©゙"doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - VGS PUBLICATION-BRILLIANT

THERMODYNAMICS

Very Short Answer Questions

1. What is the information given by the terms thermodynamics?

- Watch Video Solution

2. What is the relationship between the laws of thermodynamics and equilibrium state?

- Watch Video Solution

3. Define a system. Give an example.

- Watch Video Solution

4. The wall is adiabatic and $\Delta U=W_{a d}$. What do you understand about the heat and work with respect to the system?
5. The system loses ' q ' amount of heat though no work is done on the system. What type of wall does the system have?

- Watch Video Solution

6. Work is done by the system and ' q ' amount of beat is supplied the system. What type of system would it be?

D Watch Video Solution

7. What is the work done in the free expansion of an ideal gas in reversible and irreversible processes?
8. From the equation $\Delta U q-p_{e x} \Delta V$, if the volume is constant what is the value of ΔU ?

- Watch Video Solution

9. In isothermal free expansion of an ideal gas find the value of q and ΔU.

D Watch Video Solution

10. In isothermal irreversible change of ideal gas what is the value of q ?
11. In isothermal reversible change of an ideal gas, what is the value of q ?

D Watch Video Solution

12. For an adiabatic change of in an ideal gas what is the relationship between its ΔU and W (adiabatic)?

- Watch Video Solution

13. State the first law of thermodynamics.
14. What are the sign conventions of the work done on the system and work done by the system?

- Watch Video Solution

15. Volume (V), Pressure (P) and Temperature (T) are state functions. Is the statement true?

- Watch Video Solution

16. What are the heat (q) sign conventions when heat is transferred from the surroundings to the system and that transferred from system to the surrounding?

- Watch Video Solution

17. No heat is absorbed by the system from the surroundings, but work (w) is done on the system. What type of wall does the system have?

- Watch Video Solution

18. No work is done on the system, but heat (q) is taken out from the system by the surroundings. What type of wall does the system have?

Watch Video Solution

19. Work is done by the system and heat (q) is supplied to the system. What type of system would it be?

- Watch Video Solution

20. If the boundary of system moves by an infinitesimal amount, the work involved is given by $d w=-P_{\text {ext }} d V$ for irreversible
process
$w=-P_{\text {ext }} \Delta V \quad\left(\right.$ where $\left.\Delta V=V_{f}-V_{i}\right)$
for reversible process $P_{\text {ext }}=P_{\text {int }} \pm d P \cong P_{\text {int }}$
so for reversible isothermal process $w=-n R T \ln . \frac{V_{f}}{V_{i}}$
2 mole of an ideal gas undergoes isothermal compression
along three different plaths :
(i) reversible compression from $P_{i}=2$ bar and $V_{i}=8 L$
to $P_{f}=20 \mathrm{bar}$
(ii) a single stage compression against a constant external pressure of 20 bar, and
(iii) a two stage compression consisting initially of compression against a constant external pressure of 10 bar until $P_{\text {gas }}=P_{\text {ext }}$, followed by compression against a constant pressure of 20 bar until $P_{\text {gas }}=P_{\text {ext }}$

Work done on the gas in single stage compression is :

- Watch Video Solution

21. $q=-w=n R T 1 n\left(v_{f}-v_{i}\right)$ is for isothermal change.
22. What are the ' ΔH^{\prime} ' sign conventions for exothermic and endothermic reactions?

- Watch Video Solution

23. What are intensive and extensive properties?

- Watch Video Solution

24. In the equation $q=C . \Delta . m . \Delta T$, if ΔT is change in temperature ' m ' mass of the substance, and ' q ' is heat required, what is ' C '?
25. Give the equation that gives the relationship between ΔU and ΔH.

- Watch Video Solution

26. What is the relationship between C_{p} and C_{v} ?

- Watch Video Solution

27. 1 g of graphite is burnt in a bomb calorimeter in excess of O_{2} at 298 K and 1 atm. Pressure according to the equations.
$C_{\text {graphite }}+O_{2(g)} \rightarrow C O_{2(g)}$
During the reaction the temperature rises from 298 K to

200K. Heat capacity of the bomb calorimeter is 20.7KJK ${ }^{-1}$. What is the enthalpy change for the above reaction at 298 K 1 atm?

D Watch Video Solution

28. For the above reaction what is the internal energy change, ΔU ?

D Watch Video Solution

29.

What
is
$\Delta_{r} H$
for
$\mathrm{CH}_{4(g)}+20_{2(g)} \rightarrow \mathrm{CO}_{2(g)}+2 \mathrm{H}_{2} \mathrm{O}(l)$ in terms of molar enthaples of the respective reaction and products?
30. Enthalpy decreases is not the criterion for spontaneity. Why?

