đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - VGS PUBLICATION-BRILLIANT

UNITS AND MEASUREMENTS

Very Short Answer Questions

1. Distinguish between accuracy and precision.

(Watch Video Solution

2. What are the different types of errors that can occur in a measurement?

- Watch Video Solution

3. How can systematic errors be minimised or eliminated?

- Watch Video Solution

4. Illustrate how the result of a measurement
is to be reported indicating the error involved.

D Watch Video Solution
5. What do you mean by significant figures?

D Watch Video Solution

6. Distinguish between fundamental units and derived units.

- Watch Video Solution

7. Why do we have different units for the same physical quantity?

- Watch Video Solution

8. What is dimensional analysis?

- Watch Video Solution

9. How many orders of magnitude greater is
the radius of the atom as compared to that of the nucleus?

D Watch Video Solution

10. Express unified atomic mass unit In kg .
(D) Watch Video Solution

Short Answer Questions

1. The vernier scale of an instrument has 50 divisions which coincide with 49 main scale divisions. If each main scale division is 0.5 mm , then using the instrument what would be the minimum inaccuracy in the measurement of distance?

D Watch Video Solution

2. In a system of units, the unit of force is

100 N , unit of length is 10 m and the unit of
times is 100s. What is the unit of mass in this system?

D Watch Video Solution

3. The distance of a galaxy from Earth is of the order of $10^{25} \mathrm{~m}$. Calculate the order or magnitude of the time taken by light to reach us from the galaxy.

4. The Earth-moon distance is about 60 Earth

 radius. What will be the approximate diameter of the Earth as seen from the moon?
D Watch Video Solution

5. Three measurements of the time for 20 oscillations of a pendulam give
$t_{1}=39.6 s, t_{2}=39.9$ and $t_{3}=39.5 s$. What is
the precision in the measurements? What is the accuracy of the measurements?
6. 1 calorie=4.2 J where $\mathrm{IJ}=1 \mathrm{~kg} \mathrm{~m} \mathrm{~m}^{2}$. . Suppose we employ a system of units in which the unit of mass is $\alpha \mathrm{kg}$, the unit of length is $\beta \mathrm{m}$ and the unit of time γs, show that a calorie has a magnitude $4.2 \alpha^{-1} \beta^{-2} \gamma^{-2}$ in the new system.

D Watch Video Solution

7. A new unit of length is chosen so that the speed of light in vaccum is $1 m s^{-2}$. If light
takes 8 min and 20 s to cover this distance, what is the distance between the Sun and

Earth in terms of the new unit?

D Watch Video Solution

8. A student measures the thickness of a
human hair using a microscope of magnification 100. He makes 20 observations and find that the average thickness (as viewed
in the microscope) is 3.5 mm . What is the estimate of the thickness of hair?

Watch Video Solution

9. A physical quantity X is related to four measurable quantities $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d as follows.
$X=a^{2} b^{3} c^{5 / 2} d^{-2}$
The percentage error in the measurement of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are $1 \%, 2 \%, 3 \%$ and 4% respectively. What is the percentage error in X ?

- Watch Video Solution

10. The velocity of a body is given by $v=A t^{2}+B t+C$. If v and t are expressed in SI, what are the units of A, B and C ?

D Watch Video Solution

Problems

1. In the expression $P=E t^{2} m^{-5} G^{-2}$ the quantities E,I,m and G denote energy, angular momentum, mass and gravitational constant
respectively. Show that P is a dimensionless quantity.

D Watch Video Solution

2. If the velocity of light c, Plank's constant, h and the gravitational constant G are taken as
fundamental quantities, then express mass,
length and time in terms of dimensions of these quantities.
3. An artifical satellite is revolving around a planet of mass M and radius R, in a circular orbit of radius r. Using dimensional analysis show that the period of the satellite.
$T=\frac{k}{R} \sqrt{\frac{r^{3}}{g}}$
where k is a dimensionless constant and g is acceleration due to gravity.

- Watch Video Solution

4. State the number of significant figures in the following 6729

D Watch Video Solution

5. State the number of significant figures in
the following
0.024

6. State the number of significant figures in

 the following0.08240
(Watch Video Solution
7. State the number of significant figures in
the following
6.032
8. State the number of significant figures in the following
4.57×10^{8}

D Watch Video Solution

9. A stick has a length of 12.132 cm and another
has a length of 12.4 cm . IF the two sticks are
placed end and to what is the total length? IF
the two sticks are placed side by side, what is the difference in their lengths?
10. Each side of a cube is measured to be 7.203 m . What is total surface area?

- Watch Video Solution

11. Each side of a cube is measured to be 7.203
m. What is the volume of the cube, to appropriate significant figures?

D Watch Video Solution

12. The measured mass and volume of a body are 2.42 g and $4.7 \mathrm{~cm}^{3}$ respectively with possible errors 0.01 g and $0.1 \mathrm{~cm}^{3}$. Find the maximum error in density.

D Watch Video Solution

13. The error in measurement of radius of a sphere is 1%. What is the error in the measurement of volume?
14. The percentage error in the mass and speed are 2% and 3% respectively. What is the maximum error in kinetic energy calculated using these quantities?

- Watch Video Solution

15. One mole of an ideal gas at standard temperature and pressure occupies 22.4 L (molar volume). IF the size of the hydrogent molecule is about 1 A . What is the ratio of

- Watch Video Solution

