©゙ doubtnut

India's Number 1 Education App

MATHS

BOOKS - SURA MATHS (TAMIL ENGLISH)

GEOMETRY

Exercise 41

1. Check whether the which triangles are similar and
find the value of x.

- Watch Video Solution

2. A girl looks the reflection of the top of the lamp post on the mirror which is 6.6 m away from the foot of the lamppost. The girl whose height is 1.25 m is
standing 2.5 m away from the mirror. Assuming the mirror is placed on the ground facing the sky and the girl, mirror and the lamppost are in a same line, find the height of the lamp post?
3. A vertical stick of length 6 m casts a shadow 400
cm long on the ground and at the same time a tower casts a shadow 28 m long. Using similarity, find the height of the tower.

- Watch Video Solution

4. Two triangles QPR and QSR, right angled at P and
S respectively are drawn on the same base $Q R$ and on the same side of $Q R$. If $P R$ and $S Q$ intersect at T, prove that $P T \times T R=S T \times T Q$.
5. In the adjacent figure, $\triangle A B C$ is right angled at C and $D E \perp A B$. Prove that $\triangle A B C \sim \triangle A D E$ and hence find the lengths of AE and DE ?

D
 Watch Video Solution

6. In the adjacent figure, $\triangle A C B \sim \triangle A P Q$. If $\mathrm{BC}=8 \mathrm{~cm}$, $P Q=4 \mathrm{~cm}, B A=6.5 \mathrm{~cm}$ and $A P=2.8 \mathrm{~cm}$, find $C A$ and $A Q$.

- Watch Video Solution

7. In figure OPRQ is a square and $\angle M L N=90^{\circ}$.

Prove that
$(i) \Delta L O P \sim \Delta Q M O(i i) \Delta L O P \sim \Delta R P N$
(iii) $\Delta Q M O \sim \Delta R P N(i v) Q R^{2}=M Q \times R N$.

- Watch Video Solution

8. If $\triangle A B C \sim \Delta D E F$ such that area of
$\triangle A B C$ is $9 \mathrm{~cm}^{2}$ and the area of
$\triangle D E F$ is $16 \mathrm{~cm}^{2}$ and $\mathrm{BC}=2.1 \mathrm{~cm}$. Find the length of EF.
9. Two vertical poles of heights 6 m and 3 m are erected above a horizontal ground AC. Find the value of y.

10. Construct a triangle similar to a given triangle PQR with its sides equal to $\frac{2}{3}$ of the corresponding sides of the triangle PQR (scale factor $\frac{2}{3}$).

- Watch Video Solution

11. Construct a triangle similar to a given triangle LMN with its sides equal to $\frac{4}{5}$ of the corresponding sides of the triangle LMN (scale factor $\frac{4}{5}$).

- Watch Video Solution

12. Construct a triangle similasr to a given triangle

$$
6
$$

$A B C$ with its sides equal to $\frac{6}{5}$ of the corresponding sides of the triangle $A B C$ (scale factor $\frac{6}{4}$).

- Watch Video Solution

13. Construct a triangle similasr to a given triangle PQR with its sides equal to $\frac{7}{3}$ of the corresponding sides of the triangle PQR (scale factor $\frac{7}{3}$).

- Watch Video Solution

1. In $\triangle A B C$, D and E are points on the sides AB and AC respectively such that $D E|\mid B C$
(i) If $\frac{A D}{D B}=\frac{3}{4}$ and $\mathrm{AC}=15 \mathrm{~cm}$ find AE .
(ii) If $A D=8 x-7, D B=5 x-3, A E=4 x-3$ and $E C=3 x-1$, find the value of x.

