©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - SURA CHEMISTRY (TAMIL ENGLISH)

PHYSICAL AND CHEMICAL EQUILIBRIUM

Evaluation Choose The Best Answer

1. If K_{b} and K_{f} for a reversible reactions are 0.8×10^{-5} and 1.6×10^{-4}
respectively, the value of the equilibrium constant is,
A. 20
B. 0.2×10^{-1}
C. 0.05
D. none of these
2. At a given temperature and pressure, the equilibrium constant values for the equilibria
$3 A_{2}+B_{2}+2 C \stackrel{K_{1}}{\Longleftrightarrow} 2 A_{3} B C$ and
$A_{3} B C \stackrel{K_{2}}{\Longleftrightarrow} \frac{3}{2}\left[A_{2}\right]+\frac{1}{2} B_{2}+C$
The relation between K_{1} and K_{2} is
A. $K_{1}=\frac{1}{\sqrt{K_{2}}}$
B. $K_{2}=K_{1}^{-1 / 2}$
C. $K_{1}^{2}=2 K_{2}$
D. $\frac{K_{1}}{2}=K_{2}$

Answer: B

D Watch Video Solution

3. The equilibrium constant for a reaction at room temperature is K_{1} and that at 700 K is K_{2}. If $K_{1}>K_{2}$, then
A. The forward reaction is exothermic
B. The forward reaction is endothermic
C. The reaction does not attain equilibrium
D. The reverse reaction is exothermic

Answer: A

- Watch Video Solution

4. The formation of ammonia from $N_{2(g)}$ and $H_{2(g)}$ is a reversible reaction

$$
N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 N H_{3(g)}+\text { Heat }
$$

What is the effect of increase of temperature on this equilibrium reaction
A. Equilibrium is unalteres
B. formation of ammonia is favoured
C. equilibrium is shifted to the left
D. reaction rate does not change

Answer: C

- View Text Solution

5. Solubility of earbon dioxide gas in cold water can be increased by
A. increase in pressure
B. decrease in pressure
C. increase in volume
D. none of these

Answer: A

6. Which one of the following is incorrect statement ?
A. for a system at equilibrium, Q is always less than the equilibrium constant.
B. equilibrium can be attained from either side of the recation.
C. presence of catelyst affect both the forward reaction and reverse reaction to the same extant.
D. equilibrium constant varied with temperature.

Answer: A

- Watch Video Solution

7. K_{1} and K_{2} are the equilibrium constants for the recation respectively.
$N_{2(g)}+O_{2(g)} \stackrel{K_{1}}{\Longleftrightarrow} 2 N O_{(g)}$
$2 \mathrm{NO}_{(g)}+\mathrm{O}_{2(\mathrm{~g})} \stackrel{K_{2}}{\Longleftrightarrow} 2 \mathrm{NO}_{2(\mathrm{~g})}$
what is the equilibrium constant for the reaction

$$
N O_{2(g)} \Leftrightarrow 1 / 2 N_{2(g)}+O_{2(g)}
$$

A. $\frac{1}{\sqrt{K_{1} K_{2}}}$
B. $\left(K_{1}=K_{2}\right)^{1 / 2}$
C. $\frac{1}{2 K_{1} K_{2}}$
D. $\left(\frac{1}{K_{1} K_{2}}\right)^{3 / 2}$

Answer: A

- Watch Video Solution

8. In the equilibrium,
$2 A(g) \Leftrightarrow 2 B(g)+C_{2}(g)$
the equilibrium concentrations of A, B and C_{2} at 400 K are $1 \times 10^{-4} M, 2.0 \times 10^{-3} M, 1.5 \times 10^{-4} M$ respectively. The value of K_{C} for the equilibrium at 400 K is
A. 0.06
B. 0.09
C. 0.62
D. 3×10^{-2}

Answer: A

- Watch Video Solution

9. An equilibrium constant of 3.2×10^{-6} for a reaction means, the equilibrium is
A. largely towards forward direction
B. largely towards reverse direction
C. never established
D. none of these

Answer: B

- Watch Video Solution

10. $\frac{K_{c}}{K_{p}}$ for the reaction, $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3(g)}$ is
A. $\frac{1}{R T}$
B. $\sqrt{R T}$
C. RT
D. $(R T)^{2}$

Answer: D

Watch Video Solution

11. For the reaction $A B(g) \Leftrightarrow A(g)+B(g)$, at equilibrium AB is 20% dissociated at a total pressure of P , The equilibrium constant K_{p} is related to tha total pressure by the expression
A. $P=24 K_{p}$
B. $P=8 K_{p}$
C. $24 P=K_{p}$
D. none of these

Answer: A

- Watch Video Solution

12. In which of the following equilibrium, K_{p} and K_{c} are not equal ?
A. $2 N O(g) \Leftrightarrow N_{2}(g)+O_{2}(g)$
B. $S O_{2}(g)+N O_{2} \Leftrightarrow S O_{3(g)}+N O(g)$
C. $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$
D. $P C l_{5}(g) \Leftrightarrow P C l_{3} g+C l_{2}(g)$

Answer: D
13. If x is the fraction of PCl_{5} dissociated at equilibrium in the reaction

$$
P C l_{5} \Leftrightarrow P C l_{3}+C l_{2}
$$

then starting with 0.5 mole of PCl_{5}, the total number of moles of reactants and products at equilibrium is
A. $0.5-x$
B. $x+0.5$
C. $2 x+0.5$
D. $x+1$

Answer: B

Watch Video Solution

14. The valuse of $K_{p_{1}}$ and $K_{p_{2}}$ for the reactions
$X \Leftrightarrow Y+Z$
$A \Leftrightarrow 2 B$ are in the ratio $9: 1$ if degree of dissociation and initial
concentration of X and A be equal then total pressure at equilibrium P_{1}, and P_{2} are in the ratio
A. $36: 1$
B. 1:1
C. $3: 1$
D. $1: 9$

