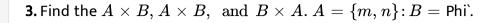


MATHS

BOOKS - SURA MATHS (TAMIL ENGLISH)

RELATIONS AND FUNCTIONS


1. Find the `AtimesB, AtimesB, and BtimesA.

A={2, -2, 3} and B={1, -4}.

Watch Video Solution

2. Find the `AtimesB, AtimesB, and BtimesA.

A=B={p,q}

4. Let $A = \{1, 2, 3\}$ and $B = \{x \mid x \text{ is the prime number less than 10}\}.$

Find $A \times B$ and $B \times A$.

Watch Video Solution

5. If $B imes A = \{(-2,3), (-2,4), (0,3), (0,4), (3,3), (3,4)\}$ find the A

and B.

Watch Video Solution

6. If $A = \{5, 6\}, B = \{4, 5, 6\}, C = \{5, 6, 7\}$. Show that $A \times A = (B \times B) \cap (C \times C)$.

7. Given $A = \{1, 2, 3\}, B = \{2, 3, 5\}, C = \{3, 4\}$ and $D = \{1, 3, 5\}, C = \{3, 4\}$

 $\mathsf{check}\,(A\cap C) imes(B\cap D)=(A imes B)\cap(C imes D)$ is true?

8. Let
$$A = \{\xi nW \mid x < 2\}, B = \{\xi nN \mid 1 < x < 4\}$$
 and $C = \{3, 5\}.$

Verify that

 $A imes (B \cup C) = (A imes B) \cup (B imes C)$

Watch Video Solution

9. Let $A = \{\xi nW \mid x < 2\}, B = \{\xi nN \mid 1 < x < 4\}$ and $C = \{3, 5\}.$

Verify that

 $A imes (B \cap C) = (A imes B) \cap (A imes C)$

10. Let $A = \{\xi nW \mid x < 2\}, B = \{\xi nN \mid 1 < x < 4\}$ and $C = \{3, 5\}.$

Verify that

 $(A\cup B) imes C = (A imes C)\cup (B imes C)$

11. Let A= The set of all natural numbers less than 8, B=The set of all prime numbers less than 8, C= The set of even prime number. Verify that

 $(A\cap B) imes C = (A imes C)\cap (B imes C)$

12. Let A= The set of all natural numbers less than 8, B=The set of all prime

numbers less than 8, C= The set of even prime number. Verify that

 $A \times (B - C) = (A \times B) - (AtimeC)$

1. Let $A = \{1, 2, 3, 7\}$ and $B = \{3, 0, -1, 7\}$, which of the following are relation from A to B?

$$R_1 = \{(2,1),(7,1)\}$$

Watch Video Solution

2. Let $A = \{1, 2, 3, 7\}$ and $B = \{3, 0, -1, 7\}$, which of the following

are relation from A to B?

$$R_2 = \{(-1,1)\}$$

Watch Video Solution

3. Let $A = \{1, 2, 3, 7\}$ and $B = \{3, 0, -1, 7\}$, which of the following

are relation from A to B?

 $R_3=\{(2,\ -1),(7,7),(1,3)\}$

4. Let $A = \{1, 2, 3, 7\}$ and $B = \{3, 0, -1, 7\}$, which of the following are relation from A to B?

 $R_4=\{(7,\ -1),(0,3),(3,3),(0,7)\}$

Watch Video Solution

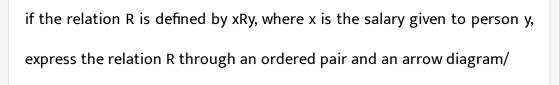
5. Let $A = \{1, 2, 3, 4, ..., 45\}$ and R be the relation defined as "is square of" on A. Write R as a subset of $A \times A$. Also, find the domain and range of R.

Watch Video Solution

6. A Relation R is given by the set $\{(x, y) \mid y = x + 3, \xi n \{0, 1, 2, 4, 5\}\}$.

Determine its domain and range.

7. Represent each of the given relation by (a) an arrow diagram, (b) a graph and (C) a set in roster form, wherever possible.


 $\{(x,y)\mid x=2y, \xi n\{2,3,4,5\}, y\in\{1,2,3,4\}.$

8. Represent each of the given relation by (a) an arrow diagram, (b) a graph and (C) a set in roster form, wherever possible.

 $\{(x,y)\mid y=x+3,x,y$ are natural number $\ <10\}$

Watch Video Solution

9. A company has four categories of employees given by Assistants (A), Clerks(C), Mangagers (M) and an Excutive Officer(E). The company provide ₹10,000, ₹25,000, ₹50,000 and ₹1,00,000 as salaries to the people who work in the categories A, C, M and E respectively. If A_1, A_2, A_3, A_4 and A_5 were Assistants, C_1, C_2, C_3, C_4 were Clerks, M_1, M_2 and M_3 were managers and E_1, E_2 were Executive officers and

Execrise 13

1. Let $f = \{(x, y) \mid x, y \in N \text{ and } y = 2x\}$ be a relation on N. Find the domain, co-domain and range. Is this relation a function?

