© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

CHEMISTRY

BOOKS - SURA CHEMISTRY (TAMIL

ENGLISH)

GASEOUS STATE

Evaluation Choose The Best Answer

1. Gases deviate from behavior at high pressure.

Which of the following statement(s) is correct for non-ideality?
A. at hgih pressure the collision between the gas molecule become enormous
B. at high pressure the gas molecules move only in one direction
C. at high pressure, the volume of gas become insignificant
D. at high pressure the intermolecular interactions become significant

Answer: D

2. Rate of diffusion of a gas is
A. directly proportional to its density
B. directly proportional to molecular weight
C. directly proportional to its square root of
its molecular weight
D. inversely proportional to the square root of its molecular weight

Answer: D

3. Which of the following is the correct expression for the equation of state of van der Waals gas?
A. $\left(P+\frac{a}{n^{2} V^{2}}\right)(V-n b)=n R T$
B. $\left(P+\frac{n a}{n^{2} V^{2}}\right)(V-n b)=n R T$
C. $\left(P+\frac{n a^{2}}{V^{2}}\right)(V-n b)=n R T$
D. $\left(P+\frac{n^{a} a^{2}}{V^{2}}\right)(V-n b)=n R T$

Answer: C

4. When an iden gas undergoes unrestrained expansion, no cooling occurs because the molecules
A. are above inversion temperature
B. exert no attractive forces on each other
C. do work equal to the loss in kinetic energy
D. collide without loss of energy

Answer: B

Watch Video Solution

5. Equal weights of methane and oxygen are mixed in an empty container at 298 K . The fraction of total pressure exerted by oxygen is
A. $\frac{1}{3}$
B. $\frac{1}{2}$
C. $\frac{2}{3}$
D. $\frac{1}{3} \times 273 \times 298$

Answer: A
6. The temperatures at which real gases obey the ideal gas laws over a wide range of pressure is called
A. Critical temperature
B. Boyle temperature
C. Inversion temperature
D. Reduced temperature

Answer: B
(D) Watch Video Solution
7. In a closed room of $1000 \mathrm{~m}^{3}$ a perfume bottle is opened up. The room develops a smell. This is due to which property of gases?
A. Viscosity
B. Density
C. Diffusion
D. None

Answer: C

Watch Video Solution

8. A bottle of ammonia and a bottle of HCl connected through a long tube are opend simultaneously at both ends. The white ammonium chloride ring first formed will be
A. At the center of the tube
B. Near the hydrogen chloride bottle
C. Near the ammonia bottle
D. Throughout the length of the tube

Answer: B

9. The value of universal constant depends upon

A. Temperature of the gas
B. Volume of the ags
C. Number of moles of the gas
D. units of Pressure and volume.

Answer: D
(D) Watch Video Solution
10. The value of the gas constant R is
A. $0.082 \mathrm{dm}^{2} \mathrm{~atm}$
B. $0.987 \mathrm{cal} \mathrm{mol}^{-1} K^{-1}$
C. $8.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
D. $8 \mathrm{erg} \mathrm{mol}{ }^{-1} K^{-1}$

Answer: C

(Watch Video Solution

11. Use of hot air balloon in sports and metorological observation is an application of
A. Boyle's law

B. Newton's law

C. Kelvin's law
D. Brown's law

Answer: A

D Watch Video Solution

12. Consider the following statements
(i) Atmospheric pressure is less at the top of a mountain than sea level
(ii) Gases are much more compressible than solide or liquids

When the atmospheric pressure increases the height of mercury column rises.
A. I and II
B. II and III
C. I and III
D. I, II and III

Answer: D

- View Text Solution

13. Compressibility factor for CO_{2} at 400 K and
71.0 bar is 0.8697 . The molar valume of CO_{2}

under these conditions is

A. $22.04 d m^{3}$
B. $2.24 d m^{3}$
C. $0.41 d m^{3}$
D. $19.5 d m^{3}$

Answer: C
(D) Watch Video Solution
14. If temperature and volume of an ideal gas is increased to twice its values, the initial pressure P becomes
A. 4 P
B. $2 P$
C. P
D. 3P

Answer: C

D Watch Video Solution
15. At identical temperature and pressure, the rate of diffusion of hydrogen gas is $3 \sqrt{3}$ times
that of a hydrocarbon having molecular formula
$C_{n} H_{2 n-2}$. What is the value of n ?
A. 8
B. 4
C. 3
D. 1

Answer: B

D Watch Video Solution

16. Equal moles of hydrogen and oxygen gas are placed in a container, with a pin-hole through which both can escape what fraction of oxygen
esacpes in the time required for one-half of the hydrogen to escape.
A. $\frac{3}{8}$
B. $\frac{1}{2}$
C. $\frac{1}{8}$
D. $\frac{1}{4}$