Answer: A

- Watch Video Solution

15. In the reaction,
$F e(O H)_{3}(s) \Leftrightarrow F e^{3+}(a q)+3 O H^{-}(a q)$
if the concentration of OH^{-}ions is decreased by $1 / 4$ times, then the equilibrium concentration of $F e^{3+}$ will
A. not changed
B. also decreased by $1 / 4$ times
C. increase by 4 times
D. increase by 64 time

Answer: D

- Watch Video Solution

16. Consider the reaction where $K_{p}=0.5$ at a particular temperature
$P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$
If the three gases are mixed in a container so that the partial pressure of each gas is initially 1 atm, then which one of the following is true
A. more PCl_{3} will be produced
B. more $C l_{2}$ will be produced
C. more $P C l_{5}$ will be produced
D. none of these

Answer: C

17. Equimolar concentration of H_{2} and I_{2} are heated to equilibrium ina 1 liter flask. What percentage of initial concentration of H_{2} has reacted at equilibrium, the rate constant for the forward reaction is 25×10^{2} and the equilibrum constant is 50 . The rate constant for the reverse reaction is,
A. 33%
B. 66%
C. $(33)^{2} \%$
D. 16.5%

Answer: A

- Watch Video Solution

18. In a chemical equilibrium, the rate constant for the forward reaction is 2.5×10^{2} and the equilibrium constant of 50 . The rate constant for the revese reaction is.
A. 11.5
B. 5
C. 2×10^{2}
D. 2×10^{-3}

Answer: B

- Watch Video Solution

19. Which of the following is not a general characteristic of equilibrium involving physical process
A. Equilibrium is possible only in a closed system at a given temperature.
B. The opposing processes occur at the same rate and there is a dynamic but stable condition.
C. All the physical processes stop at equilibrium.
D. All measurable properties of the system remains constant.

Answer: C

- Watch Video Solution

20. For the formation of two moles of $\mathrm{SO}_{3}(\mathrm{~g})$ from SO_{2} and O_{2}, the equalibrium constant is K_{1}. The equilibrium constant for the dissociation of one mole of SO_{3} into SO_{2} and O_{2} is
A. $\frac{1}{K_{1}}$
B. K_{1}^{2}
C. $\left(\frac{1}{K_{1}}\right)^{1 / 2}$
D. $\frac{K_{1}}{2}$

D Watch Video Solution

21. Match the equilibria with the corresponding conditions,
i) Liquid \Leftrightarrow Vapour
ii) Solid \Leftrightarrow Liquid
iii) Solid \Leftrightarrow Vapour
iv) Solute(s) \Leftrightarrow Solute (Solution)
1) Melting point
2) Saturated solution
3) Boiling point
4) Sublimation point
5) Unsaturated solution
A.
(i) (ii) (iii) (iv)
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
(i) (ii) (iii) (iv)
B.
$\begin{array}{llll}3 & 1 & 4 & 2\end{array}$
(i) (ii) (iii) (iv)
$\begin{array}{llll}2 & 1 & 3 & 4\end{array}$
D. $\begin{array}{llll}\text { (i) } & \text { (ii) } & \text { (iii) } & \text { (iv) } \\ 3 & 2 & 4 & 5\end{array}$

Answer: B

- Watch Video Solution

22. Consider the following reversible reaction at equilibrium, $A+B \Leftrightarrow C$
. If the concentration of the reactants A and B are doubled, then the equilibrium constant will
A. be doubled
B. become one fourth
C. be halved
D. remain the same

Answer: D

- Watch Video Solution

23.

$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}(a q)($ pink $)+4 \mathrm{Cl}^{-}(a q) \Leftrightarrow\left[\mathrm{CoCl}_{4}\right]^{2+}(a q)$ (blue $)+6 \mathrm{H}_{2} \mathrm{O}(l)$ In the above reaction at equilibrium, the reaction mixture is blue in colour at room temperature. On cooling this mixture, it becomes pink in colour On the basis of this information, which one the following is true ?
A. $\Delta H>0$ for the forward reaction
B. $\Delta H=0$ for the reverse reaction
C. $\Delta H<0$ for the forward reaction
D. Sign of the ΔH cannot be predicted bassed on this information.

Answer: A

- Watch Video Solution

24. The equilibrium constants of the following reactions are :

$$
N_{2}+3 H_{2} \Leftrightarrow 2 N H_{3} \quad, \quad K_{1}
$$

$$
N_{2}+O_{2} \Leftrightarrow 2 N O \quad, \quad K_{2}
$$

$\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \Leftrightarrow \mathrm{H}_{2} \mathrm{O} \quad, \quad K_{3}$

The equilibrium constant (K) for the reaction ,
$2 \mathrm{NH}_{3}+\frac{5}{2} \mathrm{O}_{2} \stackrel{K}{\Longleftrightarrow} 2 \mathrm{NO}+3 \mathrm{H}_{2} \mathrm{O}$, will be
A. $K_{2}^{3} \frac{K_{3}}{K_{1}}$
B. $K_{1} \frac{K_{3}^{3}}{K_{2}}$
C. $K_{2} \frac{K_{3}^{3}}{K_{1}}$
D. $K_{2} \frac{K_{3}}{K_{1}}$

Answer: C

- Watch Video Solution

25. A 20 liter container at 400 contains $\mathrm{CO}_{2}(g)$ at pressure 0.4 atm and an excess of SrO (neglect the volume of solid SrO). The volume of the container is now decreased by moving the movable piston fitted in the container. The maximum volume of the container, when pressure of CO_{2} attains Its maximum value will be :

Given that: $\mathrm{SrCO}_{3}(S) \Leftrightarrow \mathrm{SrO}(\mathrm{S})+\mathrm{CO}_{2}(\mathrm{~g})$
$K_{p}=1.6 \mathrm{~atm}$
A. 2 litre
B. 5 litre
C. 10 litre
D. 4 litre

Answer: B

D Watch Video Solution

Evaluation Write Brief Answer To The Following Questions

1. If there is no change in concentration, why is the equilibrium state considered dynamic ?

- Watch Video Solution

2. For a given reaction, at a particular temperature, the equilibrium constant has value. Is the value of Q also constant ? Explain.
3. What is the relation between K_{P} and K_{C}, Give one example for which K_{P} is equal to K_{C},

