©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - VGS PUBLICATION-BRILLIANT

CHEMICAL EQUILIBRIUM AND ACIDS-BASES

Very Short Answer Questions

1. State law of chemical equilibrium.

- Watch Video Solution

2. Can equilibrium be achieved between water and its vapours in an open vessel? Explain.
3. Why the concentrations of pure liquids and pure solids are ignored from equilibrium constant expressions?

- Watch Video Solution

4. What is homogeneous equilibrium? Write two homogeneous reactions.

- Watch Video Solution

5. What is heterogenous equilibrium?

Write two heterogeneous reactions.

- Watch Video Solution

6. Write reaction equotient, Q, for each of the following reactions.
a. $3 O_{2}(g) \Leftrightarrow 2 O_{3}(g)$
b. $4 \mathrm{NH}_{3}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
7. Define equilbrium constant.

- Watch Video Solution

8. The equilibrium constant expression for a gas reaction is $K_{c}=\frac{\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{5}}{[\mathrm{NO}]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}}$

Write the balanced chemical equation corresponding to this expression.

- Watch Video Solution

9. Write the relation between K_{p} and K_{c}

- Watch Video Solution

10. Under what conditions for a reaction K_{p} and K_{c} are numerically equal?

- Watch Video Solution

11. Give two chemcial equilibrium reactions for which $K_{p}=K_{c}$

- Watch Video Solution

12. Give two chemical equilibrium reactions for which $K_{p}>K_{c}$.

- Watch Video Solution

13. Give two chemical equilibrium reactions for which $K_{p}<K_{c}$.

- Watch Video Solution

14. Write the equations for the conversion of $K_{c} \mathrm{~d}$ to K_{p} for each of the following reaction.

$$
\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

- Watch Video Solution

15. Write the equations for the conversion of $K_{c} \mathrm{~d}$ to K_{p} for each of the following reaction.
$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

- Watch Video Solution

16. What are the factors which influence the chemical equilibrium?

- Watch Video Solution

17. What is the effect of pressure on gaseous chemical equilibrium?
18. What is the effect of increase in concentration of reactants of a chemical reaction at equilibrium?

- Watch Video Solution

19. Can catalyst disturb the state of equilibrium?

- Watch Video Solution

20. On which factor, the equilibrium constant value changer?

- Watch Video Solution

21. The equilibrium constants of a reaction at $27^{\circ} \mathrm{C}$ and aet $127^{\circ} \mathrm{C}$ are 1.6×10^{-3} and 7.6×10^{-2} respectively. Is the reaction exothermic or

endothermic?

- Watch Video Solution

22. What is the effect of temperature on a system at equilibrium?

- Watch Video Solution

23. For an exothermic reaction, what happens to the equilibrium constant if temperature is raised?

- Watch Video Solution

24. What kind of equilibrium constant can be calculated from ΔG° value for a reaction involving only gases?

- Watch Video Solution

25. What is a Bronsted base? Give one example.

- Watch Video Solution

26. What is Lewis acid? Give one example.

- Watch Video Solution

27. What is meant by ionic product of water?

- Watch Video Solution

28. What is the value of K_{w} ? What are its units?

- Watch Video Solution

29. What is the effect of temperature on ionic product of water?

- Watch Video Solution

30. $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$

The ionic product of water is 1×10^{-14} at $25^{\circ} \mathrm{C}$ and 3.0×10^{-14} at $40^{\circ} \mathrm{C}$
is the above process endothermic or exothermic?

- Watch Video Solution

31. All Bronsted bases are Lewis bases? Explain.

- Watch Video Solution

32. All Lewis acids are not Bronsted acids. Why?

- Watch Video Solution

33. What is degree of ionisation?

- Watch Video Solution

34. What is the measure of strength of an acid and base?

- Watch Video Solution

35. Give two examples of salts whose aqueous solutions are basic.

- Watch Video Solution

36. Give two examples of salts whose aqueous salts are acidic.

- Watch Video Solution

37. What equation is used calculating the pH of an acid buffer?

(D) Watch Video Solution

38. Phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ have three ionization constants $K_{a_{1}}, K_{a_{2}}$ and $K_{a_{3}}$. Among these ionization constants which has a lower value ? Give reason for it.

