© ${ }^{\text {T doubtnut }}$

CHEMISTRY

BOOKS - SURA CHEMISTRY (TAMIL

ENGLISH)

SOLUTIONS

Evaluation

1. The molality of a solution containing 1.8 g of glucose dissolved in 250 g of water is
A. 0.2 M
B. 0.01 M
C. 0.02 M
D. 0.04 M

Answer: D

(D) Watch Video Solution

2. Which of the following concentration terms is
are Independent of temperature?
A. molality
B. molarity
C. mole fraction
D. (a) and ©

Answer: D

D Watch Video Solution

3. Stomach acid a dilute solution of HCl can be neutralised by reaction with Aluminium hydroxide.

$\mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{AlCl}_{3}+3 \mathrm{H}_{2} \mathrm{O}$

how many millitres of $0.1 \mathrm{M} \mathrm{Al}(\mathrm{OH})_{3}$ solution are needed to neutralise 21 ml of 0.1 M HCl ?
A. 14 mL
B. 7 mL
C. 21 mL
D. none of these

Answer: B
(D) Watch Video Solution
4. The partial pressure of nitrogen in air is
7.6×76 atm and its Henry's law constant is
7.6×10^{6} atm at 300 k . What is the mole
fraction of nitrogen gas in the solution obtained when air is bubbled through water at 300 K ?
A. 1×10^{-4}
B. 1×10^{-6}
C. 2×10^{-5}
D. 1×10^{-5}

Answer: D
5. The Henry's law constant for the solubility of

Nitrogen gas in water at 350 K is 8×10^{4} atm.
The mole fraction of nitrogen in air is 0.5 .The number of moles of Nitrogen from air dissolved in 10 moles of water at 350 K and 4 atm pressure is
A. 4×10^{-4}
B. 4×10^{4}
C. 2×10^{-2}
D. 2.5×10^{-4}

Answer: D

D Watch Video Solution

6. Which one of the following is incorrect for ideal solutions?
A. $\Delta H_{\text {mix }}=0$
B. $\Delta U_{\text {mix }}=0$
C.

$$
\Delta P=P_{\text {observed }}-P_{\text {calculated by Raoult's law }}=0
$$

D. $\Delta G_{m i x}=0$

Answer: C

D View Text Solution

7. Which one of the following gases has the lowest value of Henry law constant?
A. N_{2}
B. He
C. CO_{2}
D. H_{2}

Answer: C

(D) Watch Video Solution

8. P_{1} and P_{2} are the vapour pressures of pure
liquid components, 1 and 2 respectively of an ideal binary solution if x_{1} represents the mole

Traction of component 1, and the total pressure of the solutions formed by 1 and 2 will be
A. $P_{1}+x_{1}\left(P_{2}-P_{1}\right)$
B. $P_{2}-x_{1}\left(P_{2}+P_{1}\right)$
C. $P_{1}-x_{2}\left(P_{1}-P_{2}\right)$
D. $P_{1}+x_{2}\left(P_{1}-P_{2}\right)$

Answer: C
(D) Watch Video Solution
9. Osmotic pressure (π) of a solution is given by the relation

$$
\text { A. } \pi=n R T
$$

B. $\pi V=n R T$
C. $\pi R T=n$
D. none of these

Answer: B
10. Which one of the following binary liquid mixtures exhibits positive deviation from Raoults law?
A. Accetone + chloroform
B. Water + nitric acid
C. $\mathrm{HCl}+$ water
D. Ethanol+ water

Answer: D
11. The Henry's law constant for two gases A and B are x and y respectively.The ratio of mole fractions of A to B is 0.2 The ratio of mole fraction of B and A dissolved in water will be

$$
\begin{aligned}
& \text { A. } \frac{2 x}{y} \\
& \text { B. } \frac{y}{0.2 x} \\
& \text { C. } \frac{0.2 x}{y} \\
& \text { D. } \frac{5 x}{y}
\end{aligned}
$$

Answer: D

12. At $100^{\circ} \mathrm{C}$ the vapour pressure of a solution containing 6.5 g a solute in 100 g water is 732mm.If $K_{b}=0.52$, the boiling point of this solution will be
A. $102^{\circ} \mathrm{C}$
B. $100^{\circ} \mathrm{C}$
C. $101^{\circ} \mathrm{C}$
D. $100.52^{\circ} \mathrm{C}$

Answer: C
13. According to Raoult's law the relative lowering of vapour pressure for a solution is equal to
A. mole fraction of solvent
B. mole fraction of solute
C. number of moles of solute
D. number of moles of solvent

Answer: B
14. At same temperature, which pair of the following solutions are Isotonic?
A. $0.2 M B a C l_{2}$ and $0.2 M$ urea
B. 0.1 M glucose and 0.2 M urea
C. 0.1 MNaCl and $0.1 \mathrm{MK}_{2} \mathrm{SO}_{4}$
D. $0.1 \mathrm{MBa}\left(\mathrm{NO}_{3}\right)$ and $0.1 \mathrm{MNa}_{2} \mathrm{SO}_{4}$