- Watch Video Solution

31. Is increase of entropy the criterion for spontaneity ?

Why?

- Watch Video Solution

32. Explain the relationship between Gibbs energy change and equilibrium constant.
33. If we measure ΔH^{θ} and ΔS^{θ} it is possible to estimate ΔG^{θ}. Is it true? Why?

- Watch Video Solution

34. Equilibrium constant ' K ' is measured accurately in the laboratory at given temperature. Is it possible to calculate ΔG^{θ} at any other temperature ? How?

Watch Video Solution

35. Comment on the thermodynamics stability of $N O_{(g)}$
given that
$\frac{1}{2} N_{2(g)}+\frac{1}{2} O_{2(g)} \rightarrow N O_{g}, \Delta_{r} H^{\theta}=90 \mathrm{kJmol}^{-1}$
$N O_{(g)}+\frac{1}{2} O_{2(g)} \rightarrow N O_{2(g)}, \Delta_{r} H^{\theta} d=-74 \mathrm{Kjmol}^{-1}$

- Watch Video Solution

36. Calculate the entropy change in surroundings when 1.00 mole of $\mathrm{H}_{2} \mathrm{O}_{(l)}$ is formed under standard conditions
$\Delta_{f} H^{\theta}=-286 \mathrm{kJmol}^{-1}$.

- Watch Video Solution

37. The equilibrium constant for a reaction is 10 . What will be the value of ΔG^{θ} ?
$R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, T=300 \mathrm{~K}$.

- Watch Video Solution

38. State the third law of thermodynamics.

- Watch Video Solution

Short Answer Questions

1. What are open, closed and isolated systems ? Give one example for each.
2. Define the state function and state variables. Give examples.

- Watch Video Solution

3. "Internal energy is a state function." Explain.

- Watch Video Solution

4. "Work is not a state function." Explain.
5. What is heat? Explain.

- Watch Video Solution

6. Derive the equation for ' $W_{\text {rev }}$ ' in isothermal reversible process.

D Watch Video Solution

7. Two litres of an ideal gas at a pressure of 10 atm expands isothermally into a vacuum until its total volume is 20 litres. How much heat is absorbed and how much work is done in the expansion?
8. If the ideal gas given in the problem 45 expands against constant external pressure of 1 atm what is the q value?

D Watch Video Solution

9. If the ideal gas given in the problem 45 expands to a final volume of 10 L conducted reversibly what is q value?

D Watch Video Solution

10. Explain the state function 'enthalpy, H'. What is the relationship between ΔU and ΔH ?
11. Show that $\Delta H=\Delta U+\Delta n_{(g)}, R T$

- Watch Video Solution

12. If water vapour is assumed to be a perfect gas, molar enthalpy change for vapouration of 1 mole of water at 1 bar and $100^{\circ} \mathrm{C}$ is $41 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$. Calculate the internal energy change when
a) 1 mol of water is vapourised at 1 bar and $100^{\circ} \mathrm{C}$
b) 1 mol of water liquid is converted into ice.

Watch Video Solution

13. Explain extensive and intensive properties.

- Watch Video Solution

14. Define heat capacity. What are C_{p} and C_{v} ? Show that
$C_{p}-C_{v}=R$.

- Watch Video Solution

15. Explain the determination of ΔU of a reaction calorimetrically.
16. Explain the determination of ΔH of a reaction calorimetrically:

- Watch Video Solution

17. What is enthalpy of a reaction? Explain the standard enthalpy of a reaction.

- Watch Video Solution

18. What is the standard enthalpy of formation? Explain it with example.
19. Define and explain enthalpy of phase transformation.

- Watch Video Solution

20. Define the explain the standard enthalpy of fusion (Molar enthalpy of fusion).

- Watch Video Solution

21. Define and explain the standard enthalpy of vapourisation (Molar enthalpy of vapourisation).

- Watch Video Solution

22. Define and explain the standard enthalpy of vapourisation of sublimation.

D Watch Video Solution

23. Define and explain the standard enthalpy of formation $\left(\Delta_{r} H^{\theta}\right)$.

- Watch Video Solution

24. State and explain the Hess's law of constant heat summation.

- Watch Video Solution

25. Define and explain the enthalpy of combustion $\left(\Delta_{c} H^{\theta}\right)$.

- Watch Video Solution

26. Define and explain the enthalpy of atomisation $\left(\Delta_{a} H^{\theta}\right)$.

- Watch Video Solution

27. Define and explain the bond enthalpy $\left(\Delta_{\text {bond }} H^{\theta}\right)$.

- Watch Video Solution

28. What is the bond enthalpy of $\mathrm{C}-\mathrm{H}$ bond of CH_{4} ?

- Watch Video Solution

29. Define heat of solution $\left(\Delta_{\text {sol }} H^{\theta}\right)$ and heat of dilution.

- Watch Video Solution

30. Define ionisation enthalpy and electron affinity.

- Watch Video Solution

31. Explain the spontaneity of a process.
32. Is decrease in enthalpy a criterion for spontaneity?

Explain.