- Watch Video Solution

4. For a gaseous homogeneous reaction at equilibrium, number of moles of products are greater than the number of moles of reactants. Is K_{C} is larger or smaller than K_{P},

- Watch Video Solution

5. When the numerical value of the reaction quotient (Q) is greter than the equilibrium constant (K) in which direction does the reaction proceed to reach equilibrium ?
6. For the reaction
$A_{2}(g)+B_{2}(g) \Leftrightarrow 2 A B(g), \Delta H$ is-ve
the following molecular scenes represent different reaction mixture (A green, B-blue)
i) Calculate the equilibrium constant K_{P} and $\left(K_{C}\right)$.
ii) For the reaction mixture represented by scene (x), (y) reaction proceed in which directions?
iii) What is the effect of increase in pressure for the mixture at equilibrium ?

- View Text Solution

7. State Le-Chatelier principle.

- Watch Video Solution

8. Consider the following reactions,
$H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$
In each of the above reaction find out whether you have to increase (or) decrease the volume to increase the yield of the product.

- View Text Solution

9. Consider the following reactions,
$\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
In each of the above reaction find out whether you have to increase (or) decrease the volume to increase the yield of the product.

- View Text Solution

10. Consider the following reactions,
$S(s)+3 F_{2}(g) \Leftrightarrow S F_{6}(g)$
In each of the above reaction find out whether you have to increase (or) decrease the volume to increase the yield of the product.

- View Text Solution

11. State law of mass action.

- Watch Video Solution

12. Explain how will you predict the direction of a equilibrium reaction.

- View Text Solution

13. Derive a general expression for the equilibrium constant K_{P} and K_{C} for the reaction.
$3 H_{2}(g)+N_{2}(g) \Leftrightarrow 2 N H_{3}(g)$

- View Text Solution

14. Write a balanced chemical equation for a equilibrium reaction for which the equilibrium constant is given by expression.
$K_{C}=\frac{\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{5}}{[\mathrm{NO}]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}}$

- View Text Solution

15. What is the effect of added inert gas on the reaction at equilibrium at constant volume.

- View Text Solution

16. Derive the relation between K_{P} and K_{C} '.

- View Text Solution

17. One mole of PCl_{5} is heated in one litre closed container. If 0.6 mole of chlorine is found at equilibrium, calculate the value of equilibrium

- Watch Video Solution

18. For the reaction
$\mathrm{SrCO}_{3}(s) \Leftrightarrow \mathrm{SrO}(s)+\mathrm{CO}_{2}(g)$,
the value of equilibrium constant $K_{P}=2.2 \times 10^{-4}$ at 1002 K . Calculate K_{C} for the reaction.

D Watch Video Solution

19. To study the decomposition of hydrogen iodide, a student fills an evacuated 3 litre flask with 0.3 mol of HI gas and allows the reaction to proceed at $500^{\circ} \mathrm{C}$. At eauilibrium he found the concentration of HI which is equal to 0.05 M . Calculate K_{C} and K_{P} for this reaction.

- Watch Video Solution

20. Oxidation of nitrogen monoxide was studied at $200^{\circ} \mathrm{C}$ with initial pressures of 1 atm NO and 1 atm of O_{2}. At equilibrium partial pressure of oxygen is found to be 0.52 atm calculate K_{P} value.

- Watch Video Solution

21. 1 mol of CH_{4}, 1 mole of CS_{2} and 2 mol of $\mathrm{H}_{2} \mathrm{~S}$ are 2 mol of H_{2} are mixed in a 500 ml flask The equilibrium constant for the reaction $K_{C}=4 \times 10^{-2} \mathrm{~mol}^{2}$ lit $^{-2}$. In which direcition will the reaction proceed to reach equilibrium ?

- Watch Video Solution

22. At particular temperature $K_{C}=4 \times 10^{-2}$ for the reaction

$$
H_{2} S(g) \Leftrightarrow H_{2}(g)+1 / 2 S_{2}(g)
$$

Calculate K_{C} for each of the following reaction.
i) $2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g})$
ii) $3 H_{2}(g) \Leftrightarrow 3 H_{2}(g)+\frac{3}{2} S_{2}(g)$

(D) Watch Video Solution

23. 28 g of nitrogen and 6 g of hydrogen were mixed in a 1 litre closed container. At equilibrium $17 \mathrm{~g} \mathrm{NH}_{3}$ was produced. Calculate the weight of nitrogen, hydrogen at equilibrium.

- Watch Video Solution

24. The equilibrium for the dissociation of $X Y_{2}$ is given as,
$2 X Y_{2}(g) \Leftrightarrow 2 X Y(g)+Y_{2}(g)$
if the degree of dissociation x is so small compared to one. Show that
$2 K_{p}=P X^{3}$ where P is the total pressure and K_{P} is the dissociation equilibrium constant of $X Y_{2}$.

- Watch Video Solution

25. A sealed container was filled with 1 mol of $A_{2}(g) 1 \mathrm{~mol} B_{2}(g)$ at 800 K and total pressure 1.00 bar. Calculate the amounts of the components in
the mixture at equilibrium given that $K=1$ for the reaction
$A_{2}(g)+B_{2}(g) \Leftrightarrow 2 A B(g)$

- View Text Solution

26. Deduce the Vant Hoff equation.

- View Text Solution

27. The equilibrium constant K_{P} for the reaction
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$ is 8.19×10^{2} at 298 K and 4.6×10^{-1} at 498 K . Calculate ΔH° fror the reaction.

- Watch Video Solution

28. The partial pressure of carbon dioxide in the reaction
$\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$ is 1.017×10^{-3} atm at $500^{\circ} \mathrm{C}$.

Calculate K_{P} at $600^{\circ} c \mathrm{C}$ for the reaction. ΔH for the reaction is 181 kJ mol^{-1} and does not change in the given range pf temperature.