Answer: D

15. The emplrical formula of a non-electrolyte (X) is $\mathrm{CH}_{2} \mathrm{O}$ A. solution containing six gram of X exets the same osmotic pressure as thet of 0.025M glucose solution at the same temperature. The moleculra formula of X is
A. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
B. $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{8}$
C. $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{4}$
D. $\mathrm{CH}_{2} \mathrm{O}$

Answer: B
16. The K_{H} for the solution of oxygen dissolved in water is $4 \times 10^{4} \mathrm{~atm}$ at a given temperature . If the partial pressure of oxygen in air is 0.4 atm the mole fraction of oxygen in solution is

A. 4.6×10^{3}
B. 1.6×10^{4}
C. 1×10^{-5}
D. 1×10^{5}

Answer: C

D Watch Video Solution

17. Normality of 1.25 M sulphuric acid is
A. 1.25 N
B. 3.75 N
C. 2.5 N
D. 2.25 N
18. Two liquids X and Y on mixing gives a warm solution. The solution is
A. ideal
B. non-ideal and shows positive deviation
from Raoult's law
C. ideal and shows deviation from Roult's Law
D. non-ideal and shows negative deviation
from Raoult's Law

Answer: D

- View Text Solution

19. The relative lowering of vapour pressure of a sugar solution in water is 3.5×10^{-3} The mole fraction of water in that solution is
A. 0.0035
B. 0.35
C. $0.0035 / 18$
D. 0.9965

Answer: D

D Watch Video Solution

20. The mass of a non-voltalle solute (molar mass $80 \mathrm{~g} \mathrm{~mol}^{-1}$) which should be dissolved in

92 g of toluene to reduce its vapour pressure to
90%
A. 10 g
B. 20 g
C. 9.2 g

D. 8.89 g

Answer: D

D Watch Video Solution

21. For a solution the plot of osmotic pressure (π) verses the concentration $\left(\operatorname{cin} m o l L^{-1}\right)$ gives a straight line with slope 310 R where ' R ' is the gas constant The temperature at which osmotic pressure measured is
A. $310 \times 0.082 K$
B. $310^{\circ} \mathrm{C}$
C. $37^{\circ} C$
D. $\frac{310}{0.082} K$

Answer: C

D Watch Video Solution

22. 200 ml of an aqueous solution of a protein
contains 1.26 g of protein. At 300 K , the osmotic pressure of this solution is found to be 2.52×10^{-3} bar.The molar mass of protein will
be

$$
\left(R=0.083 L \bar{m} o l^{-1} K^{-1}\right)
$$

A. $62.22 \mathrm{kgmol}^{-1}$
B. $12444 \mathrm{gmol}^{-1}$
C. $300 \mathrm{gmol}^{-1}$
D. none of these

Answer: A
(D) Watch Video Solution
23. The Van't Hoff factor (i) for a dilute aqueous
solution of the strong elecrolyte barium
hydroxide is
A. 0
B. 1
C. 2
D. 3

Answer: D
24. What is the molality of a $10 \% \mathrm{~W} / \mathrm{W}$ aqueous sodium hydroxide solution?
A. 2.778
B. 2.5
C. 10
D. 0.4

Answer: B
25. The correct equation for the degree of an assoclating solute, ' n ' molecules of which undergoes assoclation in solution is

$$
\begin{aligned}
& \text { A. } \alpha=\frac{n(i-1)}{n-1} \\
& \text { B. } \alpha^{2}=\frac{n(1-i)}{(n-1)} \\
& \text { C. } \alpha=\frac{n(i-1)}{1-n} \\
& \text { D. } \alpha=\frac{n(1-i)}{1-n}
\end{aligned}
$$

Answer: C

26. which of the following aqueous solution has the highest bolling point?
A. $0.1 \mathrm{MKNO}_{3}$
B. $0.1 \mathrm{MNa}_{3} \mathrm{PO}_{4}$
C. $0.1 M B a C l_{2}$
D. $0.1 \mathrm{MK}_{2} \mathrm{SO}_{4}$

Answer: B
27. The freezing point depression constant for water is $1.86^{\circ} \mathrm{Kkgmol}^{-1}$, I f $5 g N a_{2} \mathrm{SO}_{4}$ is dissolved in 45 g water the depression in freezing point as $3.64^{\circ} C$ The Vant Hoff factor for $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is
A. 2.50
B. 2.63
C. 3.64
D. 5.50

Answer: A
28. Equimotal aquous solutions of NaCl and KCl
are prepared If the freezing point of
NaClis $-2{ }^{\circ} C$ the freezing point of KCl solution is expected tobe
A. $-2^{\circ} C$
B. $-4^{\circ} C$
C. $-1^{\circ} C$
D. $0^{\circ} \mathrm{C}$

Answer: A

D View Text Solution

29. Phenol dismerises in benzene having Van,t Hoff factor 0.54 What is the degree of association?
A. 0.46
B. 92
C. 46
D. 0.92

Answer: D

D Watch Video Solution

30. Assertion : An ideal solution obeys Raoults

Law

Reason: In an ideal solution, solvent-solvent as
well as solute-solute interactions are similar to solute-solvent interactions.
A. Both assertion and reason are true and reason is the correct explanation of
assertion.
B. Both assertion and reason are true but
reason is not the correct explanation of assertion
C. assertion is true but reason is false
D. both assertion and reason are false

Answer: A
31. Define

Molality

- Watch Video Solution

32. Define

Normality

D Watch Video Solution

33. What is a vapour pressure of liquid? What is
relative lowering of vapour pressure?
34. State and explain Henry's law

D Watch Video Solution

35. State Raoult law and obtain expression for lowering of vapour pressure when nonvolatile solute is dissolved in solvent.
36. what is molal depression constant ? Does it depend on nature of the solute?