> Watch Video Solution

2. Let $X=\{3,4,6,8\}.$ Determine whether the relation $R=\{x,f(x)\mid \xi nX,f(x)=x^2+1\}$ is the function from X to N?

3. Given the function $f{:}x
ightarrow x^2-5x+6$, evaluate

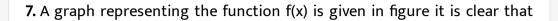
f(-1)

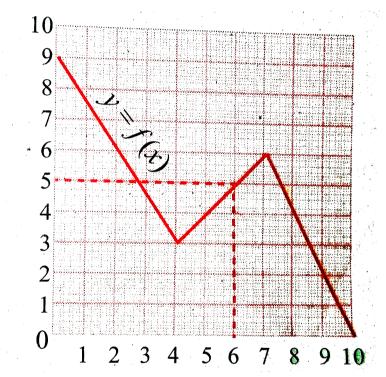
4. Given the function $f \colon x o x^2 - 5x + 6$, evaluate

f(2a)

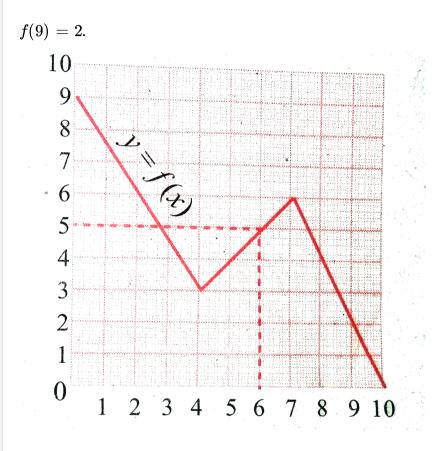
Watch Video Solution

5. Given the function $f{:}\,x
ightarrow x^2-5x+6$, evaluate

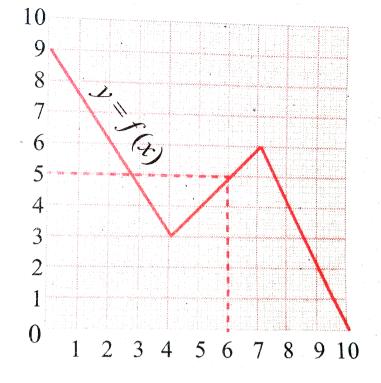

f(2)


6. Given the function $f{:}x
ightarrow x^2-5x+6$, evaluate

f(x-1)



Find the following values of the function (a)f(0) (b)f(7) (c)f(2) (d)f(10)

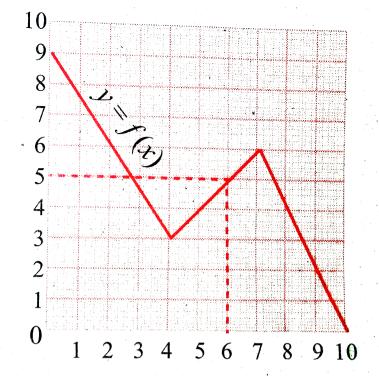

8. A graph representing the function f(x) is given in figure it is clear that

For what value of x is f(x)=1?

Watch Video Solution

9. A graph representing the function f(x) is given in figure it is clear that

f(9) = 2.



Describe the following (i) Domain (ii) Range.

10. A graph representing the function f(x) is given in figure it is clear that

f(9) = 2.

What is the image of 6 under f?

11. Let
$$f(x)=2x+5$$
. If $x
eq 0$ then find $\displaystyle rac{f(x+2)-f(2)}{x}$

12. A function is defined by f(x) = 2x - 3

Find
$$rac{f(0)+f(1)}{2}$$

Watch Video Solution

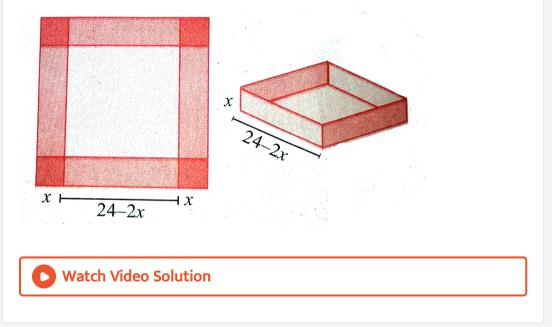
13. A function is defined by f(x) = 2x - 3

Find x such that f(x) = 0.

Watch Video Solution

14. A function is defined by f(x)=2x-3

Find x such that f(x) = x.


Watch Video Solution

15. A function is defined by f(x) = 2x - 3

Find x such that f(x) = f(1 - x).

16. An open box is to be made from a square piece of material, 24 cm on a side, by cutting equal squares from the corners and turning up the sides as shown in figure. Express volume V of the box as a function of x.

17. A function f is defined by f(x)=3-2x. Find x such that $fig(x^2ig)=(f(x))^2.$

18. a plane is flying at a speed of 500 km per hour. Express the distance d

travelled by the plane as function of time t in hours.

19. The data in the adjcent table depicts the length of a woman's foreheads and her corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehead length (x) as y = ax + b, where a, b are constants.

Length 'x' of forehand (in cm)	Height 'y' (in inches)
35	56
45	65
50	69.5
55	74

Check if this relation is a functions.

20. The data in the adjcent table depicts the length of a woman's foreheads and her corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehead length (x) as y = ax + b, where a, b are constants.

Length 'x' of forehand (in cm)	Height 'y' (in inches)	
35	56	
45	65	
50	69.5	
55	74	

Find a and b.