- Watch Video Solution

2. ABCD is a trapezium in which $A B|\mid D C$ and P, Q
are points on $A D$ and $B C$ respectively, such that
$P Q|\mid D C$ if $\mathrm{PD}=18 \mathrm{~cm}, \mathrm{BQ}=35 \mathrm{~cm}$ and $\mathrm{QC=}=15 \mathrm{~cm}$, find $A D$.
3. In $\triangle A B C, \mathrm{D}$ and E are points on the sides AB and AC respectively. For each of the following cases show that $D E|\mid B C$
(i) $A B=12 \mathrm{~cm}, A D=8 \mathrm{~cm}, \mathrm{AE}=12 \mathrm{~cm}$ and $\mathrm{AC}=18 \mathrm{~cm}$.
(ii) $A B=5.6 \mathrm{~cm}, A D=1.4 \mathrm{~cm}, A C=7.2 \mathrm{~cm}$ and $A E=1.8 \mathrm{~cm}$.

- Watch Video Solution

4. In fig. if $P Q \| B C$ and $P R \| C D$ prove that
(i) $\frac{A R}{A D}=\frac{A Q}{A B}(i i) \frac{Q B}{A Q}=\frac{D R}{A R}$.

- Watch Video Solution

5. Rhombus PQRS is inseribed in $\triangle A B C$ such that
$\angle B$ is one of its angle. P, Q and R lie on AB, AC and $B C$ respectively. If $A B=12 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$, find the sides PQ, RB of the rhombus.
6. In trapezlum $A B C D, A B| | D C, E$ and F are points on non-parallel sides $A D$ and $B C$ respectively, such that
$\mathrm{EF} \| \mathrm{AB}$. Show that $\frac{A E}{E D}=\frac{B F}{F C}$.

- Watch Video Solution

7. In figure $D E \| B C$ and $C D|\mid E F$. Prove that
$A D^{2}=A B \times A F$.

(D) Watch Video Solution
8. In a $\triangle A B C, \mathrm{AD}$ is the bisector of $\angle A$ meeting
side $B C$ at D, if $A B=10 \mathrm{~cm}, A C=14 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$,
find $B D$ and $D C$.

D Watch Video Solution
9. Check whether AD is bisector of $\angle A$ of $\triangle A B C$ in each of the following
(i) $A B=5 \mathrm{~cm}, A C=10 \mathrm{~cm}, B D=1.5 \mathrm{~cm}$ and $C D=3.5 \mathrm{~cm}$.
(ii) $\mathrm{AB}=4 \mathrm{~cm}, \mathrm{AC}=6 \mathrm{~cm}, \mathrm{BD}=1.6 \mathrm{~cm}$ and $\mathrm{CD}=2.4 \mathrm{~cm}$.

- Watch Video Solution

10. In figure $\angle Q P C=90^{\circ}$, PS is its bisector. If $S T \perp P R$, prove that
$S T \times(P Q+P R)=P Q \times P R$.

- Watch Video Solution

11. $A B C D$ is a quadrilateral in which $A B=A D$, the bisector of $\angle B A C$ and $\angle C A D$ intersect the sides
$B C$ and $C D$ at the points E and F respectively. Prove that EF || BD.

D Watch Video Solution

12. Construct a $\triangle P Q R$ which the base $P Q=4.5 \mathrm{~cm}, \angle R=35^{\circ}$ and the median from R to RG is 6 cm .

D Watch Video Solution

13. Construct a $\triangle P Q R$ in which $Q \mathrm{Q}=5 \mathrm{~cm}, P=40^{\circ}$ and the median PG from P to QR is 4.4 cm . Find the
length of the altitude from P to $Q R$.

- Watch Video Solution

14. Construct a $\triangle P Q R$ such that $\mathrm{QR}=6.5 \mathrm{~cm}$,
$\angle P=60^{\circ}$ and the altitude from P to QR is of
length 4.5 cm .

- Watch Video Solution

15. Construct a $\triangle A B C$ such that
$A B=5.5 \mathrm{~cm}, \angle C=25^{\circ}$ and the altitude from C to
$A B$ is 4 cm .
16. Draw a triangle $A B C$ of base $B C=5.6 \mathrm{~cm}$, $\angle A=40^{\circ}$ and the bisector of $\angle A$ meets BC at D such that $C D=4 \mathrm{~cm}$.