Answer: C
17. The variation of volume V , with temperature T ,
keeping pressure constant is called the
coefficient of thermal expansion is
$\alpha=\frac{1}{V}\left(\frac{\delta V}{\delta T}\right)_{P}$. For an ideal gas α is equal to
A. T
B. $\frac{1}{T}$
C. P
D. none of these
18. Foure gases P, Q, R and S have almost same values of ' b ' but their 'a' values (a, b are Vander

Waals Constants) are in the order
$Q<R<S<P$. At a particular temperature, among the foure gases the most easily liquefiable one is
A. P
B. Q
C. R

D. S

Answer: A

- Watch Video Solution

19. Maximum deviation from ideal gas is expected from
A. $\mathrm{CH}_{4}(g)$
B. $N H_{3}(g)$
C. $H_{2}(g)$
D. $N_{2}(g)$

Answer: B

D Watch Video Solution

20. The units of Vander Waals constant ' b ' and 'a' respectively
A. $m o l L^{-1}$ and $L \mathrm{~atm}^{2} \mathrm{~mol}^{-1}$
B. mol Land Latm mol^{2}
C. $\mathrm{mol}^{-1} \mathrm{~L}$ and $L^{2} \mathrm{~atm} \mathrm{~mol}^{-2}$
D. none of thess

- View Text Solution

21. Assertion : Critical temperature of CO_{2} is 304 K , it can be liquefied above 304 K .

Reason : For a given mass of gas, volume is to directly proportional to pressure at constant temperature
A. both assertion and reason are true and reason is the correct explanation of assertion
B. both assertion and reason are turee but reason is not the correct explanation of assertion
C. assertion is true but reason is false
D. both assertion and reason are false

Answer: D

D Watch Video Solution

22. What is the density of N_{2} gas at $227^{\circ} \mathrm{C}$ and
$\left(R=0.82 . L\right.$ atm $\left.K^{-1} \mathrm{~mol}^{-1}\right)$
A. $1.40 \mathrm{~g} / \mathrm{L}$
B. $2.81 \mathrm{~g} / \mathrm{L}$
C. $3.41 \mathrm{~g} / \mathrm{L}$
D. $0.29 \mathrm{~g} / \mathrm{L}$

Answer: C

D Watch Video Solution

23. Which of the following diagrams correctly describes behaviour of a fixed mass of an ideal
A.
B.
C.
D.

Answer: C

D View Text Solution

24. 25 g of each of the following gases are taken at $27^{\circ} \mathrm{C}$ and 600 mm Hg pressure. Which of
these will have the least volume?
A. HBr
B. HCl
C. HF
D. HI

Answer: D

- Watch Video Solution

Evaluation Answer These Questions Briefly

1. State Boyle's law.

(Watch Video Solution

2. Name two items that can serve as model for

Gay Lusaac' law and explain.

(D) Watch Video Solution

3. Give the mathematical exprssion that relates
gas volume and moles.
4. What is an ideal gas? Why do the real gases show deviations from ideal behaviour?

D Watch Video Solution

5. Can a Van der Waals gas with $a=0$ be liquefied?

Explain.
(D) Watch Video Solution
6. Suppose there is a tiny sticky area on the wall of a container of gas. Molecules hitting this area stick there permanently. Is the pressure greater or less than on the ordinary area of walls?

- View Text Solution

7. Explain the following observations

Aerated water bottles are kept under water during summer
8. Explain the following observations

Liquid ammonia bottle is cooled before opening the seal

(D) Watch Video Solution

9. Explain the following observations

The tyre of an automobile is inflated to slightly lesser pressure in summer than in winter
10. Explain the following observations

The size of a weather ballonn becomes larger and larger as it asecnds up into larger altitude

(D) Watch Video Solution

11. Given suitable explanation for the following
facts about gases.
Gases don't settle at the botton of a container.

D Watch Video Solution

12. Given suitable explanation for the following facts about gases.
diffuse through all the space available to theml.

(D) Watch Video Solution

13. Suggest why there is no hydrogen $\left(H_{2}\right)$ in our atmosphere. Why does the moon have no atmosphere?

D View Text Solution

14. Explain whether a gas approaches ideal behavior or deviates from ideal behavaiour if

It is compressed to a smaller volume at constant temperature.

(D) Watch Video Solution

15. Explain whether a gas approaches ideal behavior or deviates from ideal behavaiour if
the temperature is raised at while keeping the volume constant
16. Explain whether a gas approaches ideal behavior or deviates from ideal behavaiour if more gas is introduced into the same volume, and at the same temperature

D View Text Solution

17. Which of the following gases would you expect to deviate from ideal behaviur under conditaions of low temperature $F_{2}, C l_{2}$ or $B r_{2}$?