- Watch Video Solution

33. What is entropy? Explain with examples.

- Watch Video Solution

34. Is increases in entropy a criterion for spontaneity?

Explain.
35. Can ΔU and ΔS discriminate between irreversible and reversible process? Explain.

- Watch Video Solution

36. In which of the following process entropy increases?
a) A liquid evaporates to vapour.
b) Temperature of a crystalline solid lowered from 115 K to

0 K.
c) $\mathrm{CaCO}_{3(\mathrm{~s})} \rightarrow \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(g)}$
d) $\mathrm{Cl}_{2(g)} \rightarrow 2 C l_{(g)}$

- Watch Video Solution

37. For the oxidation of iron
$4 \mathrm{Fc}_{(s)}+3 \mathrm{O}_{2(g)} \rightarrow 2 \mathrm{Fe}_{(2)} \mathrm{O}_{3(s)}$,
the entropy change is $-549.45 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ at 298 K .
Though it has negative entropy change the reaction is
spontaneous. Why?
$\left(\Delta_{r} H^{\theta}=-164 \times 10^{3} J m l^{-1}\right)$

D Watch Video Solution

38. Which formulate in the following are correct?
a) $G=H-T S$
b) $\Delta G_{\mathrm{sys}}=\Delta H_{\mathrm{sys}}-T \Delta S_{\mathrm{sys}}$
c) $\Delta S_{\text {surr }}=\frac{\Delta H_{\text {surr }}}{T}=\frac{-\Delta H_{\text {sys }}}{T}$
d) $\Delta S_{\text {total }}=\Delta S_{\text {sys }}+\frac{\left(-\Delta H_{\text {sys }}\right)}{T}$
e) $\Delta S_{\text {total }}=T \Delta S_{\text {sys }}-\Delta H_{\text {sys }}$

Watch Video Solution

39. Calculate $\Delta_{r} G^{\theta}$ for conversion of oxygen to ozone $\frac{3}{2} O_{2(g)} \rightarrow O_{3(g)}$ at $298 \mathrm{~K} . K_{p}$ for the reaction is 2.43×10^{-29}.

- Watch Video Solution

40. State the second law of thermodynamics and explain it.
41. State the third law of thermodynamics.

- Watch Video Solution

42. What is entropy? Explain with examples.

- Watch Video Solution

43. Explain spontaneity of a process in terms of Gibbs energy.
44. The sign and magnitude of Gibbs energy change of a chemical process tells about its spontaneity and useful work that could be extracted from it. Explain.

- Watch Video Solution

45. In a process 701 J of heat is absorbed by a system and

394 J of work is done by the system. What is the change in internal energy for the process?

- Watch Video Solution

46. The reaction of cyanamide (s), with dioxygen was
carried out in a bomb calorimeter and ΔU was found to
be $-742.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at 298 K . Calculate the enthalpy change for the reaction at 298 K .
$\mathrm{NH}_{2} \mathrm{CN}_{(g)}+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2(\mathrm{~g})}+\mathrm{CO}_{2(g)}+\mathrm{H}_{2} \mathrm{O}_{l}$

- Watch Video Solution

47. Calculate the number of $k J$ of heat necessary to rise the temperature of 60.0 g of aluminum from $35^{\circ} \mathrm{C} \rightarrow 55^{\circ} \mathrm{C}$. Molar heat capacity of aluminum is 24 J $\mathrm{mol}^{-1} K^{-1}$.

- Watch Video Solution

48. Calculate the enthalpy change on freezing of 1.0 mol of water at $10.0^{\circ} \mathrm{C}$ to ice at $-10.0^{\circ} \mathrm{C}$.
$\Delta_{\mathrm{fus}} H=6.03 \mathrm{kJmol}^{-1} a t 0^{\circ} \mathrm{C}$
$C_{p}\left[H_{2} O(l)\right]=75.3 \mathrm{Jmol}^{-1} K^{-1}$
$C_{p}\left[H_{2} O(s)\right]=36.8 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$

D Watch Video Solution

49. Enthalpy of combustion of carbon to CO_{2} is
$-393.5 \mathrm{kJmol}^{-1}$. Calculate the heat released upon formation of 35.2 g of CO_{2} from carbon and dioxygen gas.