21. The data in the adjcent table depicts the length of a woman's foreheads and her corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehead length (x) as

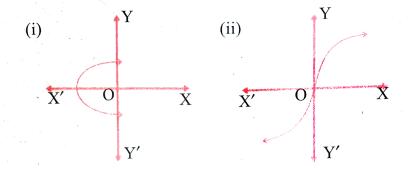
y = ax + b, where a, b are constants.

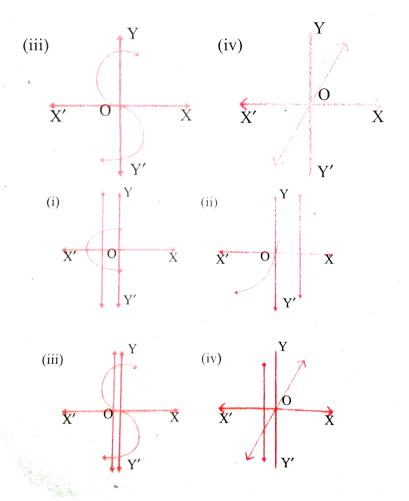
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
Length 'x' of forehand (in cm)	Height 'y' (in inches)		
35	56		
45	65		
50	69.5		
55	74		

Find the height of a woman whose forehead length is 40 cm.

Watch Video Solution

22. The data in the adjcent table depicts the length of a woman's foreheads and her corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehead length (x) as y = ax + b, where a, b are constants.


Length 'x' of forehand (in cm)	Height 'y' (in inches)
35	56
45	65
50	69.5
55	74


Find the length of forehead of a woman if her height is 53.3 inches.

Watch Video Solution

1. Determine whether the graph given below represents functions. Give reason for your answers concering each graph

2. Let: $f: A \to B$ be a function defined by $f(x) = \frac{x}{2} - 1$. Where `A={2, 4, 6, 10, 12}, B={0, 1, 2, 4, 5, 9}. Represents f by set of ordered pairs, Watch Video Solution

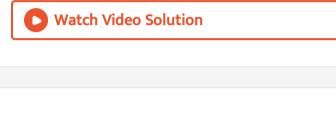
3. Let: $f \colon A o B$ be a function defined by $f(x) = rac{x}{2} - 1$. Where `A={2, 4,

6, 10, 12}, B={0, 1, 2, 4, 5, 9}. Represents f by

a table,

Watch Video Solution

4. Let: $f \colon A o B$ be a function defined by $f(x) = rac{x}{2} - 1$. Where `A={2, 4,


6, 10, 12}, B={0, 1, 2, 4, 5, 9}. Represents f by

an arrow diagram diagram,

5. Let: $f \colon A o B$ be a function defined by $f(x) = rac{x}{2} - 1$. Where `A={2, 4,

6, 10, 12}, B={0, 1, 2, 4, 5, 9}. Represents f by

a graph,

6. Represent the function $f = \{(1, 2), (2, 2), (3, 2), (4, 3), (5, 4)\}$ through an arrow diagram

Watch Video Solution

7. Represent the function $f = \{(1, 2), (2, 2), (3, 2), (4, 3), (5, 4)\}$

through

a table form

8. Represent the function $f = \{(1, 2), (2, 2), (3, 2), (4, 3), (5, 4)\}$

through

a graph

	_			
5) Watch	Video	Sol	ution
	, materi	11000		

9. Show that the function $f\colon N o N$ defined by f(x)=2x-1 is one-

one but not onto.

Watch Video Solution

10. Show that the function $f\colon N o N$ defined by $f(m)=m^2+m+3$ is

one-one function.

11. Let $A=\{1,2,3,4\}$ and B=N, Let $f\!:\!A o B$ be defined by $f(x)=x^3$ then,

Find the range of f.

12. Let
$$A = \{1, 2, 3, 4\}$$
 and $B = N$. Let $f: A
ightarrow B$ to defined by

 $f(x)=x^3$ then, identify the type of function

Watch Video Solution

13. In each of the following cases state whether the functions is bijective

or not. Justify your answer:

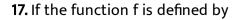
 $f{:}R
ightarrow Rdef \in edby$ f(x)=2x+1`

14. In each of the following cases state whether the functions is bijective

or not. Justify your answer:

$$f{:}R
ightarrow R$$
 defined by $f(x)=3-4x^2$

15. Let $A = \{-1, 1\}$ and $B = \{0, 2\}$. If the functions $f: A \to B$ defined by f(x) = ax + b is an onto function? Find a and b.


Watch Video Solution

16. If the function f is defined by

$$f(x) = \{(x+2, if x > 1), (2 if -1)\}$$

), $(x - 1 \text{ if } - 3 < x < -1): \}$ find the values of

f(3)

 $f(x) = \{(x + 2, if x > 1), (2 if -1)\}$

 $), (x-1 \;\; ext{if} - 3 < x < \; -1): \} \;$ find the values of

f(0)

Watch Video Solution

18. If the function f is defined by
$$f(x)=\{(x+2, \ ext{if} x>1), (2 \ ext{if-1lexle1}), (x-1 \ ext{if} -3 < x < -1): \} \ ext{find the values of f(-1.5)}$$

Watch Video Solution

19. If the function f is defined by

 $f(x)=\{(x+2, ext{ if } x>1), (2 ext{ if-1lexle1}$

 $), (x-1 \hspace{0.1in} ext{if} - 3 < x < \hspace{0.1in} -1): \} \hspace{0.1in}$ find the values of

f(2)+f(-2)