- View Text Solution

37. What is osmosis?

D Watch Video Solution

38. Define the term 'isotonic solution'.

D View Text Solution
39. You are provided with a solid ' A ' and three solutions of A dissolved in water -one saturated one unsaturated ,and one super saturated. How would you determine which solution is which?

- View Text Solution

40. Explain the effect of pressure on the solubility.
41. A sample of 12 M concentrated hydrochloric acid has a density $1.2 g L^{-1}$ Calculated the molality.

- Watch Video Solution

42. A 0.25 M glucose solution at 370 . 28 K has
approxmately the pressure as blood does what is the osmotic pressure of blood?
43. Calculated the molality of a solution $\begin{array}{llll}\text { containing } & 7.5 & g & \text { of }\end{array}$ $\left(\mathrm{NH}_{2}-\mathrm{CH}_{2}-\mathrm{COOH}\right)$ dissolved in 500 g of water

D Watch Video Solution

44. Which solution has the lower freezing point
? 10 g of methanol $\left(\mathrm{CH}_{3} \mathrm{OH}_{\square}\right)$ in 100 g of water (or) 20 g of ethanol $\left(\mathrm{CH}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ in 200 g of water
45. How many moles of solute particles are present in one litre of $10^{-4} \mathrm{M}$ potassium sulphate?

D Watch Video Solution

46. Henry's law constant for solubility of methane In benzene is $4.2 \times 10^{-5} \mathrm{~mm} \mathrm{Hg}$ at a particular constant temperature At this temperature calculate the solubility of methane
at
(i) 750 mm Hg (ii) 840 mm Hg

Watch Video Solution

47. The observed depression in freezing point of
water for a particular solution in $0.093^{\circ} k$
calculate the concentration of the solution in molality Given that molal depression constant for water is $1.86 \mathrm{KKGmol}^{-1}$
48. The vapour pressure of pure benzene $\left(C_{6} H_{6}\right)$ at a given temperature is 640 mm Hg.
2.2 g of non -volatile solute is added to 40 g of benzene. The vapour pressure of the solution is 600 mm Hg . Calcultaed the molar mass of the solute?
(D) Watch Video Solution

Additional Question

1. The example of solid solution is
A. glucose in water
B. cooper in gold
C. comphor in nitrogen
D. oxygen in nitrogen

Answer: B

D View Text Solution
2. The tanks used by scuba divers are filled with
air diluted with $11.7 \% \mathrm{He}$,
A. $56.2 \% N_{2}$ and $32.1 \% O_{2}$
B. $56.2 \% O_{2}$ and $32.1 \% N_{2}$
C. $50.2 \% N_{2}$ and $38.1 \% O_{2}$
D. $50.2 \% O_{2}$ and $38.1 \% N_{2}$

Answer: B

D View Text Solution

3. The blocking of capillaries due to sudden release of bubbles of N_{2} gas in blood is known as
A. bends
B. blends
C. mends
D. all of these

Answer: A

D View Text Solution

4. Which of the following should have maximum value for k_{H} ?
A. He
B. H_{2}
C. N_{2}
D. CO_{2}

Answer: A

- Watch Video Solution

5. The increase in the temperature of the aqueous solution placed in a closed vassel will result in its

A. molality to increase

B. molarity to decrease

C. mole fraction to increase
D. mass \% increase

Answer: B

D Watch Video Solution

6. In a binary solution.
A. solvent my be liquid
B. solvent may be solid
C. solute may be gas
D. any of thses

Answer: D

D Watch Video Solution

7. The temperature at which the vapour pressure of a liquid equals external pressure in called
A. freezing point
B. boiling point
C. melting point
D. critical temperature

Answer: B

D Watch Video Solution

8. Solubility of gas decreases in a liquid by

A. increase of temperature
B. cooling
C. increasing pH

D. decreasing pH

Answer: A

D View Text Solution

9. Vapour pressure is the pressure exerted by
vapour
A. in equilibrium with liquid
B. in any condition
C. in an open system

D. in atmospheric conditions

Answer: A

D Watch Video Solution

10. A sample of toothpaste weighting 500 g , on analysis was found to contain $0.2 g$ of fluorine

The concentration of fluorine in ppm is
A. 4×10^{3}
B. 4×10^{2}
C. 4×10
D. 2×10^{2}