- Watch Video Solution

17. Draw $\triangle P Q R$ such that $\mathrm{PQ}=6.8 \mathrm{~cm}$, vertical angle is 50° and the bisector of the vertical angle meets the base at D where $\mathrm{PD}=5.2 \mathrm{~cm}$.
18. A man goes 18 m due east and then 24 m due north. Find the distance of his current position from the starting point?

- Watch Video Solution

2. There are two paths that one can choose to go
from Sarah's house to James house. One way is to
take C street, and the other way requires to take A
street and then B street. How much shorter is the
direct path along C street ? (Using figure).

D Watch Video Solution
3. To get from point A to point B you must avoid walking through a pond. You must walk 34 m south
and 41 m east. To the nearrest meter, how many
meters would be saved if it were possible to make a way through the pond?

- Watch Video Solution

4. In the rectangle $W X Y Z, X Y+Y Z=17 \mathrm{~cm}$ and $\mathrm{XZ}+\mathrm{YW}=26 \mathrm{~cm}$. Calculate the length and breadth of the rectangle ?

5. The hypotenuse of a right triangle is 6 m more than twice of the shortest side. If the third side is 2 m less than the hypotenuse, find the sides of the triangle?

D Watch Video Solution

6. 5 m long ladder is placed leaning towards a vertical wall such that it reaches the wall at a point 4 m high. If the foot of the ladder is moved 1.6 m towards the wall, then find the distance by which the top of the ladder would slide upwards on the wall.
7. The perpendicular PS on the base QR of $\triangle P Q R$ intersects $Q R$ at S, such that $Q S=3 S R$. Prove that $2 P Q^{2}=2 P R^{2}+Q R^{2}$.

- Watch Video Solution

8. In the adjacent figure, $A B C$ is a right angled triangle with right angle at B and points D, E trisect
$B C$. Prove that $8 A E^{2}=3 A C^{2}+5 A D^{2}$.

- Watch Video Solution

1. The length of the tangent to a circle from a point

P, which is 25 cm away from the centre is 24 cm .

What is the radius of the circle?

D Watch Video Solution

2. $\triangle L M N$ is a right angled triangle with $\angle L=90^{\circ}$.

A circle is inscribed in it. The lengths of the sides
containing the right angle are 6 cm and 8 cm . Find the radius of the circle.
3. A circle is inscribed in $\triangle A B C$ having sides 8 cm , 10 cm and 12 cm as shown in figure, Find AD, BE and CF.

- Watch Video Solution

4. $P Q$ is a tangent drawn from a point P to a circle with centre O and QOR is a diameter of the circle
such that $\angle P O R=120^{\circ}$. Find $\angle O P Q$.

- Watch Video Solution

5. A tangent ST to a circle touches it at B. $A B$ is a chord such that $\angle A B T=65^{\circ}$, Find $\angle A O B$, where

O is the centre of the circle.

- Watch Video Solution

6. In figure, O is the centre of the circle with radius 5
cm . T is a point such that $\mathrm{OT}=13 \mathrm{~cm}$ and OT intersects
the circle E, if $A B$ is the tangent ot the circle at E, find
the length of $A B$.

(Watch Video Solution

7. In two concentric circles, a chord of length 16 cm of larger circle becomes a tangent to the smaller circle whose radius is 6 cm . Find the radius of the larger circle.
8. Two circles with centres O and O ' of radii 3 cm and

4 cm , respectively intersect at two points P and Q,
such that $O P$ and $O^{\prime} P$ are tangents to the two circles. Find the length of the common chord PQ .

D Watch Video Solution

9. Show that the angle bisectors of a triangle are concurrent.
10. In $\triangle A B C$, with $\angle B=90^{\circ}, \mathrm{BC}=6 \mathrm{~cm}$ and $\mathrm{AB}=8$
cm, D is a point on AC such that $\mathrm{AD}=2 \mathrm{~cm}$ and E is
the midpoint of $A B$. Join D to E and extend it to meet at F. Find BF.

- Watch Video Solution

11. An artist has created a triangular stained glass window and has one strip of small length left before completing the window. She needs to figure out the
length of left out portion based on the lengths of
the other sides as shown in the figure .