20. A function $f\colon [-5,9] o R$ is defined as follows:

 $f(x) = \{(6x+1 \;\; ext{if} - 5 \leq x < 2), \;\; ext{(5x^(2)-1" if "2lexlt6), (3x-4" if "}$

6lexle9):} $F \in d$ f(-3)+f(2)`

Watch Video Solution

21. A function $f \colon [-5, 9] o R$ is defined as follows:

 $f(x) = \{(6x+1 \;\; ext{if} - 5 \leq x < 2), \;\; (5x^{(2)-1"} \;\; ext{if} \;\; "2lexlt6), \;\; (3x-4" \;\; ext{if} \;\; "$

6lexle9):} $F \in d$ f(7)-f(1)`

Watch Video Solution

22. A function $f \colon [-5,9] o R$ is defined as follows:

 $f(x) = \{(6x+1 \;\; ext{if} - 5 \leq x < 2), \;\; ext{(5x^(2)-1" if "2lexlt6), (3x-4" if "}$

6lexle9):} $F \in d$ 2f(4)+f(8)`

23. A function
$$f: [-5, 9] \rightarrow R$$
 is defined as follows:
 $f(x) = \{(6x + 1 \text{ if-5lexlt2}), (5x^2 - 1 \text{ if } 2 \le x < 6), (3x - 4 \text{ if } 6 \le x \le 9) :\}$
Find $\frac{2f(-2) - f(6)}{f(4) + f(-2)}$

Watch Video Solution

24. The distance S an object travles under the influence of gravity in time t seconds is given by $S(t) = \frac{1}{2}gt^2 + at + b$ where, (g is the acceleration due to gravity), a, b, are constants. Check if the function S(t) is one-one.

Watch Video Solution

25. The function 't' which maps temperature in Celsius (C) into temperature in Fahrenheit (F) is defined by t(C)=F where $F = \frac{9}{5}C + 32$. Find t(0)

26. The function 't' which maps temperature in Celsius (C) into temperature in Fahrenheit (F) is defined by t(C)=F where $F=rac{9}{5}C+32.$ Find t(28)

Watch Video Solution

27. The function 't' which maps temperature in Celsius (C) into temperature in Fahrenheit (F) is defined by t(C)=F where $F = \frac{9}{5}C + 32$. Find t(-10)

Watch Video Solution

28. The function 't' which maps temperature in Celsius (C) into temperature in Fahrenheit (F) is defined by t(C)=F where $F=rac{9}{5}C+32.$

Find the value of C where t(C)=212

29. The function 't' which maps temperature in Celsius (C) into temperature in Fahrenheit (F) is defined by t(C)=F where $F = \frac{9}{5}C + 32$. Find the temperature when the Celsius value is equal to the Fahrenheit value.

Watch Video Solution

Execrise 15

1. Using the function f and g given below, find the fog and gof. Check whether fog=gof.

 $f(x) = x - 6, g(x) = x^3$

2. Using the function f and g given below, find the fog and gof. Check

whether fog-gof.

$$f(x)=rac{2}{x}, g(x)=2x^2-1$$

Watch Video Solution

3. Using the function f and g given below, find the fog and gof. Check whether fog-gof.

$$f(x)=rac{x+6}{3}, g(x)=3-x$$

Watch Video Solution

4. Using the function f and g given below, find the fog and gof. Check whether fog-gof.

$$f(x)=3+x, g(x)=1+x$$

5. Using the function f and g given below, find the fog and gof. Check whether fog=gof.

 $f(x)=4x^{(2)-1}, g(x)=1+x$

Watch Video Solution

6. Find the value of k, such that fog=gof

$$f(x)=3x+2, g(x)=6x-k$$

Watch Video Solution

7. Find the value of k, such that fog=gof

$$f(x)=2x-k, g(x)=4x+5$$

Watch Video Solution

8. If
$$f(x)=2x-1,$$
 $g(x)=rac{x+1}{2},$ show that $fog=gof=x.$

9. If
$$f(x) = x^2 - 1, g(x) = x - 2$$
 find a, if gof(a)=1.

10. Find k, if
$$f(k) = 2k - 1$$
 and $fof(k) = 5$.

Watch Video Solution

11. Let $A, B, C \in N$ and a function $f: A \to B$ be defined by f(x) = 2x + 1 and $g: B \to C$ be defined by $g(x) = x^2$. Find the range of fog and gof.

Watch Video Solution

12. If $f(x) = x^2 - 1$. Find fof

13. If
$$f(x) = x^2 - 1$$
. Find fofof

Watch Video Solution

14. If $f:R \to R$ and $g:R \to R$ are defined by $f(x) = x^5$ and $g(x) = x^4$ then check if f, g are one-one and fog is one-one?

Watch Video Solution

15. Consider the function f(x), g(x), h(x) as given below. Show that

(fog)oh = fo(goh) in each case.

$$f(x) = x - 1, \, g(x) = 3x + 1 \, ext{ and } \, h(x) = x^2.$$

16. Consider the function f(x), g(x), h(x) as given below. Show that (fog)oh = fo(goh) in each case. $f(x) = x^2, g(x) = 2x$ and h(x) = x + 4

17. Consider the function f(x), g(x), h(x) as given below. Show that (fog)oh = fo(goh) in each case.

$$f(x) = x - 4, \, g(x) = x^2 \, \, {
m and} \, \, h(x) = 3x - 5$$

Watch Video Solution

18. Let $f=\{(-1,3\},(0,-1),(2,-9)\}$ be linear function from Z into

Z. Find f(x).

19. In electrical circuit theory, a circuit C(t) called a linear circuit if it satisfies the superposition principle given by $C(at_1 + bt_2) = aC(t_1) + bC(t_2)$, where a, b are constants. Show that the circuits C(t) = 3t is linear.

