đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - VGS BRILLIANT PHYSICS

(TELUGU ENGLISH)

KINETIC THEORY

Very Short Answer Questions

1. State the law of equipartition of energy.

2. Define mean free path.

D Watch Video Solution

3. How does kinetic throry justify Avogadro's hypothesis and show that Avogadro Number in different gases is same?

D View Text Solution
4. What are the units and dimensions of a specific gas constant?

D Watch Video Solution

5. When does a real gas behave like an ideal gas?

D Watch Video Solution

6. State Boyle`s law and Charles law.

- Watch Video Solution

7. State Dalton's law of partial pressures.

- Watch Video Solution

8. Defined absorptive power of a body . What is
the absorptive power of a perfect black body?

-
 Watch Video Solution

9. Pressure of an ideal gas in container is independent of shape of the container explain.

D Watch Video Solution
10. Explain the concept of degrees of freedom
for molecules of a gas.

D Watch Video Solution
11. What is the expression between the pressure and kinetic energy of a gas molecule ?

D Watch Video Solution

12. The absolute temperature of a gas is increased 3 times. What will be the incraese in rms velocity of the gas molecule?
13. Explain the kinetic interpretation of

Temperature.

D View Text Solution

2. How can specific heat capacity of monoatomic, diatomic and polyatomic gases be explained on the basis of Law of equipartition of Energy?
3. Explain the concept of absolute zero of termerature on the basis of kinetic theory.

D Watch Video Solution

4. Prove that the average kinetic energy of a molecule of an ideal gas is directly proportional to the absolute temperature of the gas.
5. Two thermally insulated vessels 1 and 2 of volumes V_{1} and V_{2} are joined with a valve and
filled with air at temperature $\left(T_{1}, T_{2}\right)$ and pressure $\left(P_{1}, P_{2}\right)$ respectivley. If the valve joining the two vessels is opened, what will be the temperature inside the vessels at equllibrium.
6. What is the ratio of r.m.s. speed of Oxygen and Hydrogen molecules at the same temperature?

- Watch Video Solution

7. Four molecules of a gas have speeds $1,2,3$ and $4 \mathrm{~km} / \mathrm{s}$. Find the rms speed of the gas molecule.
8. If a gas has ' f ' degrees of freedom, find the ratio of C_{p} and C_{v}.

D Watch Video Solution

9. Calculate the molecular K.E of 1 gram of

Helium (Molecular weight 4) at $127^{\circ} \mathrm{C}$. Given

$$
R=8.31 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}
$$

D Watch Video Solution

10. When pressure increases by 2%, what is
the percentage decrease in the volume of a gas, assuming Boyle's law is obeyed ?

D Watch Video Solution

Long Answer Questions

1. Derive an expression for the pressure of an
ideal gas in a container from Kinetic Theory
and hence give Kinetic Interpretation of Temperature.

D View Text Solution

Additional Problems

1. Estimate the fraction of molecular volume to
the actual volume occupied by oxygen gas at

STP. Take the diameter of an oxygen molecule to be 3Å.
2. Molar volume is the volume occupied by 1 mole of any (ideal) gas at standard temperature and pressure (STP : 1 atmospheric pressure, $0^{\circ} C$). Show that it is 22.4 litres.

D Watch Video Solution

3. An air bubble of volume $1.0 \mathrm{~cm}^{3}$ rises from
the bottom of a lake 40 m deep at a temperature of $12^{\circ} \mathrm{C}$. To what volume does it
grow when it reaches the surface, which is at a temperature of $35^{\circ} \mathrm{C}$?

D Watch Video Solution

4. At what temperature is the root mean square speed of an atom in an argon gas cylinder equal to the rms speed of a helium gas atom at $-20^{\circ} C$? (atomic mass of $A r=39.9 u, o f H e=4.0 u)$.
5. From a certain apparatus, the diffusion rate of hydrogen has an average value of $28.7 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. The diffusion of another gas under the same conditions is measured to
have an average rate of $7.2 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. Identify the gas. [Hint : Use Graham's law of diffusion:
$R_{1} / R_{2}=\left(M_{2} / M_{1}\right)^{1 / 2}$, where R_{1}, R_{2}, are diffusion rates of gases 1 and 2 , and M_{1} and
M_{2} their respective molecular masses. The law is a simple consequence of kinetic theory.]
(