(Watch Video Solution

12. Draw a tangent at any point R on the circle of radius 3.4 cm and centre at P ?

- Watch Video Solution

13. Draw a circle of radius 4.5 cm . Take a point on the circle. Draw the tangent at that point using the alternate segment theorem.
14. Draw the two tangents from a point which is 10 cm away from the centre of a circle of radius 5 cm .

Also, measure the lengths of the tangents.

- Watch Video Solution

15. Take a point which is 11 cm away from the centre of a circle of radius 4 cm and draw the two tangents
to the circle from that point.

D Watch Video Solution

16. Draw the two tangents from a point which is 5 cm away from the centre of a circle of diameter 6 cm .

Also, measure the lengths of the tangents.

- Watch Video Solution

17. Draw a tangent to the circle from the point P having radius 3.6 cm , and centre at O . Point P is at a distance 7.2 cm from the centre.

- Watch Video Solution

1. If in triangles $A B C$ and $E D F, \frac{A B}{D E}=\frac{B C}{F D}$ then they will be similar, when

$$
\text { A. } \angle B=\angle E
$$

B. $\angle A=\angle D$
C. $\angle B=\angle D$
D. $\angle A=\angle F$

Answer:
2.
$\Delta L M N, \angle L=60^{\circ}, \angle M=50^{\circ}$, If $\triangle L M N \sim \Delta P Q R$
then the value of $\angle R$ is
A. 40°
B. 70°
C. 30°
D. 110°

Answer:

- Watch Video Solution

3. If $\triangle A B C$ is an isosceles triangle with $\angle C=90^{\circ}$ and $A C=5 \mathrm{~cm}$, then $A B$ is

A. 2.5 cm

B. 5 cm
C. 10 cm
D. $5 \sqrt{2} \mathrm{~cm}$

Answer:

- Watch Video Solution

4. In a given figure, $\mathrm{ST}|\mid \mathrm{QR}, \mathrm{PS}=2 \mathrm{~cm}$ and $\mathrm{QS}=3 \mathrm{~cm}$.

Then the ratio of the area of $\triangle P Q R$ to the area of
$\triangle P S T$ is

A. $25: 4$
B. 25:7
C. 25: 11

Answer:

- Watch Video Solution

5. The perimeters of two similar triangles
$\triangle A B C$ and $\triangle P Q R$ are 36 cm and 24 cm respectively. IF PQ $=10 \mathrm{~cm}$, then the length of $A B$ is
A. $6 \frac{2}{3} \mathrm{~cm}$
B. $\frac{10 \sqrt{6}}{3} \mathrm{~cm}$
C. $66 \frac{2}{3} \mathrm{~cm}$
D. 15 cm

Answer:

- Watch Video Solution

6. If in $\triangle A B C, \mathrm{DE}| | \mathrm{BC} . \mathrm{AB}=3.6 \mathrm{~cm}, \mathrm{AC}=2.4 \mathrm{~cm}$ and $A D=2.1 \mathrm{~cm}$ then the length of $A E$ is
A. 1.4 cm
B. 1.8 cm
C. 1.2 cm
D. 1.05 cm

Answer:

- Watch Video Solution

7. In a $\triangle A B C$, Adis the bisector of $\angle B A C$. If $\mathrm{AB}=8$ $\mathrm{cm}, \mathrm{BD}=6 \mathrm{~cm}$ and $\mathrm{DC}=3 \mathrm{~cm}$. The length of the side $A C$ is
A. 6 cm
B. 4 cm
C. 3 cm
D. 8 cm

Answer:

- Watch Video Solution

8.