Answer: B

- Watch Video Solution

11. $18 \%(\mathrm{w} / \mathrm{V})$ solution of urea $($ Mol mass $=60)$ is
A. 1 M
B. 2 M
C. 0.3 M
D. 3 M

Answer: D

D Watch Video Solution

12. The value of ebulliosepic constant depends
upon
A. $\Delta H_{\text {solution }}$

B. nature of solvent

C. nature of solute

D. freezing point of solution

Answer: B

- View Text Solution

13. Correct statement among the following regarding osmoles is
A. Solvent flows from high concentration of solute to low concentration of solute
B. Solvent flows from low concentration of solute to high concentration of solute
C. Solute flows from high concentration to
low concentration
D. Solution flows from low concentration to
high concentration

Answer: B

- View Text Solution

14. For associative solutes
A. $I<1$ and $\alpha<1$
B. $I>$ and $\alpha>1$
C. $I<$ and $\alpha<1$
D. $I>$ and $\alpha<$

Answer: A

D View Text Solution

15. Which of the following is correct about a solution showing positive deviation?
A. Vapour pressure observed will be the less
than that calculated from Raoult's law
B. Minimum boiling azeotrope will be formed
C. $\Delta H_{m i x}<0$
D. $\Delta V_{m i x}<0$

Answer: B

D View Text Solution

16. Depression in freezing point for 1 M urea, 1 M $\mathrm{NaC1}$ and $1 \mathrm{M} \mathrm{CaCL} L_{2}$ are in the ratio of
A. $1: 2: 3$
B. 1:1:1
C. $3: 2: 1$
D. 1:1:1

Answer: A

(D) Watch Video Solution

17. When a saturated solution of KCL is heated it
becomes

A. unsaturated

B. supersaturated

C. remains saturated

D. attains equilibrium

Answer: A

D Watch Video Solution

18. Which of the following has maximum freezing point?
A. Pure $\mathrm{H}_{2} \mathrm{O}$
B. $0.1 M N a C l(a q)$
C. $0.01 M N a C l(a q)$
D. $0.5 \mathrm{MNaCl}(a q)$

Answer: A

D View Text Solution
19. The solution having minimum boiling points is
A. $0.1 M C_{6} H_{12} O_{6}$
B. $0.1 \mathrm{MCaCl} l_{2}$
C. 0.1 MNaCl
D. $0.5 \mathrm{MAlCl}_{3}$

Answer: A

D View Text Solution

20. What is the boiling point of 1 molal aqueous solution of $\mathrm{NaCl}\left[K_{b}=0.52 \mathrm{Kmolal}^{-1}\right]$.
A. $99.48^{\circ} C$
B. $98.96^{\circ} \mathrm{C}$
C. $100.52^{\circ} C$
D. $101.04^{\circ} C$

Answer: D

D Watch Video Solution

21. For a non-electrolytic solution
A. $i=+v e$
B. $i=-v e$
C. $i=0$
D. $i=1$

Answer: D

(D) Watch Video Solution

22. The normalitiy of 10% (weight / volume)(acetic and is
A. 1 N
B. 10 N
C. 1.7 N
D. 0.83 N

Answer: C

D View Text Solution

23. The highest temperature at which vapour pressure of any liquids can be measured is
A. Critical temperature

B. Boyle's temperature

C. Boiling point of the liquid
D. Kraft temperature

Answer: C

- View Text Solution

24. Which of the following equimolar solution have highest vapour pressure?

A. Glucose

B. NaCl

C. $K_{2} S O_{4}$
D. $K_{4} F e(C N)_{6}$

Answer: A

(D) Watch Video Solution

25. The osmotic pressure of 0.1 M sodium chloride solution at $27^{\circ} \mathrm{C}$
A. 4.0 atm

B. 2.46 atm

C. 4.92 atm
D. 1.23 atm

Answer: C

D Watch Video Solution

26. If $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ and H_{2} solution is example of non-ideal solution then which graphical representation is correct?
A.
(\#\#SUR_CHE_XI_VO2_CO9_EO2_026_O01.png"
width="30\%">
B.
(\#\#SUR_CHE_XI_VO2_CO9_EO2_026_O02.png"
width="30\%">
C.
(\#\#SUR_CHE_XI_VO2_CO9_EO2_026_O03.png"
width="30\%">

(\#\#SUR_CHE_XI_VO2_CO9_EO2_026_O04.png"

width="30\%">

Answer: B

D View Text Solution

27. Which of the following statement is true?
A. Molarity of solution is dependent of temperature
B. Molality of solution is independent of temperature
C. Mole fraction of solute is dependent on
temperature
D. The unit of molality is mol $d m^{-3}$

Answer: B

- View Text Solution

28. If vant Hoff factor , $i=1$, then

A. It is dissociation

B. It is association

C. Both (1) \& (2)

D. Neither dissociation nor association

Answer: D

- View Text Solution

29. Among the following mixtures dipole-dipole as the major interaction is present in
A. Benzene and $\mathbb{C l} l_{4}$
B. Benzene and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
C. $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ and $\mathrm{CH}_{3} \mathrm{CN}$
D. KCl and water