- Watch Video Solution

39. Ice melts slowly at high altitudes. Explain Why?

- Watch Video Solution

Short Answer Questions

1. Write expression for the equilibrium constant, K_{c}, for each of the following reactions:
(i) $2 \mathrm{NOCl}_{(g)} \leftrightarrow 2 N O_{(g)}+C l_{2(g)}$
(ii) $2 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(s)} \Leftrightarrow 2 \mathrm{CuO}(s)+4 \mathrm{NO}_{2(g)}+O_{2(g)}$
(iii) $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5(a g)}+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOH}_{(a q)}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(a q)}$ (iv) $\mathrm{Fe}_{(a q)}^{+3}+3 \mathrm{OH}_{(a q)}^{-} \Leftrightarrow \mathrm{Fe}(\mathrm{OH})_{3(S)^{+}}$

- Watch Video Solution

2. Derive the relation between K_{p} and K_{c} for the equilibrium reaction.
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$

- Watch Video Solution

3. Define equilibrium constant. Write the equilibrium constant expression for the reaction of

$$
H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)
$$

and its reverse reaction. How are the two equilibrium constants related?
4. How does the values of equilibrium constant predict the extent of reaction?

Watch Video Solution

5. State law of chemical equilibrium? What is K_{c} for the following equilibrium when the equilibrium concentration of each substance is
$\left[\mathrm{SO}_{2}\right]=0.60 \mathrm{M},\left[\mathrm{O}_{2}\right]=0.82 \mathrm{M}$ and $\left[\mathrm{SO}_{3}\right]=1.90 \mathrm{M}$
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$

- Watch Video Solution

6. Why sealed soda water bottle on opening shows the evolution of gas with effervescence?

- Watch Video Solution

7. Explain the significance of : a value of K of about 1.0

- Watch Video Solution

8. Explain the significance of : a very small value of K

Watch Video Solution

9. Explain the significance of : a value of K of about 1.0

- Watch Video Solution

10. Why is it useful to compare Q with K ?

What is the situation when
a. $Q=K$ b. $Q<K \mathrm{c} \cdot Q>K$?

- Watch Video Solution

11. For the reaction
$C l_{2}(g)+F_{2}(g) \Leftrightarrow C l F(g), K_{c}=19.9$ What will happen in a mixture originally containing $\left[\mathrm{Cl}_{2}\right]=0.04 \mathrm{~mol} L^{-}$,

$$
\left[F_{2}\right]=0.2 \mathrm{~mol} L^{-1} \text { and }[C l F]=7.3 \mathrm{~mol} L^{-} ?
$$

- Watch Video Solution

12. Predict which of the following reactionn will have appreciable concentration of reactants and products:

$$
C l_{2}(g) \Leftrightarrow 2 C l(g), K_{c}=5 \times 10^{-39}
$$

- Watch Video Solution

13. Predict which of the following reactionn will have appreciable concentration of reactants and products:

$$
\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{NO}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{BNOCl}(\mathrm{~g}), K_{c}=3.7 \times 10^{8}
$$

14. Predict which of the following reactionn will have appreciable concentration of reactants and products:

$$
\mathrm{Cl}_{2}(g)+2 \mathrm{NO}_{2}(g) \Leftrightarrow 2 \mathrm{NO}_{2} \mathrm{Cl}(\mathrm{~g}), K_{c}=1.8
$$

- Watch Video Solution

15. How to recognise the conditions under which changes in pressure would effect system in equilibrium.

- Watch Video Solution

16. What property of a reaction can be used to predict the effect of a change in temperature on the magnitude of an equilibrium constant?

- Watch Video Solution

17. Does the number of moles of reaction products increase, decrease, or remains same when each of the following equilibrium is subjected to a decrease in pressure by increasing the volume?

$$
P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)
$$

- Watch Video Solution

18. Does the number of moles of reaction products increase, decrease, or remains same when each of the following equilibrium is subjected to a decrease in pressure by increasing the volume?

$$
\mathrm{Cao}(s)+\mathrm{CO}\left(_2\right)(g) \Leftrightarrow \mathrm{CaCO}_{3}(s)
$$

- Watch Video Solution

19. Which of the following reactions will get affected by increasing the pressure? Also mention whether chasnge will cause the reaction to go into forward or backward direction.

$$
\text { (i) } \mathrm{COCl}_{2}(g) \Leftrightarrow \mathrm{CO}(g)+\mathrm{Cl}_{2}(g)
$$

(ii) $C H_{4}(g)+2 S_{2}(g) \Leftrightarrow C S_{2}(g)+2 H_{2} S(g)$
(iii) $\mathrm{CO}_{2}(g)+C(s) \Leftrightarrow 2 C O(g)$
(iv) $4 \mathrm{NH}_{3}+(g)+5 \mathrm{O}_{2}(g) \Leftrightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)$

- Watch Video Solution

20. How will an increase in pressure and affect each of the following equilibria? An increase in temperature
(i) $2 \mathrm{NH}_{3}(g) \Leftrightarrow N_{2}(g)+3 H_{g} \Delta H=932 k J$
(ii) $N_{2}(g)+O(2)(g) \Leftrightarrow 2 N O(g) \Delta H=181 k J$
(iii) $2 \mathrm{O}_{3}(\mathrm{~g}) \Leftrightarrow 3 \mathrm{O}_{2}(\mathrm{~g}) \Delta \mathrm{H}=-285 \mathrm{~kJ}$
(iv) $\mathrm{CaO}(s)+\mathrm{CO}_{2}(g) \Leftrightarrow \mathrm{CaCO}_{3}(s) \Delta H=-176 \mathrm{~kJ}$