In
the
adjacent
figure
$\angle B A C=90^{\circ}$ and $A D \perp B C$ then

A. $B D \cdot C D=B C^{2}$
B. $A B \cdot A C=B C^{2}$
C. $B D \cdot C D=A D^{2}$
D. $A B \cdot A C=A D^{2}$

Answer:

- Watch Video Solution

9. Two poles of heights 6 m and 11 stand vertically on a plane ground. If the distance between their feet is

12 m , what is the distance between their tops ?
A. 13 cm
B. 14 m
C. 15 m
D. 12.8 m

Answer:

- Watch Video Solution

10. In the given figure, $P R=26 \mathrm{~cm}, Q R=24 \mathrm{~cm}$, $P A Q=90^{\circ}, P A=6 \mathrm{~cm}$ and $\mathrm{QA}=8 \mathrm{~cm}$. Find $\angle P Q R$

A. 80°
B. 85°
C. 75°
D. 90°

Answer:

- Watch Video Solution

11. A tangent is perpendicular to the radius at the
A. centre
B. point of contact
C. infinity
D. chord

Answer:

- Watch Video Solution

12. How many tangents can be drawn to the circle from an exterior point?
A. one
B. two
C. infinite

Answer:

- Watch Video Solution

13. The two tangents from an external points P to a circle with centre at O are $P A$ and $P B$. If
$\angle A P B=70^{\circ}$ then the value of $\angle A O B$ is
A. 100°
B. 110°
C. 120°

Answer:

- Watch Video Solution

14. In figure $C P$ and $C Q$ are tangents to a circle with centre at 0 . ARB is another tangent touching the circle at R. If $C P=11 \mathrm{~cm}$ and $B C=7 \mathrm{~cm}$, then the
length of $B R$ is \qquad

A. 6 cm
B. 5 cm
C. 8 cm
D. 4 cm

Answer:

15. In figure if $P R$ is tangent to the circle at P and O is

the centre of the circle then $\angle P O Q$ is

A. 120°
B. 100°
C. 110°
D. 90°

Answer:

- Watch Video Solution

Unit Exercise 4

1. In the figure, if $B D \perp A C$ and $C E \perp A B$, prove
that
(i) $\triangle A E C \sim \triangle A D B$
(ii) $\frac{C A}{A B}=\frac{C E}{D B}$

- Watch Video Solution

2. In the given figure, $A B\|C D\| E F$. If $A B=6 \mathrm{~cm}, C D=x$ $\mathrm{cm}, \mathrm{EF}=4 \mathrm{~cm}, \mathrm{BD}=5 \mathrm{~cm}$ and $\mathrm{DE}=\mathrm{ycm}$. Find x and y .

- Watch Video Solution

3. O is any point inside a triangle $A B C$. The bisector of $\angle A O B, \angle B O C$ and $\angle C O A$ meet the sides AB , $B C$ and $C A$ in point D, E and F respectively. Show that $A D \times B E \times C F=D B \times E C \times F A$
4. In the figure, $A B C$ is a triangle in which $A B=A C$.

Points D and E are points on the side $A B$ and $A C$ respectively such that $A D=A E$. Show that points B, C, E and D lie on a same circle.

5. Two trains leave a railway station at the same time. The first train travels due west and the second train due north. The first train travels at a speed of $20 \mathrm{~km} / \mathrm{hr}$ and the second train travels at $30 \mathrm{~km} / \mathrm{hr}$. After 2 hours, what is the distance between them?

- Watch Video Solution

6. D is the mid point of side BC and $A E \perp B C$. If $B C=a, A C=b, A B=c, E D=x, A D=p$ and $A E=h$, prove that
$(i) b^{2}=p^{2}+a x+\frac{a^{2}}{4}$
(ii) $c^{2}=p^{2}-a x+\frac{a^{2}}{4}$
$(i i i) b^{2}+c^{2}=2 p^{2}+\frac{a^{2}}{2}$
7. A man whose eye-level is 2 m above the ground wishes to find the height of a tree. He places a mirror horizontally on the ground 20 m from the tree and finds that if he stands at a point C which is

4 m from the mirror B, he can see the reflection of the top of the tree. How height is the tree ?

- Watch Video Solution

8. An emu which is 8 ft tall standing at the foot of a
pillar which is 30 ft height. It walks away from the
pillar. The shadow of the emu falls beyond emu.