Explain.
18. Distinguish between diffusion and effusion.

D Watch Video Solution

19. Aerosol cans carry clear warning of heating of
the can. Why?

- View Text Solution

20. Would it be easier ot drink water with a straw on the top of Mount Everest?

D Watch Video Solution

21. Write the Van der Waals equation for a real gas. Explain the correction term for pressure and volume.

-

22. Derive the values of critical constants in terms of van der Waals constants.

D View Text Solution

23. Why do astronauts have to wear protective suits when they are on the surface of moon?

(D) Watch Video Solution

24. When ammonia combines with $\mathrm{HCl}, \mathrm{NH}_{4} \mathrm{Cl}$
is formed as white dense fumes. Why do more
fumes appear near HCl ?

- View Text Solution

25. A sample of gas at $15^{\circ} \mathrm{C}$ at 1 atm has a volume of $2.58 \mathrm{dm}^{3}$. When the temperature is raised to $38^{\circ} \mathrm{C}$ at 1 atm does the volume of the gas increase? If so, calculate the final volume.

(D) Watch Video Solution

26. A sample of gas has a volume of $8.5 d m^{3}$ at an unknown temperature. When the sample is
submered in ice water at $0^{\circ} C$, its volume gets
reduced to $6.37 d m^{3}$. What is its initial temperature?

D Watch Video Solution

27. Of two samples of nitrogen gas, sample A contains 1.5 moles of nitrogen in a vessel of valume of $37.6 \mathrm{dm}^{3}$ at 298 K , and the sample B is in a vessel of volume ${ }^{`} 16.5 \mathrm{dm}^{\wedge}(3)$ at 298 IK .

Calculate the number of moles in sample B.
28. Sulphur hexafluoride is a colourless, odouriess
gas: calculate the pressure exerted by 1.82 moles of the gas in a steel vessel of volume $5.43 d \mathrm{~m}^{3}$ at $69.5^{\circ} \mathrm{C}$, assuming ideal gas behaviour.

D Watch Video Solution

29. Argon is an inert gas used in light bulbs ot retard the vaporization of the tungsten filament.

A certain light bulb containing argon at 1.2 atm
and $18^{\circ} \mathrm{C}$ is heated to $85^{\circ} \mathrm{C}$ at constant volume.
Calculate its final pressure in atm.
30. A small bubble rises from the bottom of a lake
where the temperature and presssure are $6^{\circ} \mathrm{C}$ and 4 atm . To the water surface, where the temperature is $25^{\circ} \mathrm{C}$ and pressure is 1 atm .

Calculate the final volume in (ml) of the bubble, if its initial volume is 1.5 mL .
31. Hydrochloric acid is treated with a metal to produce hydrogen gas. Suppose a student carries
out this reaction and collects a volume of $154.4 \times 10^{-3} \mathrm{dm}^{3}$ of a gas at a pressure of 742 mm of Hg at a temperature of 298 K . What mass of hydrogon gas (in mg) did the student collect?

D Watch Video Solution

32. It takes 192 sec for an unknown gas to diffuse through a porous wall and 84 sec for N_{2} gas to
efffuse at the same temperature and pressure.
What is the molar mass of the unknown gas?

D Watch Video Solution

33. A tank contains a mixture of 52.5 g of oxygen and 65.1 g of CO_{2} at 300 K the total pressure in the tanks is 9.21 atm. Calculate the partial pressure (in atm). Of each gas in the mixture.
34. A combustible gas is stroed in a metal tank at
a pressure of 2.98 atm at $25^{\circ} \mathrm{C}$. The tank can
withstand a maximum pressure of 12 atm after
which it will explode. The building in which the
tank has been stored catches fire. Now predict
whether the tank will blow up first or start melting? (Melting point of the metal $=1100 \mathrm{~K}$).

(D) Watch Video Solution

Additional Questions Additionl Choose The Correct

1. Which of the following correctly represents

Boyle's Law?

A.
B.
C.
D. All of these

Answer: A

- View Text Solution

2. What is the density of oxygen gas at $227^{\circ} \mathrm{C}$ and 4 atm pressure ($\mathrm{R}=0.082 \mathrm{~L}$ atom $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$)
A. $3.12 \mathrm{~g} / \mathrm{L}$
B. $3.41 \mathrm{~g} / \mathrm{L}$
C. $2.81 \mathrm{~g} / \mathrm{L}$
D. none of these

Answer: A

D Watch Video Solution
3. 56 g nitrogen and 96 g of oxygen are mixed isothermally and the mixture exerts a total pressure of 10 atm. The partial pressure of nitrogen and oxygen are respectively.
A. 4,6
B. 8,2
C. 6,4
D. 2,8