- Watch Video Solution

Additional Questions Choose The Correct Answer

1. The K_{c} for given reaction will be
$A_{2(g)}+2 B_{(g)} \Leftrightarrow C_{(g)}+2 D_{(g)}$
A. $K_{c}=\frac{[C][D]^{2}}{\left[A_{2}\right][B]^{2}}$
B. $K_{c}=\frac{[C]}{\left[A_{2}\right][B]^{2}}$
C. $K_{c}=\frac{\left[A_{2}\right][B]^{2}}{[C][D]^{2}}$
D. $K_{c}=\frac{\left[A_{2}\right][B]^{2}}{[C]}$

Answer: B

2. For which of the following reaction, the degree of dissociation (α) and equilibrium constant $\left(K_{p}\right)$ are related as $K_{p}=\frac{4 \alpha^{2} P}{(1-\alpha)}$?
A. $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
B. $H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I(g)$
C. $\mathrm{N}_{2(g)}+3 \mathrm{H}_{2(g)} \Leftrightarrow 2 \mathrm{NH}_{3(g)}$
D. $P C l_{3(g)}+C l_{2(g)} \Leftrightarrow P C l_{5(g)}$

Answer: A

- Watch Video Solution

3. In which of the following does the reaction go almost to completion ?
A. $K_{c}=10^{3}$
B. $K_{c}=10^{2}$
C. $K_{c}=10^{-2}$
D. $K_{c}=10^{-3}$

Answer: A

- View Text Solution

4. Hydrogen (a moles) and iodine (b moles) react to give $2 x$ moles of the HI at equilibrium. The total number of moles at equilibrium is
A. $a+b+2 x$
B. $(a-b)+(6-2 x)$
C. $(a+b)$
D. $a+b-x$

Answer: C

- Watch Video Solution

5. K_{p} is how many times equal to K_{c} for the given reaction ?

$$
N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 \mathrm{NH}_{3(g)}
$$

A. $\frac{1}{R^{2} T^{2}}$
B. $R^{2} T^{2}$
C. $\frac{R}{T}$
D. $R T$

Answer: A

- Watch Video Solution

6. $A+B \Leftrightarrow C+D, K_{c}$ for this reaction is 10 . If $1,2,3,4$ mole/litre of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D respectively are present in a container at $25^{\circ} \mathrm{C}$, the direction of reaction will be
A. From left to right
B. From right to left
C. Reaction is at equilibrium
D. Unpredictable

D Watch Video Solution

7. $4 \mathrm{~g} \mathrm{H}_{2}, 32 \mathrm{~g} \quad \mathrm{O}_{2}, 14 \mathrm{~g} \mathrm{~N}_{2}$ and $11 \mathrm{~g} \mathrm{CO}_{2}$ are taken in a bulb of 500 ml .

Which one of these has maximum active mass?
A. H_{2}
B. O_{2}
C. N_{2}
D. CO_{2}

Answer: A

- Watch Video Solution

8. For reaction, $2 A+B \Leftrightarrow 2 C, K=x$. Equilibrium constant for $C \Leftrightarrow A+1 / 2 B$ will be
A. x
B. $\frac{x}{2}$
C. $\frac{1}{\sqrt{x}}$
D. \sqrt{x}

Answer: C

- Watch Video Solution

9. $X Y_{2}$ dissociates as, $X Y_{2(g)} \Leftrightarrow X Y_{(g)}+Y_{(g)}$ Initial pressure of $X Y_{2}$ is 600 mm Hg . The total pressure at equilibrium is 800 mm Hg . Assuming volume of system to remain constant, the value of K_{p} is
A. 50
B. 100
C. 400
D. 20

Answer: B

- Watch Video Solution

10. In which of the following equilibrium, change in pressure will not affect the equilibrium ?
A. $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NH}_{3(g)}$
B. $H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{(g)}$
C. $P C l_{5(g)} \Leftrightarrow P C l_{3(g)}+C l_{2(g)}$
D. $\mathrm{N}_{2} \mathrm{O}_{4(g)} \Leftrightarrow 2 \mathrm{NO}_{2(g)}$

Answer: B

- View Text Solution

11. In melting of ice, which one of the conditions will be more favorable ?
A. high temperature and high pressure
B. low temperature and low pressure
C. low temperature and high pressure
D. high temperature and low pressure

Answer: A

- View Text Solution

12. Two moles of N_{2} and two moles of H_{2} are taken in a closed vessel of 5 litre capacity and suitable conditions are provided for the reaction. When the equilibrium is reached, it is found that a half mole of N_{2} is used up. The equilibrium concentration of NH_{3} is
A. 0.2
B. 0.4
C. 0.3
D. 0.1

D Watch Video Solution

13. The active mass of 7.0 g of nitrojan in a 2.0 L container would be
A. 0.25
B. 0.125
C. 0.5
D. 14

Answer: B

- Watch Video Solution

14. At 700 K , the equilibrium constant K_{p}, for the reaction $2 S O_{3(g)} \Leftrightarrow 2 S O_{2(g)}+O_{2(g)}$ is 1.8×10^{-3} atm. The value of K_{c} for the above reaction at the same temperature in moles per litre would be
A. 1.1×10^{7}
B. 6.2×10^{-7}
C. 3.1×10^{-5}
D. 9.3×10^{-7}

Answer: C

- Watch Video Solution

15. $C_{(s)}+H_{2} O_{(g)} \Leftrightarrow C O_{(g)}+H_{2(g)}: \Delta H<O$

The above equilibrium will proceed in forward direction when
A. It is subjected to high pressure
B. It is subjected to high temperature
C. Inert gas (argon) is added at constant pressure
D. Carbon (solid) is added

Answer: C

16. A state of equilibrium is reached when
A. The rate of forward reaction is greater than the rate of the reverse reaction
B. The concentration of the products and reactants are equal
C. More product is present than reactant
D. The concentration of the products and reactants have reached constant value