What is the relation between the length of the shadow and the distance from the emu to the pillar

- Watch Video Solution

9. Two circles intersect at A and B. From a point P on one of the circles lines PAC and PBD are drawn intersecting the second circle at C and D. Prove that $C D$ is parallel to the tangent at P.
10. Let $A B C$ be a triangle and D, E, F are points on the respective sides $A B, B C, A C$ (or their extensions). Let
$A D: D B=5: 3, B E: E C=3: 2$ and $A C=21$. Find the length of the line segment CF.

- Watch Video Solution

Government Exam Questions

1. In the given figure, the value of x is

A. 2
B. 8
C. 4
D. 12

Answer:

- Watch Video Solution

2. What length of ladder is needed to reach a height of 7 ft along the wall when the base of the ladder is

4 ft from the wall ?

- Watch Video Solution

3. If $\triangle A B C$ is similar to $\triangle D E F$ such that $\mathrm{BC}=3 \mathrm{~cm}$,
$\mathrm{EF}=4 \mathrm{~cm}$ and area of $\triangle A B C=54 \mathrm{~cm}^{2}$. Find the area of $\triangle D E F$.

- Watch Video Solution

4. P and Q are the mid-points of the sides $C A$ and $C B$ respectively of a $\triangle A B C$, right angled at C . Prove that $4\left(A Q^{2}+B P^{2}\right)=5 A B^{2}$.

- Watch Video Solution

5. State and prove Pythagoras theorem.
6. $P Q$ is a chord of length 8 cm to a circle of radius 5 cm . The tangents at P and Q intersect at a point T.

Find the length of the tangent TP.

- Watch Video Solution

7. Draw a triangle ABC of base $\mathrm{BC}=8 \mathrm{~cm}, \angle A=60^{\circ}$
and the bisector of $\angle A$ meets BC at D such that $B D=6 \mathrm{~cm}$.

8. In $\triangle A B C$, if $\mathrm{DE}|\mid \mathrm{BC}, \mathrm{AD}=\mathrm{x} \mathrm{DB}=\mathrm{x}-2, \mathrm{AE}=\mathrm{x}+2$ and

 $E C=x-1$ then find the length of the sides $A B$ and $A C$.D Watch Video Solution
9. Construct a triangle similar to a given triangle PQR with its sides equal to $\frac{3}{5}$ of the corresponding sides of the triangle PQR. (Scaler factor $\frac{3}{5}<1$).

- Watch Video Solution

Additional Question Answers

1. In figure if $\mathrm{PQ}|\mid \mathrm{RS}$, Prove that $\triangle P O Q \sim \Delta S O R$.

- Watch Video Solution

2. In $A D \perp B C$, prove that
$A B^{2}+C D^{2}=B D^{2}+A C^{2}$

D Watch Video Solution

3. A ladder is placed against a wall such that its foot is at a distance of 2.5 m from the wall and its top reaches a window 6 m above the ground. Find the length of the ladder.
4. In figure $O A . O B=O C$. $O D$

Show that $\angle A=\angle C$ and $\angle B=\angle D$

- Watch Video Solution

5. In figure O is any point inside a rectangle $A B C D$. Prove that $O B^{2}+O D^{2}=O A^{2}+O C^{2}$.

- Watch Video Solution

6. In $\angle A C D=90^{\circ}$ and $C D \perp A B$. Prove that $\frac{B C^{2}}{A C^{2}}=\frac{B D}{A D}$

- Watch Video Solution

7. In figure the line segment $x y$ is parallel to side $A C$ of $\triangle A B C$ and it divides the triangle into two parts of equal areas. Find the ratio $\frac{A X}{A B}$

-
 Watch Video Solution

8. $B L$ and $C M$ are medians of a triangle $A B C$ right angled at A.

Prove that $4\left(B L^{2}+C M^{2}\right)=5 B C^{2}$

- Watch Video Solution

9. Prove that in a right triangle, the square of the hypotenure is equal to the sum of the squares of the others two sides.