Execrise 16

1. If
$$n(A \times B) = 6$$
 and $A = \{1, 3\}$, then $n(B)$ is

- A. 1
- $\mathsf{B.}\,2$
- C. 3
- D. 6

Answer: C

2. $A=\{a,b,p\},B=\{2,3\},C=\{p,q,r,s\}$ then $n[(A\cup C) imes B]$ is

A. 8

B.20

C. 12

D. 16

Answer: C

Watch Video Solution

3. If $A - \{1, 2\}, B = \{1, 2, 3, 4\}, C = \{5, 6\}$ and D={5, 6, 7, 8}` then state

which of the following statement is true.

A. $(A imes C) \subset (B imes D)$

 $\mathsf{B}.\,(B\times\,)\subset(A\times C)$

$$\mathsf{C.}\left(A imes B
ight)\subset\left(A imes D
ight)$$

$$\mathsf{D}.\,(D\times A)\subset (B\times A)$$

Answer: A

Watch Video Solution

4. If there are 1024 relations from a set $A=\{1,2,3,4,5\}$ to a set B, then

the number of elements in B is

A. 3

 $\mathsf{B.}\,2$

C. 4

D. 8

Answer: B

5. The range of the relation $r=ig\{(x,x^2)\mid x ext{ is a prime number less than}$

13} is

- A. $\{2, 3, 5, 7\}$
- B. {2, 3, 5, 7, 11}
- C. {4, 9, 25, 49, 121}
- $\mathsf{D}.\,\{1,\,4,\,9,\,25,\,49,\,121\}$

Answer: C

Watch Video Solution

6. If the ordered pairs $(a+2,4) \,\, {
m and} \,\, (5,2a+b)$ are equal to then (a, b)

is

A. (2, -2)

B.(5,1)

C.(2,3)

D. (3, -2)

Answer: D

7. Let n(A) = m and n(B) = n that the total number of non-empty relations that can be defined from A to B is

A. *m*^{*n*}

 $\mathsf{B.}\,n^m$

 $\mathsf{C.}\, 2^{mn}-1$

D. 2^{mn}

Answer: C

8. If $\{(a, 8), (6, b)\}$ represents an identity functions then the values of a and b are respectively

A. `(8, 6)

- **B**. (8, 8)
- C. (6, 8)
- D.(6, 6)

Answer: A

Watch Video Solution

9. Let $A=\{1,2,3,4\}\,$ and $\,B=\{4,8,9,10\}.$ A function $f\colon A o B$ given by $f=\{(1,4),\,(2,8),\,(3,9),\,(4,10)\}$ is a

A. Many-one functions

B. Identity functions

C. One-to-one function

D. Into function

Answer: C

Watch Video Solution

10. If
$$f(x) = 2x^2$$
 and $g(x) = \frac{1}{3x}$. Then fog is

A.
$$\frac{3}{2x^2}$$

B. $\frac{2}{3x^2}$
C. $\frac{2}{9x^2}$
D. $\frac{1}{6x^2}$

Answer: C

11. If $f \colon A o B$ is a bijective function and if n(B) = 7, then n(A) is equal

to

A. 7

B.49

C. 1

D. 14

Answer: A

12. Let f and g be two functions given by

$$f = \{(0, 1), (2, 0), (3, -4), (4, 2), (5, 7)\}$$

 $g(x) = \{(0, 2), (1, 0), (2, 4), (-4, 2), (7, 0) \text{ then the range of fog is } ...$
A. $\{0, 2, 3, 4, 5\}$
B. $\{-4, 1, 0, 2, 7\}$

 $\mathsf{C}.\{1, 2, 3, 4, 5\}$

D. $\{0, 1, 2\}$

Answer: D

Watch Video Solution

13. Let
$$f(x)=\sqrt{1+x^2}$$
 then

A.
$$f(xy) = f(x) \cdot f(y)$$

$$\mathsf{B}.\,f(xy)\geq f(x)\cdot f(y)$$

$$\mathsf{C}.\,f(xy)\leq f(x)\cdot f(y)$$

D. None of these

Answer: C

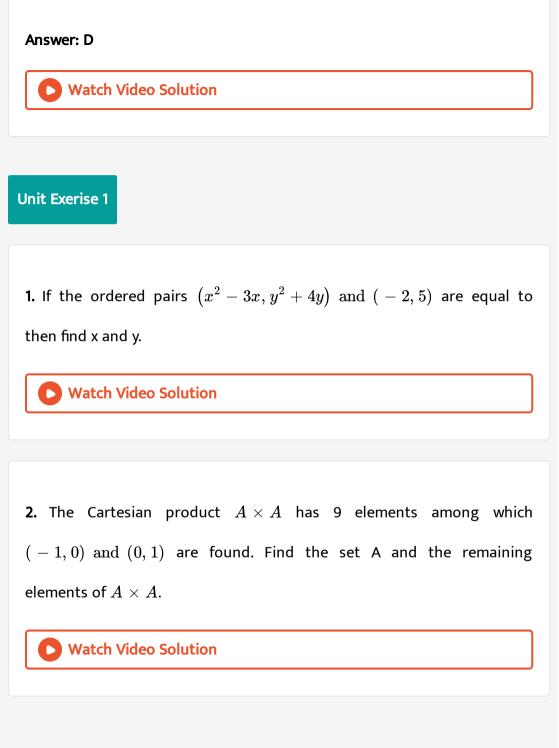
14. If $g = \{(1,1), (2,3), (3,5), (4,7)\}$ is a function given by $g(x) = \alpha x + \beta$ then the values of α and β are