Answer: D

- View Text Solution

17. Le-Chateller's principle is not applicable to
A. $F e_{(s)}+S_{(s)} \Leftrightarrow F e S_{(s)}$
B. $H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{(g)}$
C. $N_{2(g)}+O_{2(g)} \Leftrightarrow 2 N O_{(g)}$
D. $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$

Answer: A

- View Text Solution

18. Following three gaseous equilibrium reactions are occurring at $27^{\circ} \mathrm{C}$.
(A) $2 \mathrm{CO}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{CO}_{2}$
(B) $P C l_{5} \Leftrightarrow P C l_{3}+C l_{2}$
(C) $2 \mathrm{HI} \Leftrightarrow \mathrm{H}_{2}+\mathrm{I}_{2}$

The correct order of K_{p} / K_{c} for the following reaction is
A. $A<B<C$
B. $C<B<A$
C. $A<C<B$
D. $B<A<C$

D View Text Solution

19. If the equilibrium constant for
$N_{2(g)}+O_{2(g)} \Leftrightarrow 2 N O_{(g)}$ is K, the equilibrium constant for $\frac{1}{2} N_{2(g)}+\frac{1}{2} O_{2(g)} \Leftrightarrow N O_{(g)}$ will be
A. K
B. K^{2}
C. $K^{1 / 2}$
D. $\frac{1}{2} K$

Answer: C

20. In a closed system : $A_{(s)} \Leftrightarrow 2 B_{(g)}+3 C_{(g)}$ if the partial pressure of C is doubled then partial pressure of B will be
A. Twicw the orignal pressure
B. Half of its orignal pressure
C. $\frac{1}{2 \sqrt{2}}$ times, the original pressure
D. $2 \sqrt{2}$ times its original pressure

Answer: C

- View Text Solution

21. In which of the following cases, the reaction goes farthest to completion ?
A. $A \Leftrightarrow B\left(K=10^{3}\right)$
B. $P \Leftrightarrow Q\left(K=10^{-2}\right)$
C. $A+B \Leftrightarrow C+D(K=10)$
D. $X+Y \Leftrightarrow X Y_{2}\left(K=10^{-1}\right)$

Answer: A

- View Text Solution

22. The ratio of K_{p} / K_{c} for reaction
$C O_{(g)}+\frac{1}{2} O_{2(g)} \Leftrightarrow \mathrm{CO}_{2(g)}$ is
A. $\frac{R}{T}$
B. $R T$
C. $(R T)^{1 / 2}$
D. $(R T)^{-1 / 2}$

Answer: D

- Watch Video Solution

23. For the reversible reaction
$N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 \mathrm{NH}_{3(g)}+$ Heat.
The equilibrium shifts in forward direction.
A. by increasing the concentration of $\mathrm{NH}_{3(\mathrm{~g})}$
B. by increasing the pressure and decreasing the temperature.
C. by decreasing the pressure and decreasing the temperature
D. by decreasing the concentration of $N_{2(g)}$ and $H_{2(g)}$.

Answer: B

- Watch Video Solution

24. The value of ΔH for the reaction

$$
X_{2(g)}+4 Y_{2(g)} \Leftrightarrow 2 X Y_{4(g)} \text { is less than zero. }
$$

Formation of $X Y_{4(g)}$ will be favoured at :
A. High pressure and low temperature.
B. Low pressure and low temperature.
C. High temperature and high pressure.
D. high temperature and low pressure

Answer: A

- Watch Video Solution

25. Ice and water are placed in a closed container at a pressure of 1 atm and 273.15 K temperature. If pressure of the system is increased by 2 atm keeping temperature constant the correct observation would be
A. The amount of ice increases
B. Volume of the system increases
C. The liquid phase disappears completely
D. The solid phase (ice) disappears completely

Answer: D

26. $2 \mathrm{H}_{2(g)}+\mathrm{CO}_{2(g)} \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}_{(g)}, \Delta H=-92.2 k J$.

Which of the following condition will shift the equilibrium in the forward direction?
A. Temperature of the system is increased
B. CO is removed
C. $\mathrm{CH}_{3} \mathrm{OH}$ is added
D. The pressure of the system is increased

Answer: D

- Watch Video Solution

27. The value of equilibrium constant of reaction $H I_{(g)} \Leftrightarrow \frac{1}{2} H_{2(g)}+\frac{1}{2} I_{2(g)}$ is 8.0. The equilibrium constant of the reaction, $H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{(g)}$ will be
A. $\frac{1}{8}$
B. $\frac{1}{16}$
C. 16
D. $\frac{1}{64}$

Answer: D

- Watch Video Solution

28. For the reaction, $\mathrm{CaCO}_{3(g)} \Leftrightarrow C a O_{(s)}+\mathrm{CO}_{2(g)} K_{p}$ is equal to
A. K_{c}
B. $K_{c} R T$
C. $K_{c}(R T)^{2}$
D. $K_{c}(R T)^{-}$

Answer: B

29. The favourable conditions for melting of ice is
A. Low pressure
B. High pressure
C. Low temperature
D. Absence of catalyst

Answer: B

- View Text Solution

30. In the manufacture of NH_{3} by Haber's process involving the reaction.
$N_{2(g)}+3 H_{2(g)} \stackrel{\left[F e_{2} O_{2}\right]}{\Longleftrightarrow} 2 \mathrm{NH}_{3(g)}, \Delta H=-22.08 \mathrm{kcal}$. The favourable conditions are
A. High pressure and low temperature.
B. High pressure and high temperature
C. Low pressure and high temperature
D. Low pressure and low temperature

Answer: A

- View Text Solution

31. If K_{1} is equilibrium constant at temperature T_{1} and K_{2} is the equilibrium constant at temperature T_{2}, and if $T_{2}>T_{1}$ and reaction is endothermic then
A. $K_{2}>K_{1}$
B. $K_{2}<K_{1}$
C. $K_{2}=K_{1}$
D. All of these