- Watch Video Solution

21. The dissociatiion of HI is independent of pressure, while the dissociation of PCl_{3} depends upon the pressure applied explain.
22. Explain the term: Electrolyle

- Watch Video Solution

23. Explain the term: Non-electrolyte

- Watch Video Solution

24. Explain the term: Strong and weak electrolytes

- Watch Video Solution

25. Explain the term: lonic equilibrium

- Watch Video Solution

26. Explain the terms: extent of ionization and on what factors it depends

- Watch Video Solution

27. Explain the terms: dissociation

- Watch Video Solution

28. Explain the terms:ionization

- Watch Video Solution

29. Explain the Arrhenius concept of acids and bases.

- Watch Video Solution

30. What is a conjugate acid base pair? Illustration with examples.
31. Acetic acid is a weak acid. List in order of descending concentration all of the ionic and molecular species present in 1 M aqueous solution of acetic acid.

- Watch Video Solution

32. Show by suitable equations that each of the following species can act as a Bronsted base: $\mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

33. Show by suitable equations that each of the following species can act as a Bronsted base: OH^{-}

- Watch Video Solution

34. Show by suitable equations that each of the following species can act as a Bronsted base: $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

- Watch Video Solution

35. Show by suitable equations that each of the following species can act as a Bronsted base: HPO_{4}^{-2}

- Watch Video Solution

36. The species $\mathrm{H}_{2} \mathrm{O}, \mathrm{HCO}_{3}^{-}, \mathrm{HSO}_{4}^{-}$and NH_{3} can act both as

Bronsted acids and base. Give the corresponding conjugate acid and base for each of them.

- Watch Video Solution

37. Write equation that showss $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$acting both as an acid and as a base.
38. Write the conjuate acid and conjuate base of each of the following: $O H^{-}$

- Watch Video Solution

39. Write the conjuate acid and conjuate base of each of the following: $\mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

40. Write the conjuate acid and conjuate base of each of the following: HCO_{3}^{-}

- Watch Video Solution

41. Write the conjuate acid and conjuate base of each of the following: $\mathrm{H}_{2} \mathrm{O}_{2}$

- Watch Video Solution

42. Identity and label the Bronsted acid and its conjugate base,te Bronsted base and its conjugate acid in each of the following equations.
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Cl}^{-1} \rightarrow \mathrm{HCl}+\mathrm{HSO}_{4}^{-}$

- Watch Video Solution

43. Identity and label the Bronsted acid and its conjugate base,te Bronsted base and its conjugate acid in each of the following equations.

$$
\mathrm{H}_{2} \mathrm{~S}+\mathrm{NH}_{2}^{-} \rightarrow \mathrm{HS}^{-}+\mathrm{NH}_{3}
$$

- Watch Video Solution

44. Identity and label the Bronsted acid and its conjugate base,te Bronsted base and its conjugate acid in each of the following equations. $\mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HCN}+\mathrm{OH}^{-}$

- Watch Video Solution

45. Identity and label the Bronsted acid and its conjugate base,the Bronsted base and its conjugate acid in each of the following equations.
$\mathrm{O}_{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{OH}^{-}$

- Watch Video Solution

46. Classify the species $\mathrm{AlCl}_{3}, \mathrm{NY}_{3}, \mathrm{Mg}^{+2}$ and $\mathrm{H}_{2} \mathrm{O}$ into Lewis acids and Lewis bases and justify your answer?

- Watch Video Solution

47. What are the strengths of conjuate bases of a strong acid and a weak acid?

Watch Video Solution

48. What are the strengths of conjuate acids of a strong base and weak base?

- Watch Video Solution

49. Define ionic product of water. What is the value at room temperature?

- Watch Video Solution

50. Define $\mathrm{pH} . \mathrm{pH}$ cannot be calculated directly from the molar concentration of a weak acid or weak base. Why? Derive an equation for the pH of a weak acid.
51. Write equations to show the step wise ionization of the polyprotic acids $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$.

- Watch Video Solution

52. Explain how acid strength changes among
i. the hydrides of the group elements and
(ii) the hydrides in the same row of the periodic.

