©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS -VGS BRILLIANT PHYSICS

(TELUGU ENGLISH)

WORK , ENERGY AND POWER

Problems

1. A test tube of mass 10 grams closed with a cork of mass 1 gram contains some ether.

When the test tube is heated the cork flies out under the pressure of the ether gas. The test tube is suspended horizontally by a weight less rigid bar of length 5 cm . What is the minimum velcoity with which the cork should
fly out of the tube , so that test tube deseribing a full vertical circle about the point O. Neglect the mass of ether .

- Watch Video Solution

2. A machine gun fires 360 bullets per minute and each bullet travels with a velocity of $600 \mathrm{~ms}^{-1}$. If the mass of each bullet is 5 gm , find the power of the machine gune?

D Watch Video Solution

3. Find the useful power used in pumping 3425
m^{3} of water per hour from a well 8 m deep to
the surface, supposing 40% of the horse
power during pumping is wasted. What is the horse power of the engine ?

D Watch Video Solution

4. A pump is required to lift 600 kg of water per minute from a well 25 m deep and to eject it with a speed of $50 \mathrm{~ms}^{-1}$. Calculate the power required to perform the above task ? $\left(g=10 m \sec ^{-2}\right)$
5. A block of mass 5 kg initially at rest the origin is acted on by a force along the X positive direction represented by $\mathrm{F}=(20+5 \mathrm{x})$

N . Calculate the work done by the force during the displacement of the block from $\mathrm{x}=0$ to $\mathrm{x}=$ 4 m .

- Watch Video Solution

6. A block of mass 5 kg sliding down a smooth inclined plane as shown . The spring arranged near the bottom of the inclined plane has a
force constant $600 \mathrm{~N} / \mathrm{m}$. Find the compression in the spring at the moment the velocity of the block is maximum ?

D View Text Solution

7. A force $F=-\frac{K}{x^{2}}(x \neq 0)$ acts on a particle along the X -axis. Find the work done by the force in displacing the particale from x $=+a$ to $x=+2 a$. Take K as a positive constant.

D Watch Video Solution

8. A force F acting on a particel varies with the position x as shown in the graph. Find the work done by the force in displacing the particle from $x=-a$ to $x=+2 a$?

D View Text Solution

9. Form a height of 20 m above a horizontal
floor, a ball is thrown down with initial velocity $20 \mathrm{~m} / \mathrm{s}$. After striking the floor, the ball bounces to the same height from which it was thrown. Find the coefficient of restitution
for the collision between the ball and the floor $?\left(\mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

D Watch Video Solution

10. A ball falls from a height of 10 m on to a hard horizontal floor and repeatedly bounces . If the coefficient of restitution is $\frac{1}{\sqrt{2}}$, then what is the total distance travelled by the ball before it ceases to rebound?

D Watch Video Solution

11. In a ballistics demonstration a , police officer fires a bullet of mass 50 g with speed $200 m s^{-1}$ on soft plwood of thickness 2 cm .

The bullet emerges with only 10% of its initital kinetic energy. What is the emergent speed of the bullet?

Watch Video Solution

12. Find the total energy of a body of 5 kg mass, which is at a height of 10 m from the earth and falling downwards straightly with a
velocity of $20 \mathrm{~m} / \mathrm{s}$ (Take the acceleration due to gravity as $10 \mathrm{~m} / \mathrm{s}^{2}$)

- Watch Video Solution

Very Short Answer Questions

1. If a bomb ar rest explodes into two pieces, the pieces must travel in opposite directions.

Explain .

D Watch Video Solution
2. State the conditions under which a force does no work.

D Watch Video Solution

3. Define work, power and Energy. State their S.I. Units .
4. State the relation between the kinetic energy and momentum of a body .

D Watch Video Solution

5. State the sign of work done by a force in the following .

Work done by a man in lifting a bucket out of a well by means of a rope tied to the bucket .
6. State the sign of work done by a force in the following .

Work done by gravitational force in lifting a bucket out of a well by means of a rope tied to the bucket.

- Watch Video Solution

7. State the sign of work done by a force in the following .
work done by friction on a body sliding down an inclined plane .
8. State the sign of work done by a force in the following .
work done by gravitational force on a body sliding down an inclined plane.

- Watch Video Solution

9. State the sign of work done by a force in the
following .
work done by an applied force on a body moving on a rough horizontal plane with uniform velocity .

- Watch Video Solution

10. State the sign of work done by a force in
the following .
work done by the resistive force of air on a vibrating pendulum in bringing it to rest .
11. State if each of the following statements is true or false. Give reasons for your answer . Total energy of a system is always conserved, no matter what internal and external forces on the body are present .

D Watch Video Solution

12. State if each of the following statements is
true or false. Give reasins for your answer .

The work done by earth's gravitational force in
keeping the moon in its orbit for its one revolution is zero .

D Watch Video Solution

13. Which physical quantity remains constant
(i) in an elastic collision (ii) in an inelastic collision?

D Watch Video Solution
14. A body freely falling from a certain height ' h ' , after striking a smooth floor rebounds and h rises to a height $\mathrm{h} / 2$. What is the coefficient of restitution between the floor and the body
?

- Watch Video Solution

15. What is the total displacement of freely falling body, after successive rebounds from the same place of ground, before it comes to
stop ? Assume that 'e' is the coefficient of restitution between the body and the ground.
(Watch Video Solution

Short Answer Questions

1. What is potential energy ? Derive an expression for the gravitational potential energy .
2. A lorry and a car moving with the same momentum are brought to rest by the application of brakes, which provide equal retarding force. Which of them will come to rest in shorter time ? Which will come to rest in less distance?

D Watch Video Solution

3. Distinguish between conservation and nonconservative forces with one example each .
4. Show that in the case of one dimensional elastic collision , the relative velocity of approach of two colloding bodies before collision is equal to the relative velocity of separation after collosion .

- Watch Video Solution

5. Show that two equal masses undergo oblique elastic collision will move at right
angles after collision, if the second body initialyy at rest .

- Watch Video Solution

6. Derive an expression for the height attained by a freely falling body after ' n ' number of rebounds from the floor.

D Watch Video Solution

7. Explain the law of conservation of energy .

- Watch Video Solution

Long Answer Questions

1. Develop the notions of work and show that
it leads to work-energy theorem . State the condition under which a force does no work.

- View Text Solution

2. What are collisions ? Explain the possible types of collision ? Develop the theory of one dimensional elastic collision .

D View Text Solution

3. State and prove law of conservation of energy is case of a freely falling body .

D Watch Video Solution