Answer: C

D View Text Solution

30. An azeotropic solution of two liquids has a boiling point lower than either of the boiling points of the two liquids when it.
A. shows negative deviation
B. shows positive deviation
C. show no deviation
D. is unsaturated

Answer: B

D View Text Solution

31. Two liquids having vapour pressure
P_{1}° and P_{2}° in pure state in the ratio of $2: 1$ are
mixed in the molar ratio of $1: 2$ The ratio of their moles in the vapour state would be
A. 1:1
B. 1:2
C. 2:1
D. $3: 2$

Answer: A

- View Text Solution

32. A pressure cooker reduces cooking time for food because.
A. Cooking involves chemical changes helped by a rise in temperature
B. Heat is more evenly distributed in the
cooking space
C. Boiling point of water involved in cooking is increased
D. The higher pressure inside the cooker crushes the food material

Answer: C

- View Text Solution

33. In the case of osmoles solvent molecules move from solution having?
A. higher vapour pressure to lower vapour
pressure
B. higher concentration to lower
concentration
C. lower vapour pressure to higher vapour

pressure

D. higher osmotic pressure to lower osmotic

pressure

Answer: A

D Watch Video Solution

34. Equimolar solution of non-electrolyte in the same solvent have
A. same boiling point and same freezing point
B. different boiling point and different
freezing point
C. same boiling point but different freezing
point
D. same freezing point but different boiling
point

Answer: A
35. In the phenomenon of osmosis through the semipermeable membrane
A. solvent molecules pass from solution to
solvent
B. solvent molecules pass from solvent to
solution
C. solute molecules pass from solution to
solvent

D. solute molecules pass from solvent to

solution

Answer: B

- View Text Solution

36. Which of the following physical properties is
used to determine the molecular mass of a polymer solution?
A. Relative lowering of vapour pressure
B. Elevation in boiling point
C. Depression in freezing point

D. Osmotic pressure

Answer: D

- View Text Solution

37. When NaCl is added to aqueous solution of glucose
A. Freezing point is lowered
B. Freezing point is raised
C. Freezing point does not change

D. Variation is freezing point can't be

 predicted
Answer: A

- View Text Solution

38. The relationship between the values of
osmotic pressure of 0.1 M solutions of $\mathrm{KNO}_{3}\left(P_{1}\right)$ and $\mathrm{CH}_{3} \mathrm{COOH}\left(\mathrm{P}_{2}\right)$ is
A. $P_{1}>P_{2}$

$$
\text { B. } P_{2}>P_{1}
$$

C. $P_{1}=P_{2}$
D. $\frac{P_{1}}{P_{1}+P_{2}}=\frac{P_{2}}{P_{1}+2 P_{2}}$

Answer: A

- View Text Solution

39. Which of the following pairs of solutions can we expect to be isotonic at the same temperature ?
A. 0.1 M NaCl and $0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$

B. 0.1 M urea and 0.1 M NaCl

C. 0.1 M urea and $0.2 \mathrm{M} \mathrm{MgCl}_{2}$
D. $0.1 \mathrm{MCa}\left(\mathrm{NO}_{3}\right)_{2}$ and $0.1 \mathrm{MNa}_{2} \mathrm{SO}_{4}$

Answer: D

D Watch Video Solution

40. Arrange the following aqueous solutions in the order of their increasing boiling points
(i) $10^{-4} \mathrm{MNaCl}$
(ii) $10^{-3} M$ urea
(iii) $10^{-3} M M g C l_{2}$
(iv) $10^{-3} M \mathrm{NaCl}$
A. $(i)<(i i)<(i v)<(i i i)$
B. $(i i)<(i)<(i i i)<(i v)$
C. $(I)<(i i)<(i i i)<(i v)$
D. $(i v)<(i i i)<(I)<(i i)$

Answer: A
41. Which of the following concentration terms is temperture independent
(i) Molarity
(ii) Molallity
(iii) Normality
(iv) Mole frection
A. I \& II
B. I\& III
C. II only
D. II \& IV

Answer: D

- View Text Solution

42. Two solution marked as A and B are seprated through semipermeable membrane as below .

The phenomenon undergoing
(\#\#SUR_CHE_XI_VO2_CO9_EO2_042_Q01.png"
width="80\%">
A. $N a^{+}$moves from solution A to solution B
B. Both Na^{+}and Cl^{-}moves from solution
(A) to solution (B)
C. Both Na^{+}and Cl^{-}moves from solution
(B) to (A)
D. Solvent molecules moves from solution (A) to (B)

Answer: D

View Text Solution
43. Vapour phase diagram for a solution is given below if doted line represents deviation?