Answer: A

32. Sulphide Ion reacts with solid sulphur
$S_{(a q)}^{2-}+S_{(s)} \Leftrightarrow S_{2(a q)}^{2-}, \quad K_{1}=10$
$S_{(a q)}^{2-}+2 S_{(s)} \Leftrightarrow S_{3(a q)}^{2-}, \quad K_{2}=130$
The equilibrium constant for the formation of $S_{3}^{2-}(a q)$ from $S_{2}^{2-}(a q)$ and sulphur is
A. 10
B. 13
C. 130
D. 1300

Answer: B

- Watch Video Solution

33. $\mathrm{CH}_{4(g)}+2 \mathrm{O}_{2(g)} \Leftrightarrow \mathrm{CO}_{2(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(l)}$
$\Delta H=-170.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ which of the following statement is not true
A. At equilibrium, the concentration of $\mathrm{CO}_{2(g)}$ and $\mathrm{H}_{2} \mathrm{O}_{(l)}$ are not equal
B. The equilibrium constant for the reaction is given by $K_{p}=\frac{\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{CH}_{4}\right]\left[\mathrm{O}_{2}\right]}$
C. Addition of $C H_{4(g)}$ or $O_{2(g)}$ at equilibrium will cause a shift to the right.
D. The reaction is exothermic.

Answer: B

- View Text Solution

34. For the system $3 A+2 B \Leftrightarrow C$, the expression for equilibrium constant K is
A. $\frac{[3 A] \times[2 B]}{[C]}$
B. $\frac{[A]^{3} \times[B]}{[C]}$
C. $\frac{[C]}{[A]^{3} \times[B]^{2}}$
D. $\frac{[C]}{[3 A] \times[2 B]}$

Answer: C

- Watch Video Solution

35. Equilibrium constant K_{p} for following reaction

$$
\mathrm{MgCO}_{3(s)} \Leftrightarrow M g O_{(s)}+\mathrm{CO}_{2(g)}
$$

A. $K_{p}=P_{\mathrm{CO}_{2}}$
B. $K_{p}=\frac{P_{\mathrm{CO}_{3}} \times P_{\mathrm{CO}_{2}} \times P_{\mathrm{Mgo}}}{P_{\mathrm{Mg} \mathrm{CO}_{3}}}$
C. $K_{p}=\frac{P_{\mathrm{Mg}} C O_{3}}{P_{\mathrm{CO}_{2}} \cdot P_{\mathrm{MgO}}}$
D. $K_{p}=\frac{P_{C O_{3}} \cdot P_{\mathrm{MgO}}}{P_{\mathrm{Mg}} C O_{3}}$

Answer: A

36. A cyllnder filled with a movable piston contains liquid water in equilibrium with water vapour at $25^{\circ} \mathrm{C}$. Which one of the following operations results in a decrease In the equilibrium vapour pressure ?
A. Moving piston downward a short distance
B. Removing a small amount of the liquid water
C. Dissolving salt in the water
D. Removing a small amount of vapour

Answer: C

- View Text Solution

37. The oxisation of $S O_{2}$ and O_{2} to ${S O_{3}}^{\text {is }}$ an exothermic reaction. The yield of SO_{3} will be maximum if
A. Temperature and pressure both are increased
B. Temperature decreased, pressure increased
C. Temperature increased, pressure constant
D. Temperature and pressure both decreased

Answer: B

- View Text Solution

38. For the reaction $\mathrm{CO}_{(g)}+2 \mathrm{H}_{2(g)} \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}_{(g)}$. If active mass of CO is kept constant and active mass of H_{2} is tripied, the rate of forward reaction will become
A. Three times
B. Six times
C. Eight time
D. Nine times

Answer: D

39. For the homogeneous are reaction at 600 K ,
$4 \mathrm{NH}_{3(g)}+5 O_{2(g)} \Leftrightarrow 4 \mathrm{NO}_{(g)}+6 \mathrm{H}_{2} \mathrm{O}_{(g)}$. The equilibrium K_{c} has the unit.
A. $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)^{-1}$
B. $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)^{1}$
C. $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)^{10}$
D. $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)^{-9}$

Answer: B

- Watch Video Solution

40. The equilibrium $A_{(g)}+4 B_{(g)} \Leftrightarrow A B_{4(g)}$ is attained by mixing equal moles of A and B in a one litre vessel. Then at moles of A and B in a one litre vessel. Then at equilibrium
A. $[A]=[B]$
B. $[A]>[B]$
C. $[A]<[B]$
D. $\left[A B_{4}\right]>[A]$

Answer: B

- Watch Video Solution

41. If Ar is added to the equilibrium
$N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 \mathrm{NH}_{3}$ at constant volume, then equilibrium will
A. Shift in forward direction
B. Not shift in any direction
C. Shift in reverse direction
D. All are incorrect
42. The transport of oxygen by hemoglobin in our body as an illustration for a \qquad change.
A. Reversible
B. Irreversible
C. Thermodynamic
D. Kinetic

Answer: A

- View Text Solution

43. In reversible reaction, initilly the reaction proceed towards the
A. Formation of the product
B. Formation of reactions
C. Decompose of product
D. Equilibrium state

Answer: A

- View Text Solution

44. What is the temperature and pressure in a thermos flask?
A. $298 \mathrm{k}, 1$ atm
B. 273 k, 2 atm
C. 298 k, 2 atm
D. 273 k, 2 atm

Answer: B

45. Rate of melting of ice is equal to \qquad .
A. rate of freezing of ice
B. rate of melting of ice
C. rate of freezing water
D. rate of melting of water

Answer: C

- View Text Solution

46. Assertion (A) : A pure solid always has the same concentration at a given temperature.

Reason (R) : It does not expand to fill its container.
A. Both (A) and (R) are true and (R) is the correct explanation of (A).
B. Both (A) and (R) are true and (R) is not the correct explanation of (A).
C. (A) true but (R) false.
D. Both (A) and (R) are false.

Answer: A

- View Text Solution

47. Assertion (A) : The concentration terms of pure liquids can also be excluded from the expression of the equilibrium constant.