A. (-1, 2)

- B.(2,1)
- C.(-1, -2)
- D.(1,2)

Answer: B

Watch Video Solution


15.
$$f(x) = (x+1)^3 - (x-1)^3$$
 represents a functions which is

A. linear

B. cubic

C. reciprocal

D. quadratic

3. Given that
$$f(x) = ig\{ig(\sqrt{x-1}, x \geq 1ig), (4, x < 1)ig\}$$

find f(0)

4. Given that
$$f(x) = ig\{ig(\sqrt{x-1}, x \geq 1ig), (4, x < 1)ig\}$$

find f(3)

Watch Video Solution

5. Given that
$$f(x) = ig\{ig(\sqrt{x-1}, x \geq 1ig), (4, x < 1)ig\}$$

find f(a+1) in terms of a. (Given that $a \ge 0$)`.

Watch Video Solution

6. Let $A=\{9,10,11,12,13,14,15,16,17\}$ and let $f\colon A o N$ be defined by f(n)= the highest prime factor of $n\in A.$ Write f as a set of ordered pairs and find the range of f.

7. Find the domain of the function

$$f(x)=\sqrt{1+\sqrt{1-\sqrt{1-x^2}}}$$

Watch Video Solution

8. If
$$f(x) = x^2$$
, $g(x) = 3x$ and $h(x) = x - 2$. Prove that $(fog)oh = fo(goh)$.

Watch Video Solution

9. $A = \{1, 2\}$ and $B = \{1, 2, 3, 4\}, C = \{5, 6\}$ and $D = \{5, 6, 7, 8\}.$

Verify whether A imes C is a subset of B imes D?

10. If
$$f(x) = \frac{x-1}{x+1}$$
, $x \neq 1$ show that $f(f(x)) = \frac{-1}{x}$ provided $x \neq 0$.
Watch Video Solution
11. The function f and g are defined by $f(x) = 6x + 8$, $g(x) = \frac{x-2}{3}$.
Calculate the value of $g\frac{g(1)}{2}$
Watch Video Solution
12. The function f and g are defined by $f(x) = 6x + 8$, $g(x) = \frac{x-2}{3}$.
Write an expression for gf(x) in its simplest form.
Write the domain of the following real functions
 $f(x) = \frac{2x + 1}{3}$

$$f(x)=rac{2x+1}{x-9}$$

14. Write the domain of the following real functions

$$p(x)=rac{-5}{4x^2+1}$$

15. Write the domain of the following real functions

$$g(x)=\sqrt{x-2}$$

Watch Video Solution

16. Write the domain of the following real functions

$$h(x) = x + 6$$

Government Exam Questions

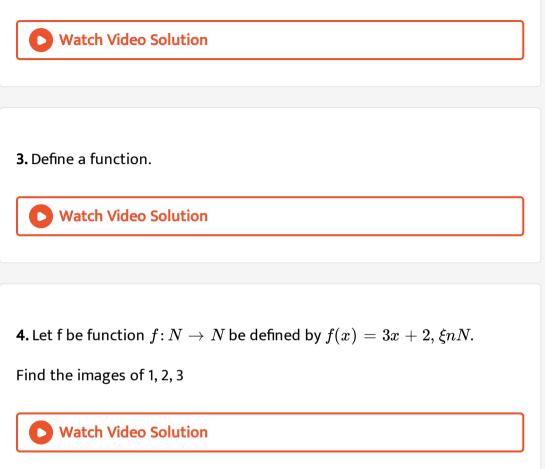
1.
$$f = \{(2,1), (3,b), (4,b), (5,c)\}$$
 is a____

A. identity function

B. one-one function

C. many-one function

D. constant function

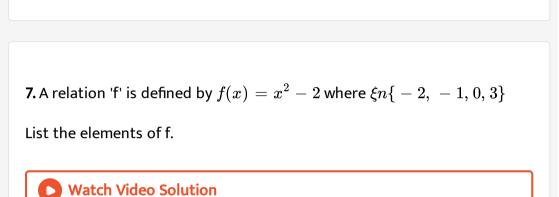

Answer: C

2. If
$$n(A) = p$$
 and $n(B) = q$ then $n(A \times B)_{---}$.

A.
$$p+q$$

B. $p-q$
C. $p imes q$
D. $\displaystyle \displaystyle rac{p}{q}$

Answer: C


5. Let f be function $f: N \to N$ be defined by $f(x) = 3x + 2, \xi n N$.

Find the pre-images of 29, 53

6. Let f be function $f \colon N o N$ be defined by $f(x) = 3x + 2, \xi n N$.

Identify the types of function.