- (\#\#SUR_CHE_XI_VO2_C09_EO2_044_Q01.png" width="80\%">

Correct observation for this solution
A. $\Delta H_{m i x}:+v e$
B. $\Delta S_{m i x}:+v e$
C. $\Delta V_{m i x}:+v e$
D. all of these
44. A mixture of two liquids A and B having boiling point of A is $70^{\circ} \mathrm{C}$ and boiling points of B $i s 100^{\circ} C$ distills at $101.2^{\circ} \mathrm{C}$ as single liquids hence this mixture is
A. Ideal solution
B. Non ideal solution showing +ve deviation
C. Non ideal solution showing -ve deviation
D. Immiscible solution

Answer: C

- View Text Solution

45. The mixtures are homogeneous irrespective of their physical state and such homogeneous mixtures are called as \qquad
A. solvent
B. solute
C. solutions

D. mixtures

Answer: C

D Watch Video Solution

46. Which is a homogenous mixtures fo copper and Zinc?
A. Brass
B. Gold
C. Silver
D. Steel

Answer: A

- View Text Solution

47. What is the resultant solution is called if $\mathbb{C} 14$
is used?
A. aqueous solution
B. non-aqueous solution
C. chloride solution
D. carbon solution

Answer: B

- View Text Solution

48. At the time of experiment how the solution
with required concentration is prepared?
A. By adding the raw salt
B. By adding the stock solution
C. By diluting the stock solution
D. By concentrate the stock solution

Answer: C

- View Text Solution

49. Assertion (A) : A standard solution of required concentration can be prepared by dissolving a required amount of a solute in a suitable amount of solvent

Reason ${ }^{\circledR}$: A standard solution is a solution whose concentration is accurately known.
A. Both (A) and ${ }^{\circledR}$ are true ${ }^{\circledR}$ is the correct explanation of (A)
B. Both (A) and ${ }^{\circledR}$ are ture and ${ }^{\circledR}$ is not the

correct explanation of (A)

C. (A) true but ${ }^{\circledR}$ false

D. Both (A) and ${ }^{\circledR}$ are false

Answer: A

D View Text Solution

50. What happen in case of gaseous solute in
liquid solvent the solubility with increase in temperature?
A. increase
B. decrease
C. no change
D. become zero

Answer: B

D Watch Video Solution

51. Assertion (A) : If the dissolution process is endothermic, the increase in temperature will shift the equilibrium towards right

Reason ${ }^{\circledR}$: This is according to Le-Chatelier princeple.
A. Both (A) and ${ }^{\circledR}$ are true ${ }^{\circledR}$ is the correct explanation of (A)
B. Both (A) and ${ }^{\circledR}$ are ture and ${ }^{\circledR}$ is not the correct explanation of (A)
C. (A) true but ${ }^{\circledR}$ false
D. Both (A) and ${ }^{\circledR}$ are false

Answer: A

- View Text Solution

52. Assertion (A) :The increase in kinetic energy breaks the weak intermolecular forces between the gaseous solute and liquid solvent.

Reason ${ }^{\circledR}$: Which results in the release of the dissolved gas molecules to the liquid state
A. Both (A) and ${ }^{\circledR}$ are true ${ }^{\circledR}$ is the correct explanation of (A)
B. Both (A) and ${ }^{\circledR}$ are ture and ${ }^{\circledR}$ is not the
correct explanation of (A)
C. (A) true but ${ }^{\circledR}$ false
D. Both (A) and ${ }^{\circledR}$ are false

Answer: C

- View Text Solution

53. Assertion (A) : If evaporation is carried out in
a closed container then the vapour remains in contact with the surface of the liquid.

Reason ${ }^{\circledR}$: During which they collide with each other and also with the walls of the container .As the collision is of the container .As the collision is inelastick ,they lose their energy
A. Both (A) and ${ }^{\circledR}$ are true ${ }^{\circledR}$ is the correct explanation of (A)
B. Both (A) and ${ }^{\circledR}$ are ture and ${ }^{\circledR}$ is not the
correct explanation of (A)
C. (A) true but ${ }^{\circledR}$ false
D. Both (A) and ${ }^{\circledR}$ are false

Answer: C

54. Match
(\#\#SUR_CHE_XI_VO2_CO9_EO2_055_Q01.png"
width="80\%">

A $\begin{array}{llll}A & C & D\end{array}$
$1 \quad 2 \quad 3 \quad 4$
B $\begin{array}{llll}A & B & D\end{array}$
B.
$\begin{array}{llll}2 & 1 & 3 & 4\end{array}$
c. $\begin{array}{llll}A & B & C & D\end{array}$
C. $\begin{array}{llll}4 & 1 & 3 & 2\end{array}$
$A \quad B \quad C \quad D$
D.
$\begin{array}{llll}4 & 3 & 2 & 1\end{array}$

Answer: A

55. Match

(\#\#SUR_CHE_XI_VO2_C09_EO2_056_Q01.png"

 width="80\%">$$
\begin{aligned}
& \text { A. } \begin{array}{llll}
A & B & C & D \\
1 & 2 & 3 & 4 \\
A & B & C & D \\
\text { B. } \\
2 & 1 & 3 & 4 \\
A & B & C & D \\
4 & 1 & 3 & 2 \\
A & B & C & D \\
4 & 3 & 2 & 1
\end{array}
\end{aligned}
$$