- Watch Video Solution

53. Justifyi the statement that water behaves like an acid an also like base on the basis of protonic concept.

- Watch Video Solution

54. What is common ion effect? Illustrate.

- Watch Video Solution

55. Define solubility product. Write solubility product expressiions for the following:
$\mathrm{Ag}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

- Watch Video Solution

56. Define solubility product. Write solubility product expressions for the following:
$Z r_{3}\left(\mathrm{PO}_{4}\right)_{4}$

- Watch Video Solution

57. Give the classification of salts. What types of salts undergo hydrolysis?
58. What must be true of value of ΔG° for a reaction if
$K>1$

- Watch Video Solution

59. What must be true of value of ΔG° for a reaction if $K=1$

- Watch Video Solution

60. What must be true of value of ΔG° for a reaction if
$K<1$

- Watch Video Solution

61. Aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ is acidic. Explain.
62. Aqueous solution of $\mathrm{CH}_{3} \mathrm{COONa}$ is basic. Explain

- Watch Video Solution

63. Give reason that acetic acid is less acidic in sodium acetate solution than in sodium chloride solution.

- Watch Video Solution

64. AgCl is less soluble in AgNO_{3} solution than in pure water. Explain.

- Watch Video Solution

65. Predict whether the following reaction will proceed from left to the right to any measurable extent:
$\mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathrm{Cl}^{-}(a q) \rightarrow$

- Watch Video Solution

66. Aqueous solution of $\mathrm{H}_{2} \mathrm{~S}$ contains $\mathrm{H}_{2} \mathrm{~S}, \mathrm{HS}^{-}, \mathrm{S}^{2-}, \mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{OH}^{-}$ and $\mathrm{H}_{2} \mathrm{O}$ in varying concentrations. Which of these species can act only as a base? Which can act only as an acid? Which can act both as an acid and as a base?

- Watch Video Solution

Long Answer Questions

1. What are equilibrium processes? Explain equilibrium in Physical and Chemical processes with examples.

- Watch Video Solution

2. What is meant by dynamic equilibrium?

Explain with suiitable examples.

Watch Video Solution

3. Give the general characteristics of equilibrium involving physical processes.

- Watch Video Solution

4. What are the important features of equilibrium constant? Discuss any two applications of equilibrium constant.

- Watch Video Solution

5. What is Le Chatelier's principle? Discuss breifly the factors which can influcence the equilibrium.
6. Discuss the application of LE Chatellier's principle for the industrial synthesis of Ammonia and sulphur trioxide.

- Watch Video Solution

7. Dihydrogen gas is obtained from natural gas by partial oxidation with stream as per the following endothermic reaction.
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g})$
a. Write an expression for K_{p} for the above reaction.
b. How will the values o K_{p} and composition of equilibrium mixture be affected by
(i) increasxing the pressure (ii) increasing the temperature (iii) using a catalyst?

- Watch Video Solution

8. Describe the effect of:
a. addition of H_{2}
b. addition of $\mathrm{CH}_{3} \mathrm{OH}$
c. removal of CO
d. removal of $\mathrm{CH}_{3} \mathrm{OH}$ on the equilibrium of the reaction.
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$

- Watch Video Solution

9. At 473 K , equilibrium constant K_{C} for the decompositioni of phosphorus pentachloride, $P C l_{5}$ is 8.3×10^{-3}. If the decomposition is depicted as:
$P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g) \Delta H=124.0 k J \mathrm{~mol}^{-1}$
a. Write an expression of K_{c} for the reaction.
b. What is the value of K_{c} for the reverse reaction at the same temperature?
c. What would be effect on K_{c} if
(i) more $P C l_{5}$ is added (ii) pressure is increased (iii) the temperature in increased.

- Watch Video Solution

10. Explain the concept of Bronsted acids and Bronsted bases. Illustrate the answer with suitable examples.

- Watch Video Solution

11. Explain Lewis acid base theory with suitable example. Classify the following species into Lewis acids and Lewis bases and show how these act as Lewis acid/base.
a. OH^{-}
b. F^{-}
c. H^{+}
d. BCl_{3}

- Watch Video Solution

12. What is degree of ionization is respect of weak acids and weak bases? Derive the relationship between degree of ionization (α) and ionization constant $\left(K_{a}\right)$ for thke weak acid HX.

- Watch Video Solution

13. Define pH. What is buffer solution? Derive Henderson-Hasselbalch equation for calculating the pH of an acid buffer solution.

- Watch Video Solution

14. Explain the term Hydrolysis of salts with examples. Discuss the pH of the following types of salt solutions.
(i) Salts of weak acid and strong base.
(ii) Salts of strong acid and weak base.

- Watch Video Solution

15. What is solubilityy product? Explain the common ion effect on solubility of ionic salts.

- Watch Video Solution

16. Write notes on
(i) Common ion effect
(ii) The relation between $K_{s p}$ and solubility (S) of a sparingly soluble salt BaSO_{4}.