10. The perpendicular from A on side BC at a $\triangle A B C$

 intersects $B C$ at D such that $D B=3 C D$. Prove that $2 A B^{2}=2 A C^{2}+B C^{2}$
- Watch Video Solution

11. In $\triangle A B C$, if $\mathrm{DE}|\mid \mathrm{BC}, \mathrm{AD}=\mathrm{x} \mathrm{DB}=\mathrm{x}-2, \mathrm{AE}=\mathrm{x}+2$ and
$E C=x-1$ then find the length of the sides $A B$ and $A C$.

- Watch Video Solution

Unit Test Section A
$\Delta L M N, \angle L=60^{\circ}, \angle M=50^{\circ}$, If $\Delta L M N \sim \Delta P Q R$
then the value of $\angle R$ is
A. 40°
B. 70°
C. 30°
D. 110°

Answer: B
2. The perimeters of two similar triangles
$\triangle A B C$ and $\triangle P Q R$ are 36 cm and 24 cm respectively. IF PQ $=10 \mathrm{~cm}$, then the length of $A B$ is
A. $6 \frac{2}{3} \mathrm{~cm}$
B. $\frac{10 \sqrt{6}}{3} \mathrm{~cm}$
C. $66 \frac{2}{3} \mathrm{~cm}$
D. 15 cm

Answer: D

3. In the given figure, $P R=26 \mathrm{~cm}, \mathrm{QR}=24 \mathrm{~cm}$, $P A Q=90^{\circ}, P A=6 \mathrm{~cm}$ and $\mathrm{QA}=8 \mathrm{~cm}$. Find $\angle P Q R$

A. 80°
B. 85°
C. 75°
D. 90°
$\angle B A C=90^{\circ}$ and $A D \perp B C$ then

A. $B D \cdot C D=B C^{2}$
B. $A B . A C=B C^{2}$
C. $B D \cdot C D=A D^{2}$
D. $A B \cdot A C=A D^{2}$

Answer: C

- Watch Video Solution

5. The two tangents from an external points P to a circle with centre at O are $P A$ and $P B$. If $\angle A P B=70^{\circ}$ then the value of $\angle A O B$ is
A. 100°
B. 110°
C. 120°

Answer: B

- Watch Video Solution

Unit Test Section B

1. In the adjacent figure, $\triangle A B C$ is right angled at C and $D E \perp A B$. Prove that $\triangle A B C \sim \triangle A D E$ and
hence find the lengths of AE and DE ?

- Watch Video Solution

2. In figure $D E \| B C$ and $C D|\mid E F$. Prove that
$A D^{2}=A B \times A F$.

- Watch Video Solution

3. A man goes 18 m due east and then 24 m due north. Find the distance of his current position from the starting point ?
4. Draw a tangent at any point R on the circle of radius 3.4 cm and centre at P ?

- Watch Video Solution

5. In two concentric circles, a chord of length 16 cm
of larger circle becomes a tangent to the smaller
circle whose radius is 6 cm . Find the radius of the larger circle.
6. The length of the tangent to a circle from a point

P , which is 25 cm away from the centre is 24 cm .

What is the radius of the circle?

D Watch Video Solution

7. To get from point A to point B you must avoid walking through a pond. You must walk 34 m south and 41 m east. To the nearrest meter, how many meters would be saved if it were possible to make a way through the pond?

Unit Test Section C

1. A man whose eye-level is 2 m above the ground wishes to find the height of a tree. He places a mirror horizontally on the ground 20 m from the tree and finds that if he stands at a point C which is

4 m from the mirror B, he can see the reflection of the top of the tree. How height is the tree ?

- Watch Video Solution

2. A circle is inscribed in $\triangle A B C$ having sides 8 cm ,

10 cm and 12 cm as shown in figure, Find AD, BE and

CF.

- Watch Video Solution

Unit Test Section D

1. Construct a triangle similar to a given triangle $A B C$

6 with its sides equal to $\frac{6}{5}$ of the corresponding sides
of the triangle ABC (scale factor $\frac{6}{4}$).

D Watch Video Solution

2. Construct a $\triangle P Q R$ such that $\mathrm{QR}=6.5 \mathrm{~cm}$, $\angle P=60^{\circ}$ and the altitude from P to QR is of length 4.5 cm .