Answer: A

- View Text Solution

56. Match

(\#\#SUR_CHE_XI_VO2_C09_EO2_057_Q01.png"

width="80\%">
A $B \quad C$
A.
123
$A \quad B \quad C$
B.
$2 \quad 1 \quad 3$
c. $A B C$
$3 \quad 1 \quad 2$
$A \quad B \quad C$
D.
$3 \quad 21$

Answer: C

D View Text Solution
57. Which of the following sentence is incorrect?
A. The solubiity of a solute in a liquid solvent
decrease with increase in tempreature
B. When the temperature is increased the
average kinetic energy of the molecules of
the solute and the solvent increases.
C. The increase in kinetic energy faciliates the
solvent molecules to break the
intermolecular attractive forces that keep
the solute molecules together and hence
the solubility increases.
D. All of the above are false

Answer: A

D View Text Solution

Short Answers Question

1. Define PPM.
2. List out the factors that influence the solubility

D View Text Solution

3. What is K_{H} in $P_{\text {Solute }}=K_{H} X_{\text {solute }}$? on what does the value of K_{H} depends?

D View Text Solution

4. Write down the limitation of Henry,s law.

- Watch Video Solution

5. Plot a graph with respect to Henry's law stating the solubility of HCl gas in the solution in cyclohexane

- View Text Solution

6. Define evaporation

- Watch Video Solution

7. What is condensation polymerisation? Write with an example.

(D) Watch Video Solution

8. Why is the deviation observed in the solution of accetic acid?

D View Text Solution
9. KCl in water deviates from ideal behaviour -
why?
10. Write a short note, Van't Hoff equation.

D Watch Video Solution

11. Define colligative properties.

D View Text Solution
12. What is obnormal molar mass?

13. How will you relate the Van't Hoff factors to

 association and dissociation?D View Text Solution
14. Define Mass percentage?
(D) Watch Video Solution
15. Why a person suffering from high blood pressure is advised to take minimum quantity of common salt ?

- View Text Solution

16. Define solution.Explain with an example.

D Watch Video Solution

17. Write a brief (of a component) (x)
18. Enlist the advantage using standard solutions.

D View Text Solution

19. Write a note on solubility of solute and brief out the formation of a saturated solution with an examples.
20. Explain the above vaiation in solubility with respect to temperature for selective compounds.

- View Text Solution

21. With the help of a graph discuss the variation of vapour pressure of benzene in toluence.

D View Text Solution

22. Discuss the comparison between Raoult's law and Henry's law.

D View Text Solution

23. Write a brief note on ideal solutions.

D Watch Video Solution

24. Distinguish between ideal and non-ideal solution.
(D) Watch Video Solution
25. How does the change in temperature pressure and concentration causes deviation from ideal behaviour ?

- View Text Solution

26. Define the Boiling point

D Watch Video Solution

27. Define the Elevation of boiling point

28. Define the Ebullioscopic constant

D Watch Video Solution

29. Write short note an freezing point depression in freezing point and cryoscopic constant.
30. On the account of osmotic pressure 'arive ' at the Van't Hoff equation.

- (\#\#SUR_CHE_XI_VO2_CO9_E04_015_Q01.png" width="80\%">

- View Text Solution

31. Discuss the significances of osmotic-pressure over other colligative properties.
32. Define Van't Hoff factor.

D Watch Video Solution

33. Write the value for $\mathrm{CH}_{3} \mathrm{COOH}$ and NaCl .

D View Text Solution

34. What does the following conditions reval ?
$i=1,<1$ and $I>1$.
35. Discuss the process of roasting with suitable example.

(D) Watch Video Solution

Long Answers Questions

1. How does the change in temperatue affect the
solubility of a solute in a liquid solvent and gaseous solute in liquid solvent ? Explain
2. "Rate of vapourisation is reduced by presence of non-volatile solute "-Explain.

D View Text Solution

3. Explain the positive deviation exhibited by non-ideal solution with prefernce to a solution of ethyl alcohol and water.

D View Text Solution
4. When does a non-ideal solution is said to show a negative deviation?

D View Text Solution

5. Analyse the deviation observed in the solution of phenol and aniline.

- View Text Solution

6. Explain the factors which are responsible for the deviation of solution from Raoult's law.

- View Text Solution

7. Prove that relative lowering of vapour pressure is a colligative property.

- View Text Solution

8. Write down the formula (and expand the terms) used for the determination of molar mass.
9. Write note on reverse osmosis and explain its application in desalination of sea water.

D View Text Solution

Creative Questions Hots

1. Define solution, solvent and solute.
(D) Watch Video Solution
2. What are the non-aqueous solution? Give example.

D Watch Video Solution

3. Define solubility.
(D) Watch Video Solution
4. Give the expression and illustration for the
following concentration terms.
(i) Molarity (ii) Formality (iii) Mass Percentage
(iv) Volume Percentage (v) Mass by volume

D View Text Solution

Numerical Problems

1. A solution contians 510 g of of sulphuric acid
per litre at $25^{\circ} C$ Calculated the normality and molarity of the solution.
2. A solution is prepared by dissolving 30 g of urea in 120 g of water .Calculate the molality of the solution . (Molar mass of urea : 60)

(Watch Video Solution

3. A sample of 56 g of ethanol is dissolved in 36 g of water.of Calculated the mole fraction of ethyl alcohol.
4. What is the mass percentage of each component in a mixture containing 22 g of methanol in 112 g of benzene?