Answer: A
4. Pressure is
A. Force/area
B. force \times Area
C. Area/force
D. Force /area \times volume

Answer: A
(D) Watch Video Solution

5. The unit of pressure is

A. Pascal
B. Torr
C. Bar
D. all of above

Answer: D

- Watch Video Solution

6. Consider the following statements
(1) Gases are the most compressible state of matter.
7. Gases take the shape of the container.
8. The density of gases is higher than that of liquids

Which of the following statmenet(s) given above is/are corrent?
A. $1 \& 3$
B. only 1
C. 2\&3
D. $1 \& 2$

Answer: D

D Watch Video Solution

7. The instrument used for measuring atmsopheric pressure is \qquad
A. Beckmann thermometer
B. Galvanometer
C. Barometer
D. all the above

Answer: C

- Watch Video Solution

8. The standard atmospheric pressure is the pressure that supports a column of mercury exactly___ high at $0^{\circ} C$ at sea level.
A. 760 mm
B. 76 cm
C. both a \& b
D. 760 cm

Answer: C

D View Text Solution

9. If the volume of a fixed mass of a gas is reduced to half at constant temperature, the gas pressure
A. remains constant
B. doubles
C. reduces to half
D. becomes zero

Answer: B

D View Text Solution

10. Density of a gas is \qquad
A. directly proportional to pressure
B. indirectly proportional to pressure
C. directly proportional to volume
D. both b and c

Answer: A
11. The hydrgen ballon was invented by
A. Robert Boyle
B. J.A.C. Charles
C. Maxwell
D. Gay Lussac

Answer: B
(D) Watch Video Solution
12. $\mathrm{V} / \mathrm{T}=$ constant is law.

A. Gay Lussac

B. Boyle's
C. Dalton's
D. Charles

Answer: D

(D) Watch Video Solution

13. 273 K is equal to degree centigrade.
A. 0
B. 100
C. 373
D. 1

Answer: A

D Watch Video Solution

14. The absolute zero is
A. $-273^{\circ} C$
B. $273^{\circ} \mathrm{C}$
C. OK
D. both a and c

Answer: D

(Watch Video Solution
15. Give the mathematical exprssion that relates gas volume and moles.
A. Boyle's law
B. Charles law
C. Avogadro's hypothesis
D. Gay Lusassc's law

Answer: C

D Watch Video Solution

16. The parameters that describe the gaseous state are
A. volume
B. pressure
C. temperature

D. all the these

Answer: D

- View Text Solution

17. Which curve shows Charle's law?

A.
B.
C.
D.

Answer: A

D View Text Solution

18. The law that relates the pressure and volume of gases is
A. Boyle's
B. Charles law
C. Dalton
D. none of the above
19. The partial pressure of dry gas is
A. greater than the of wet gas
B. lesser than that of wet gas
C. equal to that of wet gas
D. none of these

Answer: B
(D) Watch Video Solution
20. Absolute zero is,
A. $-273^{\circ} C$
B. OK
C. temperatue at which no substance exists in gaseous state
D. All of these

Answer: D
(D) Watch Video Solution
21. Passenger aeroplane cabins is artificially pressurised since
A.pressure decrases with the increase in
altiude
B. pressure increases with the increases in
altitude
C. temperature increases with the increase in
altitude
D. none of the above

- Watch Video Solution

22. The rate of diffusion of gas is _____ to square root of their molecular mass.
A. inversely proportional
B. directly proportional
C. equal
D. twice

Answer: A
23. The temperatures at which real gases obey the ideal gas laws over a wide range of pressure is called
A. Inversion temperature
B. Boyle's temperature
C. Critical temperature
D. None of these

Answer: B

D Watch Video Solution
24. When the gas behvaes ideally, the compression factor Z is
A. >1
B. <1
C. $=0$
D. $=1$

Answer: D

- Watch Video Solution

25. Partial pressure is given as

A. $\frac{\text { mole fraction }}{\text { total pressure }}$

B. mole fraction \times total pressure
C. $\frac{\text { mole fraction } \times \text { total pressure }}{2}$
D. $\frac{2 \times \text { mole fraction }}{\text { total pressure }}$

Answer: B

D Watch Video Solution
26. Identify the correct mathematical expression of Graham's law of diffusion.

$$
\begin{aligned}
& \text { A. } \frac{r_{2}}{r_{1}}=\sqrt{\frac{M_{2}}{M_{1}}} \\
& \text { B. } r_{2} r_{1}=\sqrt{\frac{M_{2}}{M_{1}}} \\
& \text { C. } \frac{r_{1}}{r_{2}}=\sqrt{\frac{M_{2}}{M_{1}}} \\
& \text { D. } \frac{r_{1}}{r_{2}}=\left[\frac{M_{2}}{M_{1}}\right]^{2}
\end{aligned}
$$

Answer: C
27. Pick the equation that gives you the relationship between molecular mass and density.

