©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - VGS PUBLICATION-BRILLIANT

STOICHIOMETRY

Very Short Answer Questions

1. How many number of moles of glucose are present in 540 gms of glucose?

Watch Video Solution
2. Calculate the weight of 0.1 mole of sodium carbonate.
3. How many molecules of glucose are present in 5.23 g of glucose (Molecular weight of glucose 180 u).

- Watch Video Solution

4. Calculate the number of molecules persent in 1.12×10^{-7} c.c. of a gas at STP (c.c.- cubic centimeters $=\mathrm{cm}^{3}$).

- Watch Video Solution

5. The empirical formula of a compound is $\mathrm{CH}_{2} \mathrm{O}$. Its molecular weight is 90. Calculate the molecular formula of the compound.

- Watch Video Solution

6. Balance the following equation by the oxidation number method.

$$
\mathrm{Cr} r_{(s)}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(a q)} \rightarrow \mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3(a q)}+\mathrm{Pb}_{(s)}
$$

7. What volume of H_{2} at STP is required to reduce 0.795 g of CuO to give Cu and $\mathrm{H}_{2} \mathrm{O}$.

- Watch Video Solution

8. Calculate the volume of O_{2} at STP required to completely burn 100 ml . of acetylene.

- Watch Video Solution

9. Now a days it is thought that oxidation is simply decrease in electron density and reduction is increase in electron density. How would you justify this?

- Watch Video Solution

10. What is a redox concept? Give an example.

- Watch Video Solution

11. Calculate the mass percent of the different elements present in sodium sulphate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$.

- Watch Video Solution

12. What do you mean by significant figures?

- Watch Video Solution

13. If the speed of light is $3.0 \times 10^{8} \mathrm{~ms}^{-1}$. Calculate the distance covered by light in 2.00 ns .

- Watch Video Solution

1. The approximate production of sodium carbonate per month is $424 \times 10^{6} \mathrm{~g}$. While that of methyl alcohol is $320 \times 10^{6} \mathrm{gm}$. Which is produced more in terms of moles ?

- Watch Video Solution

2. How much minimum volume of CO at STP is needed to react completely with 0.112 L of O_{2} at 1.5 atm . Pressure and $127^{\circ} \mathrm{C}$ to give CO_{2}.

- Watch Video Solution

3. Chemical analysis a carbon compound gave following percentage composition by weight of the element present, carbon $=10.06 \%$, hydrogen $=0.84 \%$, chlorine $=89.10 \%$. Calculate the empirical formula of the compound.
4. A carbon compound on analysis gave the following percentage composition, carbon 14.5%, hydrogen 1.8%, chlorine 64.46%, oxygen 19.24\%. Calculate the empirical formula of the compound.

- Watch Video Solution

5. Calculate the empirical formula of a compound having percentage composition:

Potassium $(K)=26.57$, Chromium $(C r)=35.36$, Oxygen $(O)=38.07$.
(Given the Atomic weights of K, Cr and O are 39, 52 and 16 respectively)

- Watch Video Solution

6. A carbon compound contains 12.8% Carbon, 2.1% Hydrogen, 85.1% Bromine. The molecular weight of the compound is 187.9. Calculate the molecular formula.
7. 0.188 g of an organic compound having an empirical formula $\mathrm{CH}_{2} \mathrm{Br}$ displaced 24.2 cc of air at $14^{\circ} \mathrm{C}$ and 752 mm pressure. Calculate the molecular formula of the compound. (Aqueous tension at $14^{\circ} \mathrm{C}$ is 12 mm)

- Watch Video Solution

8. Calculate the amount of $90 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ required for the preparation of 420 kg HCl .
$2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl}$

- Watch Video Solution

9. An astronaut receives the energy required in his body by the combustion of 34 g of sucrose per hour. How much oxygen he has to carry along with him for his energy requirement in a day?
10. What volume of CO_{2} is obtained at STP by heating 4 g of CaCO_{3} ?

- Watch Video Solution

11. When 50 gm of a sample of sulphur was burnt in air 4% of the sample was left over. Calculate the volume of air required at STP containing 21% oxygen by volume.

