©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - SURA CHEMISTRY (TAMIL ENGLISH)

SURAS MODEL QUSETION PAPER - I

Part A

1. In the third period the first ionization potential is of the order.
A. $N a>A l>M g>S i>P$
B. $N a<A l<M g<S i<P$
C. $M g>N a>S i>P>A l$
D. $N a<A l<M g<S i<P$

- Watch Video Solution

2. The unit of pressure is
A. Pascal
B. Torr
C. Bar
D. all the above

Answer: D

3. Which one of the following binary liquid mixtures exhibits positive deviation from Raoults law?
A. Acetone + chloroform
B. Water + nitric acid
C. $\mathrm{HCl}+$ water
D. Ethanol + water

Answer: D

- Watch Video Solution

4. Match the list I with List II and select the correct answer using.

The code given below the lists.

List I
List II

B Aerated drinks 2 Element
C Distilled water 3 Homogeneous mixture
D Sand 4 Compound
A.

A B C D
$\begin{array}{llll}2 & 3 & 4 & 1\end{array}$
A B C D
B.
$\begin{array}{llll}4 & 3 & 1 & 2\end{array}$
C. $\begin{array}{cccc}\text { A } & \mathrm{C} & \mathrm{D}\end{array}$
$\begin{array}{llll}3 & 1 & 4 & 2\end{array}$
A B C D
D.
$\begin{array}{llll}2 & 1 & 4 & 3\end{array}$

Answer: A

D View Text Solution

5. Compounds having boiling points widely apart 40k and above can be purified by \qquad .
A. Crystallisation
B. Sublimating
C. Fractional distillation
D. Simple distillation

Answer: D

- View Text Solution

6. Assertion : Generally alkali and alkaline earth metals form superoxides

Reason : There is a single bond between O and O in superoxides.
A. both assertion and reason are true and reason is the correct explanation of assertion
B. both assertion and reason are true but reason is not the correct explanation of assertion
C. assertion is true but reason is false
D. both assertion and reason are false

Answer: D

- View Text Solution

7. In a chemical equilibrium, the rate constant for the forward reaction is 2.5×10^{2} and the equilibrium constant, is 50 . The rate constant for the reverse reaction is
A. 11.5
B. 5
C. 2×10^{2}
D. 2×10^{-3}
8. Zeolite used to soften hardness of water is, hydrated
A. Sodium aluminium silicate
B. Calcium aluminium silicate
C. Zinc aluminium borate
D. Lithium aluminium hydride

Answer: A

D View Text Solution

9. Statement : Chloro acetic acid is more acidic than acetic acid

Reason : Chloro group has +1 effect
A. Both Assertion, Reason are correct
B. Assertion is false, Reason is correct
C. Assertion is correct, Reason is false
D. Both Assertion and Reason are false

Answer: C

D View Text Solution

10. The temperature of the system, decreases in an \qquad .
A. Isothermal expansion
B. Isothermal Compression
C. adiabatic expansion
D. adiabatic compression

- Watch Video Solution

11. Assertion : The spectrum of He^{+}is expected to be similar to that of hydrogen

Reason: He^{+}is also one electron system.
A. If both assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false
D. If both assertion and reason are false

Answer: A

12. The sharing of valence electrons between the atoms will lead to the formation of \qquad
A. Ionic Bond
B. Covalent Bond
C. Co-ordinate Bond
D. None of these

Answer: B

(D) Watch Video Solution

13. Consider the following statements
(i) Matter possesses mass
(ii) 22 carat gold is a mixture
(iii) Dry ice is a compound.

Which of the following statement(s) given above is/are correct?
A. $1 \& 3$
B. only 1
C. 1\&2
D. $1,2 \& 3$

Answer: D

D View Text Solution

14. Consider the following statements
15. $\lambda=h / m v$ is valid only when the particle travels at speed much less than the speed of light.
16. Einstein's mass-energy relationship is $E=m c^{2}$
17. The angular momentum (mvr) of the electron must be equal to an integral multiple of $h / 4 \pi$.

Which of the following statement(s) given above is/are correct?
A. $1 \& 3$
B. only 1
C. $1 \& 2$
D. $1,2 \& 3$

Answer: C

D View Text Solution

15. Match the compounds given in Column I with suitable items given in Column II

Column I (Compound)
Column II (Uses)
A Iodoform 1 Fire extinguisher
B Carbon tetra chloride 2 Insecticide
C CFC
3 Antiseptic
D DDT
4 Refrigerants
A. $A \rightarrow 2 B \rightarrow 4 C \rightarrow 1 D \rightarrow 3$
B. $A \rightarrow 3 B \rightarrow 2 C \rightarrow 4 D \rightarrow 1$
C. $A \rightarrow 1 B \rightarrow 2 C \rightarrow 3 D \rightarrow 4$
D. $A \rightarrow 3 B \rightarrow 1 C \rightarrow 4 D \rightarrow 2$