- Watch Video Solution

Numerical Problems

1. Mole of PCl_{5} is heated in a closed vessel of 1 litre capacity. At equilibrium 0.4 moles of chlorine is found. Calculate the equilibrium constant.
2. Nitrogen dioxide froms dinitrogen tetroxide according to the equation $2 \mathrm{NO}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ when 0.1 mole of NO_{2} is added to a 1 litre flask at $25^{\circ} C$, the concentration changes so that at equilibrium $\left[\mathrm{NO}_{2}\right]=0.016 \mathrm{M}$ and $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=0.042 M$.
a. What is the value of the reaction Quotient before any reaction occurs.
b. What is the value of the equilibrium constant for the reaction.

- Watch Video Solution

3. The equilibrium constant for the reaction:
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$ at 725 K
is 6.0×10^{-2}. At equilibrium $\quad\left[H_{2}\right]=0.25 \mathrm{~mol}^{-1} \quad$ and

$$
\left[N O_{3}\right]=0.06 \mathrm{~mol} L^{-1}
$$

Calculate the equilirbium concentration of N_{2}.

- Watch Video Solution

4. At certain temperature K_{c} for the reactioni.
$S O_{2}(g)+\mathrm{NO}_{2}(g) \Leftrightarrow \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})$ is 16. If initiallyone mole each of all the four gases are taken in one litre vessel, what are the equilibrium concentrations of NO and NO_{2} ?

- Watch Video Solution

5. Under certain conditions, the equilibrium constant for the decomposition of $P C l_{5}(g)$ into $P C l_{3}(g)$ and $C l_{2}(g)$ is $0.0211 \mathrm{~mol} L^{-1}$.

What are the equilibrium concentrations of $P C l_{5}, P C l_{3} d$ and $C l_{2}$ if the initial concentration of PCl_{5} was 1.00 M ?

- Watch Video Solution

6. For the reactions $A+B \Leftrightarrow 3 C$ at $25^{\circ} C$, a 3 litre vessel contains $1,2,4$ mole of A, B and C respectively predict the direction of reaction if
a. K_{c} for the reaction is 10
b. K_{c} for the reaction is 15
c. K_{c} for the reaction is 10.66

- Watch Video Solution

7. A mixture of H_{2}, N_{2} and NH_{3} with molar concentration $5.0 \times 10^{-3} \mathrm{~mol} L^{-1}, 4.0 \times 10^{-3} \mathrm{~mol} L^{-1} \quad$ and $\quad 2.0 \times 10^{-3} \mathrm{~mol} L^{-1}$ respectively was prepared and heated to 500 K . The value of K_{c} for the reaction:
$3 H_{2}(g)+N_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$ at this temperature is 60 . Predict whether ammonia tends to form or decompose at this stage of concenration.

- Watch Video Solution

8. At $500 K, K_{p}$ value for the reaction
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$ is 2.5×10^{10}.
Find the value of K_{p} for each of followign reactions at the same temperature.
a. $S O_{2}(g)+1 / 2 O_{2}(g) \Leftrightarrow S O_{3}(g)$
b. $\mathrm{SO}_{3}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$
c. $3 \mathrm{SO}_{2}(\mathrm{~g})+3 / 2 \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 3 \mathrm{SO}_{3}(\mathrm{~g})$

- Watch Video Solution

9. K_{c} for the reaction $N_{2} O(g) \Leftrightarrow 2 \mathrm{NO}_{2}(g)$ is 4.63×10^{-3} at $25^{2} \mathrm{C}$.
a. What is the value of K_{p} at this temperature?
b. At $25^{\circ} \mathrm{C}$, if the partial pressure of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ at equilibrium is 0.2 atm , calculate equilibrium pressure of $\mathrm{NO}_{2}(\mathrm{~g})$

- Watch Video Solution

10. At $27^{\circ} C, K_{p}$ value for the reversible reaction $P C l_{5}(g) \leftrightarrow P C l_{3}(g)+C l_{2}(g)$ is 0.65 , calculate K_{c}.

- Watch Video Solution

11. K_{c} for the reaction
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N_{3}(g)$ is 0.5 at $400 K$ find K_{p}

- Watch Video Solution

12. 1 mole of A and 1 mol3 of B are taken in a 5 litre flask, 0.5 mole of c is formed in the equilibrium of

$$
A+B \Leftrightarrow C+D
$$

What is molar concentration of each species if the reaction is carried with
2 mole A, 1 mole of B in a 5 litre flask at the same temperature.

- Watch Video Solution

13. For the following reaction
$P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g) 0.4$ mole of $C l_{2}$ are taken in a 1 litre flask. If $K_{c}=0.2$ predict the direction in which reaction proceeds.
14. In an equilibrium $A+B \Leftrightarrow C+D, A$ and B are mixed in a vessel at temperature T . The initial concentration of A was twice the initial concentration of B. After the attainment of equilibrium, concentration of C was thrice concentration of B, calculate K_{c}.