- Watch Video Solution

12. Calculate the volume of oxygen gas required at STP conditions for the complete combustion of 10 cc of methane gas at $20^{\circ} \mathrm{C}$ and 770 mm pressure.

- Watch Video Solution

13. Calculate the volume of H_{2} liberated at $27^{\circ} \mathrm{C}$ and 760 mm of Hg pressure by action by 0.6 g magnesium with excess of dil HCl .

Watch Video Solution

14. Explain the role of redox reactions in titrimetre processes and galvanic cells.

- Watch Video Solution

15. Define and explain molar mass.

- Watch Video Solution

16. What are disproportionate reactions? Give example.

- Watch Video Solution

17. What is comproportionation reactions? Give example.

- Watch Video Solution

18. Determine the empirical formula of an oxide of iron which has 69.9% iron and 30.1% dioxygen by mass.

- Watch Video Solution

19. Calculate the mass of sodium acetate $\left(\mathrm{CH}_{3} \mathrm{COONa}\right)$ required to make 500 ml . of 0.375 molar aqueous solution. Molar mass of sodium acetate is $82.0245 \mathrm{~g} \mathrm{~mol}^{-1}$.

- Watch Video Solution

20. What is the concentration of sugar $\left(C_{12} H_{22} O_{11}\right)$ in $\mathrm{mol} L^{-1}$ if 20 g are dissolved in enough water to make a final volume upto 2L?
21. How many significant figures are present in the following ?
i) 0.0025 , ii) 208 , iii) 5005 , iv) 126,000 v) 500.0 , vi) 2.0034

- Watch Video Solution

22. Round up the following upto three significant figures:
i) 34.216 , ii) 10.4107 , iii) 0.04597 , iv) 2808

- Watch Video Solution

23. Calculate the molarity of a solution of ethanol in water in which the mole fraction of ethanol is 0.040 (assume the density of water to be one). Use the data given in the following table to calculate the molar mass of
naturally occuring argon isotopes:

Isotope	Isotopic molar mass	Abundance
${ }^{*} \mathrm{Ar}$	$35.96755 \mathrm{~g} \mathrm{~mol}^{-1}$	0.337%
${ }^{36} \mathrm{Ar}$	$37.96272 \mathrm{~g} \mathrm{~mol}^{-1}$	0.063%
${ }^{* 6} \mathrm{Ar}$	$39.9624 \mathrm{~g} \mathrm{~mol}^{-1}$	99.600%

- Watch Video Solution

24. A welding fuel gas contains carbon and hydrogen only. Burning a small sample of it in oxygen gives 3.38 g carbon dioxide, 0.690 g of water and no other products. A volume of 10.0 L (measured at STP) of this welding gas is found to weigh 11.6 g . Calculate (i) empirical formula, (ii) molar mass of the gas, and (iii) molecular formula.

- Watch Video Solution

25. Calcium Carbonate reacts with aqueous HCl to give CaCl_{2} and CO_{2} according to the reaction,
$\mathrm{CaCO}_{3}(s)+2 \mathrm{HCl}(a q) \rightarrow \mathrm{CaCl}_{2}(a q)+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l)$

What mass of CaCO_{3} is required to react completely with 25 ml of 0.75 M HCl?

- Watch Video Solution

26. Chlorine is prepared in the laboratory by treating manganese dioxide (MnO_{2}) with aqueous hydrochloric acid according to the reaction $4 \mathrm{HCl}(\mathrm{aq})+\mathrm{MnO}_{2}(s) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{MnCl}_{2}(a q)+\mathrm{Cl}_{2}(g)$ How many grams of HCl react with 5.0 g of manganese dioxide ?

- Watch Video Solution

27. To 50 ml . of $0.1 \mathrm{~N} \mathrm{Na} a_{2} \mathrm{CO}_{3}$ solution 150 ml . of $\mathrm{H}_{2} \mathrm{O}$ is added. Then calculate the normality of resultant solution.

- Watch Video Solution

28. Calculate the volume of $0.1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ required to neutralise 200 ml . of

0.2 N NaOH solution.

It is an acid base neutralisation reaction.
Hence, at the neutralisation point.
Number of equivalents of acid = Number of equivalents of base.