- Watch Video Solution

50. Enthalpies of formation of $\mathrm{CO}(\mathrm{g})$,
$\mathrm{CO}_{2}(g), \mathrm{N}_{2} \mathrm{O}(g)$ and $\mathrm{N}_{2} \mathrm{O}_{4}(g)$ are -110, -393.81 and 9.7 kJ
mol^{-1} respectively. Find the value of $D_{r} H$ for the reaction:
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})+3 \mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+3 \mathrm{CO}_{2}(\mathrm{~g})$

- Watch Video Solution

51.

Given
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}), \Delta_{r} \mathrm{H}^{\theta}=-92.4 \mathrm{kJmol}^{-1}$
What is the standard enthalpy of formation of NH_{3} gas ?

- Watch Video Solution

52. From the following data
$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta_{r} H^{\circ}=-726 \mathrm{kJmol}^{-1}$
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta_{r} H^{\circ}=-286 \mathrm{kJmol}^{-1}$
$C($ graphite $)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta_{r} H^{\circ}=-393 \mathrm{kJmol}^{-1}$
The standard enthalpy of formation of
$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$ in kJmol^{-1} is

- Watch Video Solution

53. Calculate the enthalpy change for the process
$\mathrm{CCl}_{4}(g) \rightarrow C(g)+4 C I(g)$
and calculate bond enthalpy of $C-C l \in C C l_{4}(g)$.
$\Delta_{\text {vap }} H^{\theta}\left(\mathrm{C} \mathrm{Cl}_{4}\right)=30.5 \mathrm{kJmol}^{-1}$.
$\Delta_{f} H^{\theta}\left(\mathbb{C l}_{4}\right)=-135.5 \mathrm{kJmol}^{-1}$.
$\Delta_{0} H^{\theta}(C)=715.0 \mathrm{kJmol}^{-1}$, where $\Delta_{a} H^{\theta}$ is enthalpy of atomisation.
$\Delta_{a} H^{\theta}\left(C l_{2}\right)=242 \mathrm{kJmol}^{-1}$.

- Watch Video Solution

54. For an isolated system , $\Delta U=0$ what will be ΔS ?

- Watch Video Solution

55. For the reaction at 298 K ,
$2 A+B \rightarrow C$
$\Delta H=400 \mathrm{kJmol}^{-1}$ and $\Delta S=0.2 \mathrm{kJK}^{-1} \mathrm{~mol}^{-1}$.
At what temperature will the reaction becomes spontaneous considering ΔH and ΔS to be constant over the temperature range?
56. For the reaction,
$2 C l(g) \rightarrow C l_{2}(g)$, what are the signs of ΔH and $\Delta S ?$

- Watch Video Solution

57. For the reaction,
$2 A(g)+B(g) \rightarrow 2 D(g)$
$\Delta U^{\theta}=-10.5 k J$ and $\Delta S^{\theta}=-44.1 J K^{-1}$
Calculate ΔG^{θ} for the reaction, and predict whether the reaction can occur spontaneously or not.
58. The equilibrium constant for a reaction is 10 . What will be the value of ΔG ?
$R=8.314 J K^{-1} \mathrm{~mol}^{-1}, T=300 K$.

D Watch Video Solution

59. State the first law of thermodynamics. Explain its mathematical notation.

D Watch Video Solution

60. State the second law of thermodynamics in any two
ways.

61. Explain spontaneity of a process in terms of Gibbs

 energy.
- Watch Video Solution

62. Explain spontaneity of a process in terms of Gibbs energy.

- Watch Video Solution

Long Answer Questions

1. State and explain the Hess's law of constant heat summation.

D Watch Video Solution

2. Explain the experiment to determine the internal energy change of a chemical reaction.

D Watch Video Solution

3. Explain the experiment to determine the enthalpy change of a chemical reaction.
4. Explain the spontaneity of a reaction in terms of enthalpy change, entropy change and Gibbs energy change.

- Watch Video Solution

Additional Questions Answers

1. When no heat is absorbed by the system them from the
surroundings, but work (w) is done on the system, the change in internal energy of the system is given as
2. No work is done on the system, but heat (q) is taken out from the system by the surroundings. What type of wall does the system have?

D Watch Video Solution

3. Express the change in internal energy of a system when
iii) w amount of work is done by the system and q amount of heat is supplied to the system. What type of system would it be?

- Watch Video Solution

4. Two litres of an ideal gas at a pressure of 10 atm expands isothermally into a vacuum until its total volume is 20 litres. How much heat is absorbed and how much work is done in the expansion?

D Watch Video Solution

5. If the ideal gas given in the problem 45 expands against constant external pressure of 1 atm what is the q value?

D Watch Video Solution

6. Consider the same expansion, to a final volume of 10 litres conducted reversibly.

Watch Video Solution