- Watch Video Solution

15. A mixture of $\mathrm{SO}_{2}, \mathrm{SO}_{3}$ and O_{2} gases are maintained at equilibrium in 10 litre flask at a temperature at which K_{c} for the reaction $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$ is 100 . At equilibrium.
a. If no of moles of $S O_{3}$ and SO_{2} is flask are same, how many moles of O_{2} are present.
b. If no. of moles of SO_{3} in flask is twice the no. of moles SO_{2} how many moles of O_{2} are present.

- Watch Video Solution

16. For $A+B \Leftrightarrow C$, the equilibrium concentrations of A and B at a temperature are $15 \mathrm{~mol} L^{-1}$. When volume is doubled the reaction has equilibrium concentration of A is $10 \mathrm{~mol} L^{-1}$. Calculate
a. K_{c}
b concentration of C in original equilibrium.

- Watch Video Solution

17. A vessel at 100 K contains CO_{2} with a pressure of 0.5 atm . Some of the CO_{2} is converted into CO on addition of graphite. Calculate the value of K if total pressure at equilibrium is 0.8 atm .

- Watch Video Solution

18. The K_{p} values for the reaction
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{HI}(\mathrm{g})$ at $460^{\circ} \mathrm{C}$ is 49 . If the initial pressure of H_{2} and I_{2} are 0.5 atm respectively, determine the partial pressure of each gases at equilibrium.

(D) Watch Video Solution

19. 0.5 mol of H_{2} and 0.5 mole of I_{2} react in 10 litre flast at $448^{\circ} \mathrm{C}$. The equilibrium constant K_{c} is 50 for
$H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$
a. What is the value of K_{p}
b. Calculate mole of I_{2} at equilibrium.

- Watch Video Solution

20. How much $P \mathrm{Pl}_{5}$ must be added to a one little vessel at $250^{\circ} \mathrm{C}$ in order to obtain a concentration of 0.1 mole of $C l_{2}$ at equilibrium. K_{c} for $P C l(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$ is $0.0414 M$

- Watch Video Solution

21. K_{p} for the reaction
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g)$ at $400^{2} C$ is 1.64×10^{-4}
a. Calculate $K_{c} \mathrm{~d}$
b. Calculate ΔG° value of K_{c} value.

- Watch Video Solution

22. Calculate pH of
a. $10^{-3} \mathrm{MHCl}$
b. $10^{-3} \mathrm{MH}_{2} \mathrm{HO}_{4}$
c. $10^{-6} \mathrm{MHNO}_{3}$
d. $0.02 \mathrm{MH}_{2} \mathrm{SO}_{4}$

- Watch Video Solution

23. Calculate the pH for
a. $0.001 M N a O H$
b. $0.01 \mathrm{MCa}(\mathrm{OH})_{2}$
c. $0.0008 M B a(O H)_{2}$
d. $0.004 M N a O H$
24. The pH of a solution is 3.6. Calculate $\mathrm{H}_{3} \mathrm{O}^{+}$ion concentration.

- Watch Video Solution

25. The pH of a solution is 8.6. Calculate the OH^{-}ion concentration
$p H=8.6$
$p O H=5.4$
$-\log \left[O H^{-}\right]=10^{-5.4}$
$\left[O H^{-}\right]=10^{-6} \times 10^{0.6}=10^{-6} \times$ anto $\log 0.6$
$\left[O H^{-}\right]=3.98 \times 10^{-6}$

- Watch Video Solution

26. What is $\left[\mathrm{H}^{+}\right]$for a solution in which
a. $p H=3$ b. $p H=4.75$ c. $p H=4.4$?
27. A solutioin of $0.005 \mathrm{MH}_{2} \mathrm{SO}_{4}$ is diluted 100 times. Calculate the pH of diluted solution.

- Watch Video Solution

28. A solution of HCl has a $p H=3$. If one ml of it is diluted to 1 litre, what will be the pH of the resulting solution?

- Watch Video Solution

29. What is the pH of $10^{-H} \mathrm{MCl}$?

- Watch Video Solution

30. Calculate the pH of the following basic solutions
a. $\left[O H^{-}\right]=0.05 M$ b. $\left[O H^{-}\right]=2 \times 10^{-4} M$
31.2g of NaOH is dissolved in water to give 1 litre solutioin. What is the pH of the solution?

- Watch Video Solution

32. Calculate the pH of the following solutions.
a. 0.37 g fo $\mathrm{Ca}(\mathrm{OH})_{2}$ dissolved in water to give 500 ml solution
b. 0.3 g of NaOH dissolved in water to give 200 ml solution
c. $0.1825 \% \mathrm{HCl}$ aqueous solution
d. 1 ml of 13.6 M HCl is diluted with water to give 1 litre solution.

- Watch Video Solution

33. How many grams of NaOH are present in 100 ml solution if pH of the solution is 10 ?
34. The value of K_{w} is 9.55×10^{-14} at certain temperature. Calculate the pH of water at this temperature.