Reason (R) : The active mass concentration of the pure liquid does not charge at a given temperature.
A. Both (A) and (R) are true and (R) is the correct explanation of (A).
B. Both (A) and (R) are true and (R) is not the correct explanation of (A).
C. (A) true but (R) false.
D. Both (A) and (R) are false.

D View Text Solution

48. Equilibrium constant value depends on \qquad .
A. Temperature
B. Volume
C. Pressure
D. Catalyst

Answer: A

D View Text Solution

49. Which of the following is correct about equilibrium constant ?
A. Unpredict the direction in which the 'net reaction will take place.
B. Unpredict the extent of the reaction.
C. Cannot calculate the equilibrium concentrations of the reactants and products
D. These constants do not provide any information regrading the rates of the forward or information regarding the rates of the forward or reverse reaction.

Answer: D

- View Text Solution

50. Which equation gives the quantitative temperature dependence of equilibrium constant ?
A. Hess law
B. Graham's diffusion
C. Van't Hoff
D. Van dae Waals

Answer: C

- View Text Solution

51. Which of the following is incorrect ?
A. Kc indicates how far the reaction has proceeded
B. A large value of $K c$ indicates that the reaction reaches equilibrium with high product yeid.
C. A low value of Kc indicates that the the rection reaches equilibrium with low product form.
D. Unpreidt the direction in which the net reaction will take place.

Answer: D

52. What is the relation between standard free energy change and equilibrium constant ?
A. $\Delta G^{\circ}=+\mathrm{RT} \ln \mathrm{k}$
B. $k=-\Delta G^{\circ} R T$
C. $\Delta G^{\circ}=-\ln k$
D. $k=R T \Delta G$

Answer: A

- View Text Solution

53. Catalyst speeds up the attainment of equilibrium by providing a new pathway having a \qquad .
A. lower activation energy
B. higher activation energy
C. more activation energy
D. no activation energy

Answer: A

- View Text Solution

Very Short Answer Question

1. Ice melts showly at altitudes Explain why?

- View Text Solution

2. Predict which of the following reaction will have appreciable concentration of reactants and products ?
(i) $C l_{2(g)} \Leftrightarrow 2 C l_{(g)}, K_{c}=5 \times 10^{-39}$
(ii) $\mathrm{Cl}_{2(g)}+2 \mathrm{NO}_{(g)} \Leftrightarrow 2 \mathrm{NOCl}_{(g)}, K_{c}=3.7 \times 10^{-8}$
(iii) $\mathrm{Cl}_{2(g)}+2 \mathrm{NO}_{2(g)} \Leftrightarrow 2 \mathrm{NO}_{2} \mathrm{Cl}_{(g)}, K_{c}=1.8$
3. The following concentration were obtained for the formation of NH_{3} from N_{2} and H_{2} at equilibrium for the reaction

$$
N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 N H_{3(g)}
$$

$$
\left[N_{2}\right]=1.5 \times 10^{-2} M,\left[H_{2}\right]=3.0 \times 10^{-2} M,\left[N H_{3}\right]=1.2 \times 10^{-2} M
$$

Calculate the equilibrium constant.

- Watch Video Solution

4. Which of the following reactions involve homogeneous equilibrium and which involve heterogeneous equilibrium ?

$$
\mathrm{Ag}_{2} \mathrm{O}_{(s)}+2 \mathrm{HNO}_{3(a q)} \Leftrightarrow 2 \mathrm{AgNO}_{3(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)}
$$

- Watch Video Solution

5. Which of the following reactions involve homogeneous equilibrium and which involve heterogeneous equilibrium ?

$$
C_{(s)}+C O_{2(g)} \Leftrightarrow 2 C O_{(g)}
$$

- Watch Video Solution

6. Which of the following reactions involve homogeneous equilibrium and which involve heterogeneous equilibrium ?

$$
\mathrm{CH}_{3} \mathrm{COOC}_{2(g)} \mathrm{H}_{5(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOH}_{(a q)}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(a q)}
$$

- Watch Video Solution

7. Which of the following reactions involve homogeneous equilibrium and which involve heterogeneous equilibrium ?
$2 \mathrm{SO}_{2(\mathrm{~g})}+O_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{SO}_{3(\mathrm{~g})}$

- Watch Video Solution

8. Write the relationship between equilibrium constant and enthapy.

- Watch Video Solution

9. Explain the state of equilibrium based on the following illustration.

See-saw

- View Text Solution

10. Explain the state of equilibrium based on the following illustration.

Tug of war

- View Text Solution

11. why are reversible process non-static ?

- Watch Video Solution

12. 'Rate of Melting = Rate of freezing"

When is the above condition achieved ? Explain with an example.
13. When does the rate of backward reaction increase ? What is its consequence?

$$
A+B \Leftrightarrow C+D
$$

- View Text Solution

14. Distinguish between homogeneous and hetergeneous equilibrium reaction.

- Watch Video Solution

15. Define equilibrium constant.

- View Text Solution

16. Write the expressions of equilibrium constants in terms of partial pressure and active masses for
$2 B r C l_{(g)} \Leftrightarrow B r_{2(g)}+C l_{2(g)}$

- Watch Video Solution

17. Define reaction quotient.

- View Text Solution

18. Explain the diagrammatic expression expression about the direction of reaction.

- View Text Solution

Short Answer Question

1. Find out the $\Delta n g$ values and write the K_{c} and K_{p} relation for the equilibrium reactions

Decomposition of ammonia

- Watch Video Solution

2. Find out the $\Delta n g$ values and write the K_{c} and K_{p} relation for the equilibrium reactions

Formation of NO

D Watch Video Solution

3. A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.

What is the initial effect of change on vapour pressure ?

- Watch Video Solution

4. A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.

How do rates evaporation and condensation change initially ?

- Watch Video Solution

5. A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.

What happens when equilibrium is restored finally and what will be the final vapour pressure?