- Watch Video Solution

29. Calculate normality of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solutions if 50 ml of it completely neutralise 250 ml . of $0.1 \mathrm{~N} \mathrm{Ba}(\mathrm{OH})_{2}$ solutions.

- Watch Video Solution

30. Calculate the volume of $0.1 \mathrm{MKMnO}_{4}$ required to react with 100 ml .
of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$.
$2 \mathrm{H}_{2} \mathrm{O}$ solution in the presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$.
31. Assign oxidation number to the underlined elements in each of the following species.
a) $\mathrm{NaH}_{2} \underline{\mathrm{P}} \mathrm{O}_{4}$
b) NaHSO_{4}
c) $\mathrm{H}_{4} \underline{P_{2}} \mathrm{O}_{7}$
d) $\mathrm{K}_{2} \mathrm{Mn}_{4}$
e) $\mathrm{Ca} \underline{\mathrm{O}_{2}}$
f)Naun $\partial \in e(B) H_{4}$
g) $\mathrm{H}_{2} \underline{S_{2}} \mathrm{O}_{7}$
h) $\mathrm{KAlSO}_{4} 2 \cdot 12 \mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

32. What are the oxidation number to the underlined elements in each of the following and how do you rationalise your results?
a) $K \underline{I_{3}}$ b) $H_{2} \underline{S_{4}} O_{6}$ c) $\underline{F e_{3}} O_{4}$

- Watch Video Solution

33. Justify that the following reactions are redox reactions.
a) $\mathrm{CuO}(s)+\mathrm{H}_{2}(g) \rightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(g)$
b) $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{g}) \rightarrow 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{CO}_{2}(\mathrm{~g})$
c) $4 \mathrm{BCl}_{3}(g)+3 \mathrm{LiAlH}_{4}(s) \rightarrow 2 \mathrm{~B}_{2} \mathrm{H}_{6}(g)+3 \mathrm{LiCl}(s)+3 \mathrm{AlCl}_{3}(s)$
d) $2 K(s)+F_{2}(g) \rightarrow 2 K^{+} F^{-}(s)$
e) $4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

- Watch Video Solution

34. Fluorine reacts with ice and results in the change.
$\mathrm{H}_{2} \mathrm{O}(s)+\mathrm{F}_{2}(g) \rightarrow \mathrm{HF}(g)+\mathrm{HOF}(g)$
Justify that this reaction is a redox reaction.

- Watch Video Solution

35. Calculate the oxidation number of sulphur, chromium and nitrogen ion $\mathrm{H}_{2} \mathrm{SO}_{5}, \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ and NO_{3}^{-}. Suggest structure of those compounds.

- Watch Video Solution

36. Write the formulae for the following compounds.
a) Mercury (II) chloride
b) Nickel (II) sulphate
c) Tin (IV) oxide
d) Thallium (I) sulphate
e) Iron (III) sulphate
f) Chromium (III) oxide.

- Watch Video Solution

37. Suggest a list of the substances where carbon exhibit oxidation states from -4 to +4 and nitrogen from -3 to +5 .

(Watch Video Solution

38. While sulphue dioxide and hydrogen peroxide and act as oxidising as well as reducing agents in their reactions, ozone and nitric acid act only as oxidants. Why?

- Watch Video Solution

39. Consider the reactions
a) $6 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(a q)+6 \mathrm{O}_{2}(g)$
b) $\mathrm{O}_{3}(g)+\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{I}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+2 \mathrm{O}_{2}(g)$

Why it is more appropriate to write these reaction as
a) $6 \mathrm{CO}_{2}(g)+12 \mathrm{H}_{2} \mathrm{O}(I) \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+6 \mathrm{O}_{2}(g)$
b) $\mathrm{O}_{3}(g)+\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{I}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{O}_{2}(g)+\mathrm{O}_{2}(g)$

Also suggest a technique to investigate the path of the above (a) and (b) redox reactions.

D Watch Video Solution

40. The compound $A g F_{2}$ is unstable compound. However, if formed, the compound acts as a very strong oxidising agent. Why ?