> А. $M=\frac{d R T}{P}$
> В. $P V=n R T$
C. both (a) \& (b)
D. neither (a) nor (b)

Answer: A
(D) Watch Video Solution

28. Compression factor Z is given by

A. PV/nRT
B. P/nRT
C. PV/R
D. PV/T

Answer: A
(D) Watch Video Solution
29. A gas such as carbon monoxide would be most likely to obey the ideal gas law at
A. High temperature and high pressure
B. High temperature nd low pressure
C. Low temperature and high pressure
D. Low temperature and low pressure

Answer: B

D Watch Video Solution

30. If a gas expands at constant temperature, it indicates that
A. no. of molecules of gas increases.
B. kinetic energy of molecules decreases.
C. pressure of the gas increases.
D. kinetic energy of molecules remains the
same.

Answer: D
31. The rice is cooked earlier in pressure cooker because
A. boiling point increases with increasing pressure
B. boiling point decreases with increasing pressure
C. Internal energy is not lost while cooking in pressure cooker
D. Extra pressure of pressure cooker soflens
the rice

Answer: A

View Text Solution

32. What is the dominant intermolecular force or
bond that must be overcome in converting liquid methanol to a gas?
A. London dispersion force
B. Hydrogen bonding
C. Dipole-dipole interaction
D. Covalent bonds

Answer: B

D View Text Solution

33. Consider the following statements
I. Atmospheric pressure is less at top of a mountain than at sea level
II. Gases are much more compressible than solids or liquids
III. Gaseous state is deseribed by four measurable properties $\mathrm{P}, \mathrm{V}, \mathrm{T}$ and n

Select the correct statement
A. I and II
B. II and III
C. I and III
D. I, II and III

Answer: D

D View Text Solution

34. Compresslbllity factor for CO_{2} at 400 K and
71.0 bar is 0.8697 the molar volume of CO_{2} under these conditions
A. $22.04 d m^{3}$
B. $2.24 d m^{3}$
C. $0.41 \mathrm{dm}^{3}$
D. $19.5 d m^{3}$

Answer: C

(Watch Video Solution

35. Gases deviate from ideal behavior at high pressure which of the following is correct for non-ideallty?
A. At high pressure the collision between the gas molecule become enormous
B. at high pressure the gas molecules move only in one direction
C. At high pressure, the volume of gas become in significant
D. At high pressure the intermolecular interactions become significant

Answer: D
36. Van der Waal's constant 'a' has the dimensions of
A. $\mathrm{mol}_{\mathrm{lit}}{ }^{-1}$
B. atm titre $^{2} \mathrm{~mol}^{-2}$
C. lit mol^{-1}
D. atm litre mol^{-2}

Answer: B

- View Text Solution

37. Which mixture of gases at room temperature does not obey Dalton's law of partial pressure?
A. NO_{2} and O_{2}
B. SO_{2} and SO_{2}
C. CO and CO_{2}
D. NH_{3} and HCl

Answer: D

38. Pick out the correct relation for 1 mole of real gas.

$$
\begin{aligned}
& \text { A. }\left(P+\frac{V}{a^{2}}\right)(V-b)=R T \\
& \text { B. } P=\frac{R T}{(V-b)}+\frac{a}{V^{2}} \\
& \text { C. }\left(P+\frac{a}{V^{2}}\right)(V-b)=R T \\
& \text { D. }\left(P-\frac{a}{V^{2}}\right)(V+b)=\frac{1}{R T}
\end{aligned}
$$

Answer: C

- View Text Solution

39. The compressibility factor is given by
A. $Z=P V$
B. $Z=n R T$
C. $Z=\frac{n R T}{P V}$
D. $Z=\frac{P V}{n R T}$

Answer: D
(D) Watch Video Solution
40. Which of the following gas(es) always show positive devlation from ideal behavlour?
A. CH_{4}
B. CO_{2}
C. NH_{3}
D. H_{2}

Answer: D

- View Text Solution

41. What is the correct increasing order of liquefiaility of the gas?
A. $\mathrm{H}_{2}<\mathrm{CO}_{2}<\mathrm{CH}_{4}<\mathrm{N}_{2}$
B. $\mathrm{H}_{2}<\mathrm{N}_{2}<\mathrm{CH}_{4}<\mathrm{CO}_{2}$
C. $\mathrm{CO}_{2}<\mathrm{CH}_{4}<H_{4}<N_{2}$
D. $\mathrm{CO}_{2}<\mathrm{CH}_{4}<\mathrm{N}_{2}<\mathrm{H}_{2}$

Answer: B

- View Text Solution

42. Van der Waal's constant a and b are related with \qquad respectively.
A. attrative force and volume of molecules.
B. repulsive force and volume of molecules.
C. attractive force and bond energy of molecules.
D. shape and repulsive force of molecules.