- View Text Solution

6. Find out the value of K_{c} for each of the following equilibria from the value of K_{p}
$2 \mathrm{NOCl}_{(g)} \Leftrightarrow 2 N O_{(g)}+\mathrm{Cl}_{2(g)}$,
$K_{p}=2.1 \times 10^{-2}$ at 500 K

- Watch Video Solution

7. Find out the value of K_{c} for each of the following equilibria from the value of K_{p}
$\mathrm{CaCO}_{3(\mathrm{~s})} \Leftrightarrow \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$,
$K_{p}=165$ at 1073 K.

- Watch Video Solution

8. List out few examples in irreversible reactions (changes) taking place in our daily life activity.

- Watch Video Solution

9. Write a note biochemical reversible change

- View Text Solution

10. State whether the existence of equilibrium is possible in our lungs or not. Give reason.

- Watch Video Solution

11. Discuss the equilibrium involving dissolution of solids or gases in liquids.

- View Text Solution

12. Give the relationship between K_{p} and K_{c} for the following cases with example.
$\Delta n_{g}=+\mathrm{ve}$

- Watch Video Solution

13. Give the relationship between K_{p} and K_{c} for the following cases with example.
$\Delta n_{g}=-\mathrm{ve}$

- Watch Video Solution

14. Give the relationship between K_{p} and K_{c} for the following cases with example.

$$
\Delta n_{g}=0
$$

- Watch Video Solution

15. Consider the equations given below
$\mathrm{Ca} \mathrm{CO}_{3(s)} \Leftrightarrow C a C_{(s)}+\mathrm{CO}_{2(g)}$

$$
\mathrm{CO}_{2(g)}+\mathrm{H}_{2} \mathrm{O}_{(e)} \Leftrightarrow H_{(a q)}^{+}+\mathrm{HCO}_{3(a q)}^{-}
$$

Write the equilibrium constant for these equations and give reason for the exception of concentration of specific compounds.
16. List down the applications of equilibrium constant.

- Watch Video Solution

17. What happens when the concentration of H_{2} and I_{2} are increased in the reaction $H_{2}+I_{2} \Leftrightarrow 2 H I$?

- View Text Solution

18. What inferences do you observe by the values of Q and K_{C} ?

- Watch Video Solution

19. Discuss the changes you observe in the reaction of synthesis of ammonia with preference to effect of pressure.
20. Write a note on Haber's process emphasizing the idea of a catalyst in an equilibrium reaction.

- View Text Solution

Long Answers Questions

1. Explain the following with relevant examples.

Solid-liquid equilibrium

- View Text Solution

2. Explain the following with relevant examples.

Liquid-vapour equilibrium

View Text Solution

3. Explain the following with relevant examples.

Solid-vapour equilibrium

- View Text Solution

4. Derive the K_{P} and K_{c} for the following equilibrium reaction.
$H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{(g)}$

- View Text Solution

5. Derive the value of K_{C} and K_{P} for the synthesis of HI .

- View Text Solution

6. Arrive at the expressions of K_{P} and K_{C} for the dissociation of PCl_{5}.

- View Text Solution

7. Equilibrium constant K_{C} for the reaction,

$$
N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 \mathrm{NH}_{3(g)} \text { at } 500 \mathrm{~K} \text { is } 0.061 .
$$

At particular time, the analysis shows that the composition of the reaction mixture is $3.0 \mathrm{~mol} \mathrm{~L}^{-1}$ of $N_{2}, 2.0 \mathrm{~mol} \mathrm{~L}^{-10}$ of $\mathrm{H}_{2}, 0.50 \mathrm{~mol} \mathrm{~L}^{-1}$ of NH_{3}. is the reaction at equilibrium ?

- View Text Solution

8. Explain K How does the extent of reaction depend on K_{C} ?

- View Text Solution

9. Explain the effect of concentration, pressure, temperature, catalyst and inert gas on equilibrium.

D View Text Solution

1. How will you arrive at the unit of equilibrium constant ?

- Watch Video Solution

2. $2 \mathrm{NO}_{(g)}+O_{2(g)} \Leftrightarrow 2 \mathrm{NO}_{2(g)}, \Delta H=-117 \mathrm{~kJ}$.

Predict the effect of an increase in concentration of NO.

- View Text Solution

3. $2 \mathrm{NO}_{(g)}+O_{2(g)} \Leftrightarrow 2 \mathrm{NO}_{2(g)}, \Delta H=-117 \mathrm{~kJ}$.

Predict the effect of pressure decrease as a result of increased volume on the equilibrium concentration of NO_{2}.

- View Text Solution

4. Following data is given for the reacson,
$\mathrm{CaCO}_{3(s)} \rightarrow \mathrm{CaO}_{(s)}+\mathrm{CO}_{2(s)}$
$\Delta_{f} H^{\circ}\left[C a O_{(s)}\right]=-650.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta_{f} H^{\circ}\left[C_{2(g)}\right]=-395.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta_{f} H^{\circ}\left[\mathrm{CaCO}_{3(s)}\right]=-1206.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Predict the effect of temperature on the equilibrium constant of the above reaction.

- View Text Solution

5. write a relation between ΔG and Q and define the meaning of each term and answer the following

Why a reaction proceeds forward when $Q<K$ and no net reaction occurs when $Q=K$?

- View Text Solution

6. write a relation between ΔG and Q and define the meaning of each term and answer the following

Explain the effect of increase in pressure in terms of reaction quotient Q.

For the reaction,
$\mathrm{CO}_{(g)}+3 \mathrm{H}_{2(g)} \rightarrow \mathrm{CH}_{4(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)}$

- View Text Solution

7. Describe the effect of
addition of H_{2}

- Watch Video Solution

8. Describe the effect of
addition of $\mathrm{CH}_{3} \mathrm{OH}$

- Watch Video Solution

9. Describe the effect of
removal of CO
10. Describe the effect of removal of $\mathrm{CH}_{3} \mathrm{OH}$ on the equilibrium of the reaction, $2 \mathrm{H}_{2(g)}+\mathrm{CO}_{(g)} \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}_{(g)}$

D View Text Solution

11. What happens to an wquilibrium in a reversible reaction if a catalyst is added to it?

- View Text Solution