- Watch Video Solution

41. Whenever a reaction between an oxidising agent and a reducing agent is carried out, a compound of lower oxidation state is formed if the
reducing agent is in excess and a compound of higher oxidation state is formed if the oxidising agent is in excess. Justify this statement giving three illustrations.

- Watch Video Solution

42. How do you count the following observations?
a) Though alkaline potassium permanganate and acidic potassium permanganate both are used as oxidants, yet in the manufacture of benzoic acid from toluene we use alcoholic potassium permanganate as an oxidant. Why ? Write balanced redox equation for the reaction.
b) When concentrated sulphuric acid is added to inorganic mixture containing chloride, we get colourless pungent smelling gas HCl , but if the mixture contains bromide then we get red vapour of bromine. Why ?

- Watch Video Solution

43. Identify the substance oxidised, reduced, oxidising agent and reducing agent for each of the following reactions :
a) $2 \mathrm{AgBr}(s)+\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{2}(a q) \rightarrow 2 \mathrm{Ag}(s)+2 \mathrm{HBr}(a q)+\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}(a q)$
b)
$\mathrm{HCHO}(l)+2\left[\mathrm{Ag}_{\left.\left(\mathrm{NH}_{3}\right)_{2}\right)^{+}(a q)+3 \mathrm{OH}^{-}(a q) \rightarrow 2 \mathrm{Ag}(s)+\mathrm{HCOO}^{-}(a q), ~}^{\text {q }}\right.$
c)
$\mathrm{HCHO}(l)+2 \mathrm{Cu}^{2+}(a q)+5 \mathrm{OH}^{-}(a q) \rightarrow \mathrm{Cu}_{2} \mathrm{O}(s)+\mathrm{HCOO}^{-}(a q)+3 \mathrm{H}$
d) $\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{l})+2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
e) $\mathrm{Pb}(\mathrm{s})+\mathrm{PbO}_{2}(s)+2 \mathrm{H}_{2} \mathrm{SO}_{4}(a q) \rightarrow 2 \mathrm{PbSO}_{4}(s)+2 \mathrm{H}_{2} \mathrm{O}(l)$

- Watch Video Solution

44. Consider the reactions
$2 S_{2} O_{3}^{2-}(a q)+I_{2}(s) \rightarrow S_{4} O_{6}^{2-}(a q)+2 I^{-}(a q)$
$\mathrm{S}_{2} \mathrm{O}_{3}^{2-}(a q)+2 \mathrm{Br}_{2}(l)+5 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{SO}_{4}^{2-}(a q)+4 \mathrm{Br}^{-}(a q)+10 \mathrm{H}^{+}(a q$
Why does the same reductant, thiosulphate react differently with iodine and bromine ?

- Watch Video Solution

45. Justify giving reactions that among halogens, fluorine is the best oxidant and among hydrohalic compounds, hydroiodic acid is the best reductant.

- Watch Video Solution

46. Why does the following reaction occur ?
$\mathrm{XeO}_{6}^{4-}(a q)+2 \mathrm{~F}^{-}(a q)+6 \mathrm{H}^{+}(a q) \rightarrow \mathrm{XeO}_{3}(g)+\mathrm{F}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(l)$ What conclusion about the compound $\mathrm{Na}_{4} \mathrm{XeO}_{6}$ (of which XeO_{6}^{4-} is a part) can be drawn from the reaction.

- Watch Video Solution

47. Consider the reactions :
a)
$\mathrm{H}_{3} \mathrm{PO}_{2}(a q)+4 \mathrm{AgNO}_{3}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}(a q)+4 \mathrm{Ag}(s)+4 \mathrm{HNC}$
b)
$\mathrm{H}_{3} \mathrm{PO}_{2}(a q)+2 \mathrm{CuSO}_{4}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}(a q)+2 \mathrm{Cu}(s)+\mathrm{H}_{2} \mathrm{SO}$
c)
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}(\mathrm{l})+2\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}(a q)+3 \mathrm{OH}^{-}(a q) \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}(a q)+$
d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}(l)+2 \mathrm{Cu}^{2+}(a q)+5 \mathrm{OH}^{-}(a q) \rightarrow$ no change is observed.