Watch Video Solution

8. A relation 'f' is defined by $f(x)=x^2-2$ where $\xi n\{-2,\ -1,0,3\}$

Is f a function?

9. Let $A = \{1, 2, 3, 4, 5, 6\}, B = W$ and $f: A \to$ is defined by

$$f(x)=x^2-1$$
 find the range of f.

10. Let $A=\{1,2,3,4\}$ and B=N, Let $f\colon A o B$ be defined by $f(x)=x^3$ then,

Find the range of f.

Watch Video Solution

11. Let $A=\{1,2,3,4\}$ and B=N. Let $f\colon A o B$ to defined by $f(x)=x^3$ then, identify the type of function

Watch Video Solution

12. If f(x) = 3x - 2, g(x) = 2x + k and if fog=gof, then find the value of

k.

$$A = \{ \xi nN \mid 1 < x < 4 \}, B = \{ \xi nW \mid 0 \leq x < 2 \} \, \, ext{and} \, \, C = \{ \xi nN \mid x < 1 \}$$

. Then verify the $A imes (B\cap C)=(A imes B)\cap (A imes C).$

Additional Question Answers

1. Let $A = \{1, 2, 3, 4\}$ and $B = \{-1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$. Let $R = \{(1, 2), (2, 6), (3, 10), (4, 9)\} \subset A \times B$ be a relation. Show that R is a function and find its domain, co-domain and the range of R.

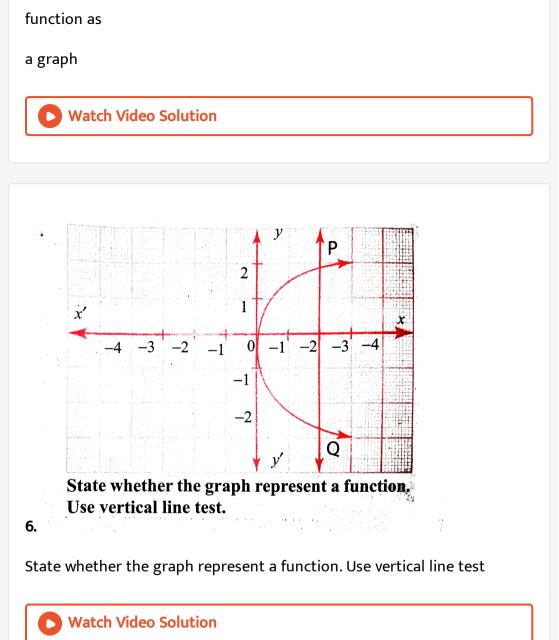
Watch Video Solution

2. Let $A = \{0, 1, 2, 3\}$ and $B = \{1, 2, 3, 5, 7, 9\}$ be two sets. Let $f: A \to B$ be a function given by f(x) = 2x + 1. Represents this function as

a set of of ordered pairs

3. Let $A = \{0, 1, 2, 3\}$ and $B = \{1, 2, 3, 5, 7, 9\}$ be two sets. Let $f: A \to B$ be a function given by f(x) = 2x + 1. Represents this function as

a table


Watch Video Solution

4. Let $A = \{0, 1, 2, 3\}$ and $B = \{1, 2, 3, 5, 7, 9\}$ be two sets. Let $f: A \to B$ be a function given by f(x) = 2x + 1. Represents this function as

an arrow

Watch Video Solution

5. Let $A = \{0, 1, 2, 3\}$ and $B = \{1, 2, 3, 5, 7, 9\}$ be two sets. Let $f: A \to B$ be a function given by f(x) = 2x + 1. Represents this

7. Let $f = \{(2, 7), (3, 4), (7, 9), (-1, 6), (0, 2), (5, 3)\}$ be function from $A = \{-1, 0, 2, 3, 5, 7\}$, to $B = \{2, 3, 4, 5, 7, 9\}$. Is this an one-one function

Watch Video Solution

8. Let
$$f = \{(2, 7), (3, 4), (7, 9), (-1, 6), (0, 2), (5, 3)\}$$
 be function
from $A = \{-1, 0, 2, 3, 5, 7\}$, to $B = \{2, 3, 4, 6, 7, 9\}$. Is this
an onto function

Watch Video Solution

9. Let $f = \{(2,7), (3,4), (7,9), (-1,6), (0,2), (5,3)\}$ be function

from
$$A = \{-1, 0, 2, 3, 5, 7\}$$
, to $B = \{2, 3, 4, 5, 7, 9\}$. Is this

both one-one and onto function

10. f(x) = (1 + x)q(x) = (2x - 1)

Show that fo(g(x))=go(f(x))

11. Let $A=\{1,2,3,4,5\}, B=N ext{ and } f\colon A o B$ be defined by

 $f(x) = x^2$. Find the range of f. Identify the type of function.

Watch Video Solution

12. The following table represents a function from $A = \{5, 6, 8, 10\}$ to

 $B = \{19, 15, 9, 11\}$, where f(x) = 2x - 1. Find the values of a and b.

Watch Video Solution

13. If $R = \{(a, -2), (-5, b), (8, c), (d, -1)\}$ represents the identify

functions, find the value of a, b, c and d.