- Watch Video Solution

35. Caculate the pH of $10^{-8} \mathrm{mNaOH}$

- Watch Video Solution

36. 150 ml of 0.5 HCl and 100 ml of 0.2 M HCl are mixed. Find the pH of the resulting solution.

- Watch Video Solution

37. Calculate the p of solution obtained by mixign 10 ml fo 0.1 M HCl and 40 ml off $0.2 \mathrm{MH}_{2} \mathrm{SO}_{4}$.
38. 100 ml of $p H=4$ solution is mixed with 100 ml of $p H=6$ solution.

What is the pH of resulting solution?

- Watch Video Solution

39. Equal volumes of M NaOH and 0.3 M KOH are mixed in an experiment.

Find the POH and pH of the resulting solution.

- Watch Video Solution

40.60 ml of 1 M HCl is mixed with 40 ml of 1 M NaOH . What is the pHH of resultant solution?
41. Calculate the pH of a solution which contains 100 ml of 0.1 H HCl and 9.9 ml of 1.0 M NaOH .

- Watch Video Solution

42. What will be the resultant pH when 200 ml of an aqueous solution of HCl having $p H=2$ is mixed with 300 ml of a aqueous solution of NaOH having $p H=12$?

- Watch Video Solution

43. 50 ml of 0.2 M HCl is added to 30 ml of 0.1 MKOH solution. Find the pH of the solution.

- Watch Video Solution

44.40 ml of $0.2 \mathrm{MHNO}_{3}$ when reacted with 60 ml of 0.3 MNaOH gave a mixed solution. What is the pH of the resulting solution?

- Watch Video Solution

45.50 ml of $0.1 \mathrm{MH}_{2} \mathrm{SO}_{4}$ were added to 100 ml of $0.2 \mathrm{MHNO}_{3}$. Then the solution is diluted to 300 ml . What is the pH of the solution?

- Watch Video Solution

46. What is the K_{w} value in the aqueous solution of $p K_{w}=13.725$?

- Watch Video Solution

47. The ionic product of water at $80^{\circ} \mathrm{C}$ is 2.44×10^{-13}. What are the concentrations of hydronium ion and the hydroxide in pure water at $80^{\circ} C$?
48. The ionization constnat for water is 2.9×10^{-14} at $40^{\circ} \mathrm{C}$. Calculate $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right],[\mathrm{OH}], p \mathrm{H}$ and pOH for pure water at $40^{\circ} \mathrm{C}$.

- Watch Video Solution

49. Calculate the pH of
a. 0.002 M acetic acid having 2.3% dissociation.
b. $0.002 \mathrm{MNH}_{4} \mathrm{OH}$ having 2.3% dissociation.

- Watch Video Solution

50. Calculate Ka of acetic acid from equilibrium concentration given below:

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=1.34 \times 10^{-3} \mathrm{M},\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=9.866 \times 10
$$

51. Calculate pH of 0.1 M acetic acid having $K_{a}=1.8 \times 10^{-5}$

- Watch Video Solution

52. The pH of 0.1 M solution of weak mono protic acid is 4.0 . Calculate its $\left[H^{+}\right]$and $K a$.

- Watch Video Solution

53. K_{a} of $0.02 \mathrm{MCH}^{3} \mathrm{COOH}$ is 1.8×10^{-5} Calculate
a. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
b. \% ionization c. pH

- Watch Video Solution

54. Calculate the pH of 0.01 M solution of $\mathrm{CH}_{3} \mathrm{COOH} . \mathrm{K}_{a}$ for $\mathrm{CH}_{3} \mathrm{COOH}$ at 298 K is 1.8×10^{-5}
55. The pH of 0.1 M solution of an organic acid is 4.0. Calculate the dissociation constant of the acid.

- Watch Video Solution

56. The ionization constants of $\mathrm{HF}, \mathrm{HCOOH}$ and HCN at 298 K are $6.8 \times 10^{-4}, 1.8 \times 10^{-4}$ and 4.7×10^{-9} respectively. Calculate the ionization constants of the corresponding conjugate base.

- Watch Video Solution

57. Find the concentration of hydroxide ion in a 0.25 M solution of trimethylamine, a weak base.
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow\left(\mathrm{CH}_{3}\right)_{3}+\mathrm{OH}^{-}, \mathrm{K}_{b}=7.4 \times 10^{-5}$

- Watch Video Solution

58. The 0.005 M monobasic acid has a pH of 5 . What is the extent of ionization?

- Watch Video Solution

59. 50 ml of $0.1 \mathrm{MNH}_{4} \mathrm{OH}, 25 \mathrm{ml}$ of $2 \mathrm{MNH}_{4} \mathrm{Cl}$ were used to make a buffer. What is the pH if $p K_{a}$ is 4.8 ?