What inference do you draw about the behaviour of Ag^{+}and Cu^{2+} from these reactions?

- Watch Video Solution

48. Balance the following redox reaction in basic medium by ion-electron method:
$\mathrm{MnO}_{4(a q)}^{-}+1_{(a q)}^{-} \rightarrow \mathrm{MnO}_{2(s)}+1_{2(s)}$

- Watch Video Solution

49. Balance the following equations in basic medium by ion-electron method and oxidation number methods and identify the oxidising agent and the reducing agent.
(a) $\mathrm{P}_{4}(\mathrm{~s})+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{PH}_{3}(g)+\mathrm{HPO}_{2}^{-}(a q)$
(b) $\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{I})+\mathrm{ClO}_{3}^{-}(a q) \rightarrow \mathrm{NO}(g)+\mathrm{Cl}^{-}(g)$
(c) $\mathrm{Cl}_{2} \mathrm{O}_{7}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}_{2}(a q) \rightarrow \mathrm{ClO}_{2}^{-}(a q)+\mathrm{O}_{2}(g)+\mathrm{H}^{+}$

- Watch Video Solution

50. What sorts of information can you draw from the following reaction ?
$(C N)_{2}(g)+2 \mathrm{OH}^{-}(a q) \rightarrow \mathrm{CN}^{-}(a q)+\mathrm{CNO}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$

- Watch Video Solution

51. The Mn^{3+} ion is unstable solution and undergoes disproportionation to give $\mathrm{Mn}^{2+}, \mathrm{MnO}_{2}$ and H^{+}ion. Write balanced ionic equation for the reaction.

- Watch Video Solution

52. Consider the elements $\mathrm{Cs}, \mathrm{Ne}, \mathrm{I}$ and F .
a) Identify the element that exhibits only negative oxidation state.
b) Identify the element that exhibits only positive oxidation state.
c) Identify the element that exhibit both positive and negative oxidation states
d) Identify the element which neither exhibit the negative nor does the positive oxidation state.

- Watch Video Solution

53. Chlorine is used to purify drinking water. Excess of Chlorine is harmful. The excess of Chlorine is removed by treating with sulphur dioxide. Present a balanced equation for this redox change taking place in water.

- Watch Video Solution

54. Refer to the periodic table given in your book and now answer the following questions.
a) Select the possible non metals that can show disproportionation reaction
b) Select the metals that can show disproportionation

- Watch Video Solution

55. In Ostwal's process for the manufacture of nitric acid the first step involves the oxidation of ammonia gas by oxygen gas to give nitric oxide gas and steam. What is the maximum weight of nitric oxide that can be obtained starting only with 10.00 g of ammonia and 20.00 g of oxygen.

- Watch Video Solution

56. i) Arrange the following metals in the order in which they displace each other from the solution of their salts.
$\mathrm{Al}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{Mg}$ and Zn
ii) Calculate the molarity of sodium carbonate in a solution prepared by dissolving 5.3 g in enough water to form 250 ml of the solution.

- Watch Video Solution

1. Write the balanced ionic equation which represents the oxidation of iodine $\left(I^{-}\right)$ion by per-manganate ion in basic medium to give iodine (I) and manganese dioxide $\left(\mathrm{MnO}_{2}\right)$.

- Watch Video Solution

2. Write the balanced ionic equation for the oxidation of sulphite ions to sulphate ions in acid medium by permanganate ion.

- Watch Video Solution

3. Oxalic acid is oxidised by permanganate ion in acid medium of Mn^{2+} balance the reaction by ion-electron method.

- Watch Video Solution

4. Phosphorus when heated with NaOH solution gives Phosphine $\left(\mathrm{PH}_{3}\right)$ and $\mathrm{H}_{2} \mathrm{PO}_{2}^{-}$. Give balanced equation.