14. A function $f\colon [\,-7,\,6) o R$ is defined as follows.

$$f(x) = egin{cases} x^2 + 2x + 1 & -7 \leq x < \ -5 \ x + 5 & -5 \leq x \leq 2 \ x - 1 & 2 < x < 6 \end{cases}$$

Find 2f(-4) + 3f(2)

Watch Video Solution

15. A function $f \colon [-7, 6) o R$ is defined as follows.

$$f(x) = egin{cases} x^2 + 2x + 1 & -7 \leq x < \ -5 \ x + 5 & -5 \leq x \leq 2 \ x - 1 & 2 < x < 6 \end{cases}$$

Find f(-7) - f(-3)

16. A function $f\colon [16) o R$ is defined as follows.

$$f(x) = \left\{egin{array}{ccc} x+1 & 1 \leq x < 2 \ 2x-1 & 2 \leq x < 4 \ 3x^2-10 & 4 \leq x < 6 \end{array}
ight.$$

Find the value of f(5)

Watch Video Solution

17. A function $f\colon [16) o R$ is defined as follows.

$$f(x) = \left\{egin{array}{ccc} x+1 & 1 \leq x < 2 \ 2x-1 & 2 \leq x < 4 \ 3x^2-10 & 4 \leq x < 6 \end{array}
ight.$$

Find the value of f(3)

Watch Video Solution

18. A function $f\colon [16) o R$ is defined as follows.

$$f(x) = egin{cases} x+1 & 1 \leq x < 2 \ 2x-1 & 2 \leq x < 4 \ 3x^2-10 & 4 \leq x < 6 \end{cases}$$

Find the value of f(2) - f(4).

Unit Test

1. $n(R) = ig\{ ig(x,x^2ig) \mid x ext{ is a prime number less than 13} ext{ is }$

A. 6 B. 7 C. 5 D. 4

Answer: c

Watch Video Solution

2. $A=\{a,b,p\}, B=\{2,3\}, C=\{p,q,r,s\}$ then $n[(A\cup C) imes B]$ is

B.20

 $\mathsf{C}.\,12$

D. 16

Answer: C

Watch Video Solution

3. Let $A=\{1,2,3,4\}\,$ and $\,B=\{4,8,9,10\}.$ A function $f\colon A o B$ given by $f=\{(1,4),\,(2,8),\,(3,9),\,(4,10)\}$ is a

A. Many-one functions

B. Identity functions

C. One-one and onto function

D. onto function

Answer: C

4. If $g = \{(1,1), (2,3), (3,5), (4,7)\}$ is a function given by $g(x) = \alpha x + \beta$ then the values of α and β are

A. (-1, 2)

- B. (2, 1)
- C. (-1, -2)
- D. (1, 2)

Answer: B

Watch Video Solution

5. The range of the relation $r=ig\{ig(x,x^2ig)\mid x ext{ is a prime number less than}$

13} is

A. $\{2, 3, 5, 7\}$

B. {2, 3, 5, 7, 11}

 $C. \{4, 9, 25, 49, 121\}$

 $\mathsf{D}.\,\{1,\,4,\,9,\,25,\,49,\,121\}$

Answer: C

Watch Video Solution

6. Let $A = \{1, 2, 3, 4, ..., 45\}$ and R be the relation defined as "is square of" on A. Write R as a subset of $A \times A$. Also, find the domain and range of R.

Watch Video Solution

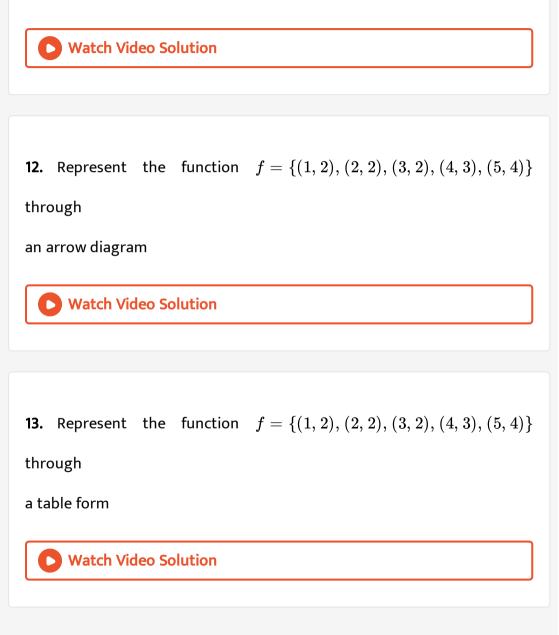
7. Let $f = \{(x,y) \mid x,y \in N ext{ and } y = 2x\}$ be a relation on N. Find the

domain, co-domain and range. Is this relation a function?

8. A function f is defined by f(x) = 3 - 2x. Find x such that $fig(x^2ig) = (f(x))^2.$

Watch Video Solution

9. Let $A,B,C\in N$ and a function $f\colon A o B$ be defined by f(x)=2x+1 and $g\colon B o C$ be defined by $g(x)=x^2.$ Find the range of fog and gof.


Watch Video Solution

10. Let $A = \{-1, 1\}$ and $B = \{0, 2\}$. If the functions $f: A \rightarrow B$

defined by f(x) = ax + b is an onto function? Find a and b.

11. Show that the function $f\colon N o N$ defined by f(x)=2x-1 is one-

one but not onto.

14. Represent the function $f = \{(1, 2), (2, 2), (3, 2), (4, 3), (5, 4)\}$

through

a graph