# ©゙" doubtnut 

India's Number 1 Education App

## CHEMISTRY

## BOOKS -VGS PUBLICATION-BRILLIANT

## IS MATTER PURE

Examples

1. A solution contain 50 g of a common salt in

200 g of water. Calculate the concentration in
terms of mass by mass percentage of the solutions.

## D Watch Video Solution

2. 80 ml of solution contains 20 g of solute
.Calculate the concentration in terms of mass of volume percentage of the solution.

- Watch Video Solution

1. Explain the following given examples.

## Saturated solution

## D Watch Video Solution

2. Explain the following given examples.

Pure substances

- Watch Video Solution


## 3. Explain the following given examples.

## Colloid

D Watch Video Solution
4. Explain the following given examples.

Suspension

- Watch Video Solution

5. How would you confirm that a colourless
liquid given to you is pure water?

## D Watch Video Solution

6. Which of the following materials fall in the category of a "pure substances"? Give reasons.
(a) Ice (b) Milk (c ) Iron (d) Hydrochloric acid (
e) Calcium oxide (f) Mercury (g) Brick (h) Wood
(f) Air
7. Identify the solution among the following mixtures.
a) Soil b) Sea Water c) Air d) Coal e) Soda water.

## D Watch Video Solution

8. Determine the mass by mass percentage concentration of a 100 g salt solution which contains 20 g salt.
9. Calculate the concentration in terms of mass by volume percentage of the solution containing 2.5 g potassium chloride in 50 ml of potassium chloride $(\mathrm{KCl})$ Solution.

## D Watch Video Solution

10. Which of the following wil show "Tyndall effect"? How can you demostrate"Tyndall effect" in them?
(a) Salt-solution (b) Milk (c) Copper sulphate solution (d) Starch Solution

## - Watch Video Solution

11. Take a solution, a suspension ,a colloidal dispersion in different beakers. Test whether each of these mixtures shows the Tyndall effect by focusing a light at the side of the container.

## Question Given In The Lesson

1. Can you prove this(path of light through the solution) with an experiment?

- Watch Video Solution

2. IF the solution is diluted, can the path of
light be visible?

- Watch Video Solution

3. What would happen if you add a little more solute to a solvent?

## - Watch Video Solution

4. Did you ever observe this phenomenon in the cinema halls?

- Watch Video Solution

5. Is the mixture heterogeneous? Give reasons.
6. How do we separate the salt and ammonium chloride?

- Watch Video Solution

7. Can you give any examples where we use fractional distillation techique?

- Watch Video Solution Mark Questions

1. There is a mixture with sand and iron fillings.

Write an activity for the separation of iron
fillings from sand.
(D) Watch Video Solution

## Previous Summative Assessments Questions 2 Mark Questions

1. Frame two questions to understand"Homogeneous mixture".
(D) Watch Video Solution

## Previous Summative Assessments Questions 4 Mark Questions

1. Name the instrument used to separate immiscible liquids. Draw a neat diagram of it taking kerosene and water as immiscible liquids.

## - Watch Video Solution

Essential Material For Examination Purpose 1 Mark Questions

1. What is meant by 'Pure substances'?

- Watch Video Solution

2. What is a mixture?
3. What is a homogeneous mixture? Give examples.

## D Watch Video Solution

4. What is a heterogeneous mixture? Give examples.

## D Watch Video Solution

5. What are the factors affecting rate of dissolving?

D Watch Video Solution
6. When do you say that a solution is dilute solution?

D Watch Video Solution
7. What do you say that a solution is a concentrated solution?

D Watch Video Solution
8. Define suspension.

## D Watch Video Solution

9. What is an emulsion ? Give two examples.
10. What is a colloid?

D Watch Video Solution
11. What is dall effect ?

- Watch Video Solution

12. What techique do you use to separate the colours?

## - Watch Video Solution

13. When do we use fractional distillation method for the separation of miscible liquids?

## - Watch Video Solution

14. What is the definition given by Lavoisier for the 'element'?

## 15. What is the principle involved in separation

 of immiscible liquids using separation funnel?
## D Watch Video Solution

16. What is the use of glass beads in the fractional distillation column?

- Watch Video Solution

17. How will you separate a mixture containing
kerosene and petrol (difference in their boiling
points is more than $25^{\circ} \mathrm{C}$ ). Which are miscible with each other?

## D Watch Video Solution

18. What type of mixture are separated by the techniques of crystallisation?

Essential Material For Examination Purpose 2 Mark Questions

1. What is centrifuge? What are its used?

D Watch Video Solution
2. Define a mixture and mention its properties.

D Watch Video Solution

## 3. What are homogeneous and heterogeneous

 mixtures ?Give examples.- Watch Video Solution

4. Define solution, solvent and solute.

## - Watch Video Solution

5. Mention the properties of a solution.
6. whatt are the disperse phase and dispersion medium of a colloidal solution?
( Watch Video Solution
7. Define Miscible and immiscible liquids.