- Watch Video Solution

5. Balance the following equation.
$\mathrm{Cr}(\mathrm{OH})_{3}+\mathrm{IO}_{3}^{-} \xrightarrow{\mathrm{OH}^{-}} \mathrm{I}^{-}+\mathrm{CrO}_{4}^{2-}$

- Watch Video Solution

6. Balance the following equation by the oxidation number method.
$\mathrm{MnO}_{4}^{2-}+\mathrm{Cl}_{2} \rightarrow \mathrm{MnO}_{4}^{2-}+\mathrm{Cl}^{-}$

- Watch Video Solution

7. Explain the different types of redox reactions.
8. State the law of definite proportions. Suggest one problem to understand the law by working out that problem.

- Watch Video Solution

9. How are the end points of titrations detected in the following reactions ?
a) MnO_{4}^{-2} oxidises Fe^{2+}
b) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ oxidises Fe^{2+}
c) Cu^{+2} oxidises I^{-}

- Watch Video Solution

10. Calculate the amount of Carbondioxide that could be produced when
i) 1 mole of carbon is burnt in air
ii) 1 mole of carbon is burnt in 16 g of dioxygen
iii) 2 moles of carbon are burnt in 16 g of dioxygen.

(D) Watch Video Solution

11. Dinitrogen and dihydrogen react with each other to produce ammonia according to the following chemical equation.
$\mathrm{N}_{2}(g)+\mathrm{H}_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(g)$
i) Calculate the mass of ammonia produced if $2.00 \times 10^{3} g$ dinitrogen reacts with $1.00 \times 10^{3} \mathrm{~g}$ of dihydrogen.
ii) Will any of the two reactants remain unreacted?
iii) If yes, which one and what would be its mass?

- Watch Video Solution

12. Assign oxidation number to the underlined elements in each of the following species.
a) $\mathrm{NaH}_{2} \underline{\mathrm{P}} \mathrm{O}_{4}$
b) $\mathrm{NaH} \mathrm{SO}_{4}$
c) $\mathrm{H}_{4} \underline{P_{2}} \mathrm{O}_{7}$
d) $\mathrm{K}_{2} \mathrm{Mn}_{4}$
e) $\mathrm{Ca} \underline{\mathrm{O}_{2}}$
f)Naun $\partial \in e(B) H_{4}$
g) $\mathrm{H}_{2} \underline{\mathrm{~S}_{2}} \mathrm{O}_{7}$
h) $\mathrm{KAlSO}_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O}$
13. What are the oxidation numbers of the underlined elements in each of the following and how do you rationalise your results?
a) $\mathrm{H}_{2} \underline{S}_{4} \mathrm{O}_{6}$
b) $\underline{F} e_{3} O_{4}$
c) $\underline{C} H_{3} \underline{C} H_{2} \mathrm{OH}$
d) $\underline{C} H_{3} \underline{\mathrm{COOH}}$

- Watch Video Solution

Additional Questions Answers

1. Calculate molecular mass of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ molecule.

- Watch Video Solution

2. A compound contains 4.07% hydrogen, 24.27% carbon and 71.65% chlorine. Its molar mass is 98.96 g . What are its empirical and molecular formulas?
3. Calculate the amount of water (g) produced by the combustion of 16 g of methane.

- Watch Video Solution

4. How many moles of methane are required to produce $22 \mathrm{~g} \mathrm{CO}_{2}(\mathrm{~g})$ after combustion?

- Watch Video Solution

5. 50.0 kg of $\mathrm{N}_{2}(\mathrm{~g})$ and 10.0 kg of $\mathrm{H}_{2}(\mathrm{~g})$ are mixed to produce $\mathrm{NH}_{2}(\mathrm{~g})$. Calculate the $\mathrm{NH}_{2}(g)$ formed. Identify the limiting reagent in the production of NH_{3} in this situation.
6. A solution is prepared by adding 2 g of a substance A to 18 g of water.

Calculate the mass per cent of the solute.

Watch Video Solution

7. Calculate the molarity of NaOH in the solution prepared by dissolving its 4 g in enough water to form 250 mL of the solution.

- Watch Video Solution

8. The density of 3 M solution of NaCL is $1.25 \mathrm{gmL} L^{-1}$. Calculate molality of the solution.

- Watch Video Solution

9. Calculate the normality of oxalic acid solutions containing 6.3 g of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in 500 ml of solutions.
10. Calculate the mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ required to prepare 250 ml of 0.5 N solution.

- Watch Video Solution