Answer: A
43. An ideal gas, obeying kinetic theory of cannot be liquefied, because
A. its critical temperature is above $0^{\circ} C$.
B.force acting between its molecules are negligible.
C. its molecules are relatively small in size.
D. it solidifies before becoming a liquid.

Answer: B

- View Text Solution

44. The measure of attractive forces of molecules

is called
A. internal pressure
B. cohesion pressure
C. both (a) and (b)
D. neither (a) nor (b)

Answer: C

- View Text Solution

45. Statement I: H_{2} when allowed to expand at room temperature it causes heating effect.

Statement II : H_{2} has inversion temperature much below room temperature.
A. Both statement I and statement II are true
and statement II explains statement I.
B. Both statement I and statement II are true
but statement II does not explain
statement I.
C. Statement I is true but statement II is false.

D. Both the statements are false.

Answer: A

- View Text Solution

46. _____ is the gas constant.
A. a
B. Ve
C. R
D. Te

Answer: C

D View Text Solution

47. Statement $\mathrm{I}:$ At very high pressures, compressibility factor is greater than 1.

Statement II : At very high pressure, 'b' can be neglected in van der Waal's gas equation.
A. Both statement I and statement II are true
and statement II explains statement I.
B. Both statement I and statement II are true
but statement II does not explain
statement I.
C. Statement I is true but statement II is false.
D. Both the statements are false.

Answer: C

D View Text Solution

48. The inversion temperature for a gas is given by
A. $\frac{2 a}{R b}$
B. $\frac{a}{R b}$
C. $\frac{R b}{2 a}$
D. $\frac{R b}{a}$

Answer: A

- View Text Solution

49. Statement I : Greater is the critical temperature, more difficult is to liquefy the gas.

Statement II: Stronger the intermolecular forces,
lower would be the critical temperature of that gas.
A. Both statement I and statement II are true
and statement II explains statement I.
B. Both statement I and statement II are true
but statement II does not explain
statement I.
C. Statement I is true but statement II is false.
D. Both the statements are false.

Answer: D
50. The liquefaction behaviour of temporary gases like CO_{2} approaches that of $\mathrm{N}_{2}, \mathrm{O}_{2}$
(permanent gases) as we go,
A. below critical temperature
B. above critical temperature
C. below absolute zero
D. above absolute zero

Answer: B
51. The corrected term for pressure in the vanderwaal's equation of state is \qquad .
A. (V-b)
B. $P+\frac{a}{V^{2}}$
C. (b-V)
D. $\frac{a}{V^{2}} \times P$

Answer: B

- View Text Solution

52. When Boyle's law is applicable to all gases reagardless of their chemical identity?
A. High pressure
B. High temperature
C. Low pressure
D. Low temperature

Answer: C

- View Text Solution

53. If a given amount of gas is compressed to half of its volume, the density is \qquad .
A. doubled

B. Foure times

C. Half
D. remains the same

Answer: A

54. Which four variables are describe completely
the gasous state?
A. H, S, G, T
B. P, S, V, H
C. T, P, S, n
D. T, P, V, n

Answer: D

- View Text Solution

55. The temperature below which a gas obeys Joule- Thomoson effect is called
A. Boyle temperature
B. Inversion temperature
C. Transition temperature
D. Zeeman effect

Answer: B

View Text Solution

56. Assertion (A) : When two non-reactive gases are allowed to mix, the gas molecules migrate from region of higher concetration to a region of lower concentration.

Reason (R) : The property of gas which involves
the movement of the gas molecules through another gases is called Effusion.
A. Bothe (A) and (R) are true and (R) is the correct explanation of (A).
B. Both (A) and (R) are true and (R) is not the correct explanation of (A).
C. (A) true but (R) false.
D. Both (A) and (R) are false.

Answer: C

D View Text Solution

57. Which of the following is incorrect?
A. The fact the gases can be liquefied shows
that the attractive force exists among molecules.
B. There is all gases which behaves ideally under all conditions.
C. The non-ideal gases are called real gases.
D. The real gases tend to approach the ideal behaviour under certain conditions.