- Watch Video Solution

60. The pH of a buffer prepared by mixing 50 ml of $0.2 \mathrm{MCH}_{3} \mathrm{COOH}$ and 25 ml of $\mathrm{CH}_{3} \mathrm{COONa}$ is 4.8. If the $p K_{a}$ is 4.8, what is the strength of $\mathrm{CH}_{3} \mathrm{COONa}$?

- Watch Video Solution

61.50 ml o 0.1 M sodium acetate, 25 ml of 0.2 M acetic acid were added together to form the buffer solution. $p K_{a}$ of $\mathrm{CH}_{3} \mathrm{COOH}$ is 4.8 . Find the
pH of the solution.

- Watch Video Solution

62. When 20 ml of $0.1 \mathrm{MNH}_{4} \mathrm{OH}$ are added to 20 ml of $\mathrm{MNH}_{4} \mathrm{Cl}$ solution, the pH of the buffer formed is 8.2. What is the pK_{b} of $\mathrm{NH}_{4} \mathrm{OH}$?

- Watch Video Solution

63. One litre of buffer solution contains 0.1 mole of acetic acid add 1 mole of sodium acetate. Find its pH if $p \mathrm{~K}_{a}$ of $\mathrm{CH}_{3} \mathrm{COOH}$ is 4.8.

- Watch Video Solution

64. 50 ml of $1 \mathrm{MCH}_{3} \mathrm{COOH}$ solutioin, when added to 50 ml of 0.5 M NaOH gives a solution with a pH value ' X '. Find the valuer of ' $X^{\prime}, p K_{a}$ of acetic acid is 4.8 .
65. The solibility product of Ag cl is $1.6 \times 10^{-10} \mathrm{~mol}^{2} / L^{2}$. What is its solubility?

- Watch Video Solution

66. The solubility product of $\mathrm{Zr}(\mathrm{OH})_{2}$ is $4.5 \times 10^{-17} \mathrm{~mol}^{3} L^{-3}$. What is solubility?

- Watch Video Solution

67. The solubility of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ is $1.3 \times 10^{-4} \mathrm{~mol} L^{-1}$. What is the solubility product?

- Watch Video Solution

68. The solubility of $A_{2} B=2 \times 10^{-3} \mathrm{~mol} L^{-1}$. What is solubility product?

Watch Video Solution

69. The solubility product of a salt $A B=10^{-10} \mathrm{~mol}^{2} L^{-2}$. What is the solubility?

- Watch Video Solution

70. PQ and $R S_{2}$ are two sparingly soluble salts. Their solubility prodcts are equal and each equal to 4.0×10^{-18}. Which salt is more soluble?

- Watch Video Solution

71. In a 0.1 solution, acetic acid is 1.34% ionized. Calculate $\left[\mathrm{H}^{+}\right],\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$and $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]$ in the solution and calculate K_{a}
of acetic acid.

- Watch Video Solution

Additional Questions Answers

1. $P C l_{5}, P C l_{3}$ and $C l_{2}$ are at equilibrium at 500 K and having concentration $1.59 \mathrm{MPCl}_{3}, 1.59 \mathrm{MCL}_{2}$ and $1.41 \mathrm{MPCl}_{5}$. Calculate K_{c} for the reaction $\mathrm{PCl}_{5} \Leftrightarrow \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$

- Watch Video Solution

2. The value of ΔG^{θ} for the phosphorylation of glucose in glycolysis is $13.8 \mathrm{~kJ} / \mathrm{mol}$. Find the value of Kc at 298 K .

- Watch Video Solution

3. What will be the conjugate bases of the following Bronsted acids: $\mathrm{HF}, \mathrm{H}_{2} \mathrm{SO}_{4}$ and HCO_{3}^{-}?

- Watch Video Solution

4. Write the conjugate acids for the following Bronsted bases:
$\mathrm{NH}_{2}^{-}, \mathrm{NH}_{3}$ and HCOO^{-}:

- Watch Video Solution

5. The species: $\mathrm{H}_{2} \mathrm{O}, \mathrm{HCO}_{3}^{-}, \mathrm{HSO}_{4}^{-}$and NH_{3} can act both as Bronsted acids and bases. For each case give the corresponding conjugate acid and conjugate base.

- Watch Video Solution

6. The concentration of hydrogen ion in a sample of soft drink is $3.8 \times 10^{-3} \mathrm{M}$. What is its pH ?

- Watch Video Solution

7. Calculate pH of a $1.0 \times 10^{-8} \mathrm{M}$ solution of HCl .

- Watch Video Solution

8. Calculate the solubility of $A_{2} X_{3}$ is pure water, assuming that neither kind of ion racts with water. The solubility product of $A_{2} X_{3}, K_{s p}=1.1 \times 10^{-23}$

- Watch Video Solution

