angle A=\angle B=\angle C=.$.
A. 70°
B. 60°
C. 80°
D. 90°

Answer: B
(D) Watch Video Solution
63. In the figure, two triangles are similar then
$\mathrm{x}=. \mathrm{cm}$.

A. 9.3
B. 1.5
C. 7.5
D. 8.5

Answer: C
64. In the figure, $x=. c m . ~$

A. 10
B. 12
C. 9
D. 8

Answer: D

- Watch Video Solution

65. $\triangle A B C \sim \triangle P Q R, \angle A+\angle B=100^{\circ}, \angle R=.$.
A. 60°
B. 80°
C. 90°
D. 100°

Answer: B
66. $\triangle A B C \sim \triangle D E F$ and their areas are respectively $64 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$ IF EF= 15.4 cm then $\mathrm{BC}=. \mathrm{cm}$.
A. 10.2
B. 8.7
C. 11.2
D. 10.3

Answer: C

- Watch Video Solution

67. Which of the following are the sides of a right triangle?
A. $10 \mathrm{~cm}, 8 \mathrm{~cm}, 6 \mathrm{~cm}$
B. $12 \mathrm{~cm}, 1 \mathrm{~cm}, 9 \mathrm{~cm}$
C. $3 \mathrm{~cm}, 5 \mathrm{~cm}, 12 \mathrm{~cm}$
D. all

Answer: A

- Watch Video Solution

68. From the figure $y=. c m . ~$

A. 9
B. 10
C. 12
D. 13

Answer: D
69. The diagonal of a trapezium $A B C D$ in which
$A B / / C D$ intersect at'O' . IF AB=2CD then the ratio of areas of triangles AOB and COD is.
A. $14: 1$
B. 1:2
C. 1:9
D. None

Answer: D

70. $\triangle A B C \sim \Delta D E F$ and $2 \mathrm{AB}=\mathrm{DE}$ and $\mathrm{BC}=8 \mathrm{~cm}$ then
$\mathrm{EF}=. \mathrm{cm}$.
A. 16
B. 19
C. 12
D. None

Answer: A

D Watch Video Solution
71. $\triangle A B C \sim \Delta D E F, B C=4 \mathrm{~cm}, E F=5 \mathrm{~cm}$ and area of $\triangle A B C=80 \mathrm{~cm}^{2}$ then area of $\Delta D E F=. \mathrm{cm}^{2}$
A. 105
B. 165
C. 125
D. None

Answer: C

- Watch Video Solution

72. In the figure $\mathrm{PQR}, \angle Q P R=90^{\circ}, \mathrm{PQ}=24 \mathrm{~cm}$ and
$\mathrm{QR}=26 \mathrm{~cm}$ and in $\triangle P K R, \angle P K R=90^{\circ}$ and $\mathrm{KR}=8 \mathrm{~cm}$ then $\mathrm{PK}=$.cm.

A. 10
B. 6
C. 19
D. 8

Answer: B

D Watch Video Solution

73. In the figure, $\mathrm{QA} \perp \mathrm{AB}$ and $\mathrm{PB} \perp \mathrm{AB}$ if $\mathrm{AO}=20 \mathrm{~cm}$,
$\mathrm{BO}=12 \mathrm{~cm}, \mathrm{~PB}=18 \mathrm{~cm}$ then $\mathrm{AQ}=. \mathrm{cm}$.
A. 70

B. 60

C. 40
D. 30

Answer: D
(D) Watch Video Solution
74. In the figure $\angle A=\angle B$ and $\mathrm{AD}=\mathrm{BE}$ then..........

A. $D E / / A B$
B. $D E=A B$
C. $C D=E B$
D. None

Answer: A
75. In the figure, in $\triangle P Q R, Q R / / S T, \frac{P S}{S Q}=\frac{3}{5}$ and $P R=28 \mathrm{~cm}$ then $\mathrm{PT}=. \mathrm{cm}$.

A. 6.5
B. 10.5
C. 8.1
D. 3.3

Answer: B

D Watch Video Solution

76. In an equilateral triangle $A B C, A D \perp B C$ meeting $B C$ in D then $A D^{2}=\ldots \ldots \ldots . .$.
A. $3 B D^{2}$
B. $B D^{2}$
C. $A B^{2}$
D. None

Answer: A

(D) Watch Video Solution

77. In the figure, if $A B / / C D$ then $\mathrm{x}=$.cm.

A. 10
B. 12
C. 7
D. 9

Answer: C

- Watch Video Solution

78. IF the diagonals in a quadrilateral divide each other proportionally then it is
A. square
B. trapezium
C. triangle
D. None

- Watch Video Solution

79. $\mathrm{D}, \mathrm{E}, \mathrm{F}$ are midpoints of sides $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ of $\triangle A B C$.

Find the ratio of areas of $\triangle D E F$ and $\triangle A B C$.
A. 1:9
B. 2: 1
C. 1:2
D. 1: 4

Answer: D
80. In the figure $\frac{P S}{S Q}=\frac{P T}{T R}$ and $\angle P S T=\angle P R Q$ then $\triangle P Q R$ is.................triangle.
A. isosceles
B. equilateral
C. scalene
D. none

Answer: A

D Watch Video Solution
81. Side of a rhombus is 4 cm then its perimeter iscm.
A. 22
B. 21
C. 16
D. 20

Answer: C

- Watch Video Solution

82. In the figure, $x=$

A. 130°
B. 135°
C. 45°
D. 15°

Answer: B
83. Two sides of a right triangle are 3 cm and 4 cm then
the third side iscm.
A. 9
B. 6
C. 6.1
D. 5

Answer: D

84. $\triangle A B C \sim \triangle P Q R, \mathrm{AB}: \mathrm{PQ}=3: 4$ then ar $\triangle A B C:$ ar $\triangle P Q R=. . . .$.
A. $9: 16$
B. 9:1
C. $16: 9$
D. None

Answer: A

D Watch Video Solution
85. IF $8^{2}+15^{2}=k^{2}$ then $\mathrm{k}=$.
A. 16
B. 17
C. 19
D. 20

Answer: B

D Watch Video Solution

86. The angles of a triangle arc in the ratio 1:2:3 then
the largest angle is
A. 70°
B. 60°
C. 90°
D. 20°

Answer: C

D Watch Video Solution

87. Straight angle means
A. 180°
B. 190°
C. 200°
D. 100°

Answer: A

D Watch Video Solution

88. In the figure $, P Q / M N, \frac{K P}{P M}=\frac{4}{13}$ and $\mathrm{KN}=20.4$ cm then $\mathrm{KQ}=$...................cm.

A. 6.3
B. 4.8
C. 1.8
D. 2.8

Answer: B

D Watch Video Solution
89. In the figure $D E / B C$ if $A D=x$,
$A E=x+2, D B=x-2$ and $C E=x-1$ then

A. 4
B. 5
C. 6
D. 7

Answer: A

0

90. $\triangle A B C \sim \Delta D E F$ if $D E: A B=2: 3$ and $\operatorname{ar} \Delta D E F=44$ sq.

Units then $\operatorname{ar} \Delta A B C=\ldots$. sq. units.
A. 90
B. 101
C. 99
D. 110

Answer: C

D Watch Video Solution