Answer: C

D View Text Solution

58. The temperatures at which real gases obey the ideal gas laws over a wide range of pressure
is called
A. Boyle temperature
B. Boyle point
C. Inversion temperture
D. $\mathrm{a} \& \mathrm{~b}$

Answer: D

- Watch Video Solution

59. Above the Boyle point, for real gases shows
A. positive deviation
B. negative deviation
C. no deviation
D. unpredictable deviation

Answer: A

D View Text Solution

60. Which effect is observed only below a certain temperature?
A. Joule-Thomson effect

B. Andrew's Isothermal

C. Van der Waal equation
D. Graham's Law of diffusion

Answer: A

D View Text Solution

Additional Short Answers

1. State Boyle's law and Charles law.
2. At identical temperature and pressure, the rate of diffusion of hydrogen gas is $3 \sqrt{3}$ times that of
a hydrocarbon having molecular formula
$C_{n} H_{2 n-2}$. What is the value of n ?
(D) Watch Video Solution
3. Distinguish real and ideal gases.

- Watch Video Solution

4. 0.6% solution of urea and 1.8% solution containing a solute (A) are isotonic with each other. Calculate the molecular weight of the solute (A).

D Watch Video Solution

5. Give the expressions of crticial constants.

Watch Video Solution

6. Write a short not on the consquence of Boyle's law. (or) give the relationship between pressure and density

D View Text Solution

7. When a real gas is converted from its initial to
final state by adiabatic expansion, it is not pssible to calculate its volume using Boyle's law. Why ?

D View Text Solution

8. Define absolute zero. Is it possible to attain a further lower temperatuer ? Comment on your answer.

D View Text Solution

9. Define the terms isotherm, isobar and isochore.
(Watch Video Solution
10. Passenger aeroplane cabins is artificially pressurised since
11. Why the size of a balloon in hot wate is incressesx compared to a balloon in cold water.

D View Text Solution

12. Define pressure. Give its units.
(D) Watch Video Solution
13. Why should divers never hold their breath while diving ?

D View Text Solution

14. Use of hot air balloon in meteorological observation is based on which gas law? Explain.

- View Text Solution

15. state Dalton's law of partial pressure.
16. a gas is enclosed in a room. The pressure,
density, temperature and number of moles are p atm, $\mathrm{gcm}^{-3}, t^{\circ} C$ and n moles repectively. What
will be the pressure, temperature, density and number of moles, in each compartment. If room is partitioned into four equal compartments ?

D View Text Solution

17. How does a person feels the effect of drop in pressure ? Explain
18. (a) State the following laws:

(D) Watch Video Solution

19. According to kinetic theory. What are the two assumptions made with regard to idean gas ?
20. When a compressed real gas is made to expand adiabatically through a porous plug, how does the temperature change ?

- View Text Solution

21. Comment on the statement- A sample of an ideal gas escapes into an evacuated container without any changes in its kinetic energy.

- View Text Solution

22. On what basis do you classify gases into permanent and temporary gases ? Expalin these types with example.

D View Text Solution

23. Derive the units of the vanderwaal's constants.

- View Text Solution

24. Imagine the molecular collisions to the gases were inelastic. What would have happened?

D View Text Solution

25. What are the three charactersistics of gases ?

(D) Watch Video Solution

26. Define atmospheric pressure what is its value
27. Deep sea divers ascend slowly and breath contentiously by the time they reach the surface.

Give reason.

- View Text Solution

28. Most aeroplanes cabins are artificially pressurized. Why?

View Text Solution

29. State Charle's law.

- View Text Solution

30. Define Dalton's law of partial pressure.

- View Text Solution

31. Helium diffuses more than air. Give reason.

D View Text Solution
32. $C O_{2}$ gas is cannot be liquefied at room temperature. Give reason.

- View Text Solution

33. Explain the different method used for liquefaction of gases.

D View Text Solution

Additional Long Answers

1. Explain the experimental verification of Boyle's
law along with the graphical representations of PV relationship.

- View Text Solution

2. Derive the ideal gas equation by combining the empirical gas laws.
3. Using the ideal gas equation how will you calculate the values of R ?

D View Text Solution

4. What is compressbility factor?

- View Text Solution

5. State Joule thamson effect.

D View Text Solution
6. defined the following terms. (i) Isotherm

Critical Temperature (iii) Critical Pressure (iv)

Critical Volume
(D) Watch Video Solution
7. Explain the pressure - volume isotherms of

Carbon dioxide Andrew's isotherm.

- View Text Solution

8. Explain about Andrew's Experimental isotherms of CO_{2} gas.

- View Text Solution

9. Give a detailed accounte on compressbility
factor.

D View Text Solution

10. Using Dalton's law how will you determine the pressure of a dry gas.
11. Define Grahm's Law of diffusion?

- View Text Solution

12. How will you calculate the partial pressure in terms of mole fraction?

D View Text Solution

1. Find the pressure of 5 mole $C l_{2}$ gas filled in a 2
littre vassel at $27^{\circ} \mathrm{C}$ temperature.

D Watch Video Solution

2. Find the moles of O_{2} gas having presure 250 bar in 500 ml vessle at 350 K temperature.

D Watch Video Solution

3. Find the pressure of neon gas having density 0.9 gmlit $^{-1}$ at $350 K$ temperature.

- Watch Video Solution

4. At $27^{\circ} \mathrm{C}$ temperature and 4 bar pressure CO is
filled in 2 litrre vessel. Find the pressure if it is
filled in 4 litre vessel at $77^{\circ} \mathrm{C}$ temperature.