D Watch Video Solution

5. Calculate the volume of $1.5 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ is
completely neturalized by 35.8 mL of
2.5 NNaOH
6. Calculate the volume of $1.5 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ is
completely neturalized by 35.8 mL of
2.5 MNaOH

D Watch Video Solution

7. Calculate the volume of $1.5 \mathrm{~N} \quad \mathrm{H}_{2} \mathrm{SO}_{4}$
completely neturalized by 35.8 mL of
$2.5 \mathrm{NBa}(\mathrm{OH})_{2}$

Watch Video Solution
8. Calculate the volume of $1.5 \mathrm{~N} \quad \mathrm{H}_{2} \mathrm{SO}_{4}$
completely neturalized by 35.8 mL of
$2.5 \mathrm{MBa}\left(\mathrm{OH}_{2}\right)$

D Watch Video Solution

9. Decribe how would yor prepare the following
solution from solute and solvent
$1 \mathrm{Lof} 1.5 \mathrm{MCoCl}_{2}$ solution
10. Decribe how would yor prepare the following solution from solute and solvent
$566 m L$ of $6.0 \%(V / V)$ methanol solution

- View Text Solution

11. Calculate the present by mass of $N a C 1$ if 1.75
g of $\mathrm{NaC1}$ is dissolved in 7.88 g of water

D Watch Video Solution

12. Calculate the molarity of each of the following solutions 8.82 mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 3.75 L of solutions.

D Watch Video Solution

13. Calculate the molarity of each of the following solutions
0.611 mol of ethanol in 96.3 mL of solution.

Watch Video Solution

14. NaOH and HCl react to form NaCl and $\mathrm{H}_{2} \mathrm{O}$
what volume of 0.250 M NaOH solution contains
0.110 mol of NaOH

D Watch Video Solution

15. What of volume of 0.20 M NaOH is required to exactly react with 0.150 mol HCl
16. Explain how would you prepare the following dilute solution from more condentrated solution
(a) $5 \mathrm{Lof} 6.00 \mathrm{MH}_{2} \mathrm{SO}_{4}$ from $18.0 \mathrm{MH}_{2} \mathrm{SO}_{4}$
(b) 250 mL of $0.5 \mathrm{M} \mathrm{CaCl}_{2}$ form $3.0 \mathrm{MCaCl} l_{2}$ solution
© $0.2 \mathrm{NH}_{2} \mathrm{SO}_{4} 500 \mathrm{~mL}$ from $3.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$

D Watch Video Solution

17. What is the molarity of the solutions prepared by diluting 25.0 mL of $0.31 \mathrm{M} \mathrm{MgCl}_{2}$
solution to each of the following volumes (a) 40 mL (b) 100 mL © 350 mL ?

D Watch Video Solution

18. A sample of drinking water was found to be contaminated with chloroform $\left(\mathrm{CHCl}_{3}\right)$ which is considered as cercinogen . The level of contamination was 15 ppm (by mass)
(i) Express this in percent (by mass)
(ii) Calculate the molarity of chloroform in the water sample.
19. Calculate the molefraction of each component in a mixture containing 40 mass percent of toluene in CHCl_{3}

(Watch Video Solution

20. Calculate the weight of carbon dioxide dissolved in 1 L bottle of carbonated water, If the manufacturer uses a pressure of 2.4 atm in the bottling process at $25^{\circ} \mathrm{C}$.
21. The Henry's Law constant for oxygen dissolved in water is $4.34 \times 10^{4} \mathrm{~atm}(\mathrm{~mol} / \mathrm{L})$ at $25^{\circ} \mathrm{C}$. If the partial pressure of oxygen in air is
0.2 atm under ordinary atmospheric condition
calculate the concentration (in mol/litre) of dissolved oxygen in water equilibrium with air at $25^{\circ} C$
22. A solution is prepared by dissolving 2.0 g of glucose and 4.0 g urea in 100 g of water at 298 K
. Calculate the vapour pressure of the solution ,If the vapour pressure of pure water is 23.756 torr.
(Molecular mass of urea $=60$ and glucose $=180 \mathrm{~g}$ mol^{-1})

D Watch Video Solution

23. A solution of lactose containing 8.45 g of lactose in 100 g of water has a vapour pressure of 4.5 mm of Hg at $0^{\circ} \mathrm{C}$. If the vapour pressure
of pure water is 4.579 mm of Hg . Calculate the molar mass of lactose.

D Watch Video Solution

24. Calculate the boiling point of a solution which is prepared by dissolving 68.4 g of solute B in one kilogram of water. (Molar mass of solute B is $342 \mathrm{~g} \mathrm{~mol}{ }^{-1} T_{b}=373.1 \mathrm{~K}$ and $K_{b}($ water $)=$ $0.52 \mathrm{~K} \mathrm{kgmol}^{-1}$