Answer: D

(Watch Video Solution

Part B

1. What is working standard?
2. Explain why HCl is a gas HF is a liquid?

- Watch Video Solution

3. How many sigma and pi bonds are present in

$$
C H_{3}-C \equiv N
$$

A. 4 sigma bonds and 3 pi bonds
B. 3 sigma bonds and 4 pi bonds
C. 5 sigma bonds and 2 pi bonds
D. 6 sigma bonds and 1 pi bonds

Answer: c

4. How many sigma and pi bonds are present in $C H_{2}=C=O$

- View Text Solution

5. Define equivalent mass.

- Watch Video Solution

6. Write the chemical equations for combustion of propane.

- View Text Solution

7. Explain intensive properties with two examples

- View Text Solution

8. If there is no change in concentration, why is the equilibrium state considered dynamic?

- View Text Solution

9. Comment on the statement - A sample of an ideal gas escapes into an evacuated container without any changes in its kinetic energy.

D View Text Solution
10. How many electrons can have $s+1 / 2$ in a d-sub-shell?

- View Text Solution

1. On what basis do you classify gases into permanent and temporary gases? Explain these types with example.

- View Text Solution

2. Describe the conformers of n - butane.

- View Text Solution

3. How would you explain the following observation? BeO is almost insoluble but BeSO_{4} is soluble in water.

- View Text Solution

4. Give reason for the higher melting point value of $A l F_{3}$ (solid)
than $S i F_{4}$ (gas).
5. The size of $C l^{-}=1.81 \AA$ and $C l=0.99 \AA$. Explain

- View Text Solution

6. Write a short note on β-elimination reaction.

- View Text Solution

7. Which of the following orbitals are possible?
A. $1 p$
B. 2 s
C. 2d
D. $3 f$

Answer:

D View Text Solution

8. Show the heterolysis of covalent bond by using curved arrow notation and complete the following equations. Identify the nucleophile is each case.
$\mathrm{CH}_{3}-\mathrm{Br}+\mathrm{KOH} \rightarrow$

- View Text Solution

9. Show the heterolysis of covalent bond by using curved arrow notation and complete the following equations. Identify the nucleophile is each case.
$\mathrm{CH}_{3}-\mathrm{OCH}_{3}+\mathrm{HI} \rightarrow$
10. Does propene exhibit geometrical isomers? Give reason.

D View Text Solution

Part D

1. What are the factors influencing ionization enthalpy.

D View Text Solution

2. Draw the Lewis structure of $\mathrm{N}, \mathrm{C}, \mathrm{O}$ and He .

- View Text Solution

3. Define co-ordinate covalent bond.

- View Text Solution

4. KCl in water deviates from ideal behaviour - why?

- View Text Solution

5. Define solution. Explain with an example.

- View Text Solution

6. 'The electronic configuration of Cr and Cu are written as $3 d^{5} 4 s^{1}$ and $3 d^{10} 4 s^{1}$ instead of $3 d^{5} 4 s^{1}$ and $3 d^{10} 4 s^{1}$ Justify the statement.
7. 1 mole of an ideal gas, maintained at 4.1 atm and at a certain temperature, absorbs heat 3710 J and expands to 2 litres. Calculate the entropy change in expansion process.

- View Text Solution

8. What is the type of hybridisation of each carbon in the following compounds?

$$
\mathrm{CH}_{3}-\mathrm{CH}_{3}
$$

D View Text Solution

9. What is the type of hybridisation of each carbon in the following compounds?
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$

(D) View Text Solution

10. Write a short note on homologous series.

- View Text Solution

11. Explain the following reactions.

Dow's process

D View Text Solution
12. Explain the following reactions.

Wurtz Fitting reaction

- View Text Solution

13. Explain the following reactions.

Fitting Reaction

D View Text Solution

14. How does the haloalkanes react with metals?

- View Text Solution

15. Balance the following equations by oxidation number method $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{KI}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}$

- View Text Solution

16. Balance the following equations by oxidation number method
$\mathrm{KMnO}_{4}+\mathrm{Na}_{2} \mathrm{SO}_{3} \rightarrow \mathrm{MnO}_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{KOH}$

- View Text Solution

17. Balance the following equations by oxidation number method $\mathrm{Cu}+\mathrm{HNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$

- View Text Solution

18. Balance the following equations by oxidation number method

$$
\mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{MnSO}_{4}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

- View Text Solution

19. Explain the pressure - volume isotherms of Carbon dioxide

Andrew's isotherm.
20. State law of mass action.

- View Text Solution

21. Consider the following reactions,
$H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I$
In each of the above reaction find out whether you have to increase (or) decrease the volume to increase the yield of the product.

D View Text Solution

22. Consider the following reactions,
$\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
In each of the above reaction find out whether you have to
increase (or) decrease the volume to increase the yield of the product.

- View Text Solution

23. Consider the following reactions,
$S(s)+3 F_{2}(g) \Leftrightarrow S F_{6}(g)$
In each of the above reaction find out whether you have to increase (or) decrease the volume to increase the yield of the product.