- Watch Video Solution

5. A neon-dioxygen mixture contains 60.8
dioxygen and 167.5 g neon. If pressure of the mxiture of gases in the cylinder is 20 bar, what is
the partial pressure of dioxygen and neon in the mixture?

(D) Watch Video Solution

6. If a gas diffuses at the rate of one-half as fast as O_{2}, find the molecular mass of the gas.

(D) Watch Video Solution

7.75 ml of gas A effuses through a pin hole in 73 seconds the same volume of SO_{2} under indential
conditions effuses in seconds. Calculate the molecular mass of A.

(D) Watch Video Solution

8. Vanderwaal's constant for a gas (g) are $a=6.34 a t m \mathrm{lit}^{-2}$, and $b=52.6 \mathrm{mlmol}{ }^{-1}$. Find
the critical temperature and critical pressure of the gas.
9. Vanderwaal's constant for a gas $a=3.67 a t m$ litmol $^{-1} b=0.0408^{\prime}$ lit mol $^{-1}$.

Find the critical temperautre and critical pressure of the gas.

(D) Watch Video Solution

> 10. The vanderwal's constant
> $a=2.095 \mathrm{lit}^{-2} \mathrm{atmmol}^{-1}$ and $b=0.0189 \mathrm{lit} \mathrm{mol}^{-1}$
respectively. Calculate the inversion temperature.
(D) Watch Video Solution
11. If a scuba diver takes a breath at the surface
filling his lungs with $5.82 \mathrm{dm}^{3}$ of air what volume
will the air in his lungs occupy when he drives to
a dept where the pressure is 1.92 atm . (aausme temperature is constant and the pressure at the surface ix excatly)

(Watch Video Solution

12. Inside a certain automobile engingen, the valume of air in a cylinder is $0.475 \mathrm{dm}^{3}$, when the pressure is 1.05atm. When the gas is
compressed, the pressure increased ato 5.65 atm.
At the same temperature. What is the volume of compressed air?

D Watch Video Solution

13.

Effect of temperature on volume of the gas to verify Charles law

All the container a, b and c have same pressure of atm. If T_{1}, T_{2} and T_{3} are, respectively, at 200, 300 and , K , and $V_{1}-0.3 d m^{-3}$, calculate V_{2} and V_{3}.

- View Text Solution

14. Find the ratio of effusion rates of hydrogen and krypton gas.

D Watch Video Solution

15. If the wather balloon at a pressure 0.0965 atm .

At ground level has a valume of $10.0 m^{3}$. What will be the pressure at an altitude of 5300 m where its volume is $20.0 m^{3} ?$
16. At sea level a balloon has volume of
$785 \times 10^{-3} \mathrm{dm}^{3}$. What will be its volume, if it taken to a place where the pressure is 0.052 atm. Less than the atmospheric pressure of 1 atm.

(D) Watch Video Solution

17. When the temperature of a gas increases from $0^{\circ} C$ the valume of the gas increases by a factor of 1.25 wh at is the final temperature?
18. In an experiment of verification of Charle's law, the following are the set of readings taken by a student

What is the average value of the constant of proportionality?

- View Text Solution

19. A helium filled balloon had a volume of 400 ml , when it is cooled to $-120^{\circ} \mathrm{C}$. What will be its
volume if the balloon is warmed in an overn to $100^{\circ} C$ assuming changes in pressure.

(D) Watch Video Solution

20. Suppose a 375 ml sample of neon gas at
$78^{\circ} \mathrm{C}$ is cooled to $22^{\circ} \mathrm{C}$ at constant pressure.
What will be the new volume of neon sample?

(D) Watch Video Solution

21. Which of following flasks has higher pressure,
5.00 L containing 4.15 g of Helium at 298 K

- Watch Video Solution

22. Which of following flasks has higher pressure,
10.0 L containing 56.2 g Argon at 303 K

- Watch Video Solution

23. At what temperature would 4.285 go foxygen
gas O_{2} exert a pressure of 1.21 atm . In a $2.15 \mathrm{dm}^{3}$
flask.
24. For a gaseous mixtue of $2.41 g$ of helium and
2.79 g of neon in an evacuated $1.04 \mathrm{dm}^{3}$ container at 298 K Calculate the partial pressure of each gas and hence find the total pressure of the mixture.
(D) Watch Video Solution