D Watch Video Solution
8. Define element and compound. Give examples.

D Watch Video Solution
9. How do you appreciate the efforts of scientists In discovering elements?

- Watch Video Solution

10. What are the factor on-which solubility depends on?

D Watch Video Solution
11. What is a concentrated and dilute solution?

## D Watch Video Solution

12. How do you separate following mixture?
a) Iodine from sodium chloride b) Petrol from
water c) Butter from milk d) Sugar from water

## D Watch Video Solution

## Essential Material For Examination Purpose 4

 Mark Questions1. Define the terms:
a) Solubility b) Saturated solution c)

Unsaturated solution d) Concentration
(D)

Watch Video Solution

## Conceptual Understanding

1. Acetone and water and separated by..........
A. distillation
B. Chromatography
C. Sublimation

D. Fractional distillation

Answer: A

## 2. Kerosene and water are separated by...........

A. distillation

B. Separating funnel
C. Sublimation

D. Fractional distillation

Answer: B
3. Assertion (A): Water + sugar is a solution

Reason (R): IF we pass beam of light through
a solution, It scatters light .
A. $A$ and $R$ are true
B. A and $R$ are false
C. $A$ is true but $R$ is false
D. $A$ is false but $R$ is true

Answer: C

D Watch Video Solution
4. Take two test tubes with some water. Add salt powder to one test tube and add crystals of salt to the second one. Observe, From your observation you may conclude that solubility depends upon
A. Temperature
B. size of the solute
C. strring
D. above all
5. The correct process is
a) add solvent more to dilute a solution
b) add solution more to dilute a solution
c) add solute more to concentrate a solution
d) add solvent more to concentrate a solution.
A. b,d
B. a,c
C. b,c

## D. a,d

## Answer: D

## - Watch Video Solution

6. Which of the given device is used to separate a mixture of kerosene and water?
A. conical flask
B. burette
C. pipette

## D. test tube

## Answer: B

## D Watch Video Solution

## 7. Which apparatus is required to check

 whether milk is colloid or true soluton?A. filter paper
B. laser light
C. burer
D. $A$ and $B$

Answer: B

## D Watch Video Solution

8. How do you examine whether a starch solution is colloid or suspension?
A. By sending light beam
B. By leaving undistributed for sometime
C. By heating it

## D. Any of the above

## Answer: B

## D Watch Video Solution

9. How do you separate a miscible liquid in
your lab.
A. By using separating funnel
B. By using distillation method
C. By using evaporation mehod

## D. By using sublimation method

## Answer: B

## D Watch Video Solution

10. Cream from milk can be separated by
A. centrifugation
B. distillation
C. fractional distillation
D. chromatography

## D Watch Video Solution

11. Tyndall effect cannot be shown by
A. colloids
B. suspensions
C. emulsion
D. solutions
12. The component of the air among the
following which has the highest boiling point is
A. nitrogen
B. argon
C. methane
D. oxygen
13. The first definition for 'element' is given by
A. Lavoisier
B. Henning brand
C. Sir Humphry Davy
D. Robert boyle

Answer: A
14. Coloured gem stone is an example of........
A. solution
B. suspension
C. Colloid
D. emulsion

## Answer: C

## 15. Ink is mixture of.............in water.

A. dye
B. salt
C. sugar
D. acid

Answer: A

## 16. The term element is first used by..........

A. Robert Boyle
B. Henning brand
C. Lavoisier

D. Burzelius

Answer: A
17. Percentage of oxygen in air by volume.
A. $20.9 \%$
B. $78.1 \%$
C. $0.03 \%$
D. $0.1 \%$

Answer: A

D Watch Video Solution
18. Percentage of nitrogen in air by volume.
A. $20.9 \%$
B. $78.1 \%$
C. $0.03 \%$
D. $0.1 \%$

Answer: B

- Watch Video Solution


## 19. Percentage of argon in air by volume..............

A. $20.9 \%$
B. $78.1 \%$
C. $0.03 \%$
D. $0.9 \%$

## Answer: D

20. Components of blood sample are separated by...

A. distillation

B. Sublimation
C. fractional distillation
D. Centrifugation

Answer: D

D Watch Video Solution

# 21. Napthalene in water separated by 

A. distillation

B. Chromatography
C. Sublimation

D. Centrifugation

## Answer: C

## - Watch Video Solution

22. Petrochemicals are separated by
A. fractional distillation
B. distillation
C. Sublimation
D. separating funnel

## Answer: A

## D Watch Video Solution

23. 80 ml of solution contains 20 g of solute
.Calculate the concentration in terms of mass
of volume percentage of the solution.
A. 0.2
B. 0.4
C. 0.25
D. 0.8

Answer: C

## D Watch Video Solution

24. Ice cream is a
A. suspension

## B. colloid

## C. emulsion

D. solution

## Answer: B

## D Watch Video Solution

25. The ingredients in ice cream are...........
A. milk
B. sugar

## C. flavours

D. all of these

## Answer: D

( Watch Video Solution

