© 'doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - SURA CHEMISTRY (TAMIL ENGLISH)

THERMODYNAMICS

Evaluation

1. The amount of heat exchanged with the surrounding at constant pressure is given by the quantity.
A. ΔE
B. ΔH
C. ΔS
D. ΔG
2. All the naturally occurring processes proceed spontaneously in a direction which leads to
A. decrease in entropy
B. increase in enthalpy
C. increase in free energy
D. decrease in free energy

Answer: D

- Watch Video Solution

3. In an adiabatic process, which of the following is true?
A. $q=w$
B. $q=0$
C. $\Delta E=q$
D. $P \Delta V=0$

Answer: B

- Watch Video Solution

4. In a reversible process, the change in entropy of the universe is
A. >0
B. ≥ 0
C. <0
D. $=0$

Answer: D

5. In an adiabatic expansion of an ideal gas
A. $w=-\Delta u$
B. $w=\Delta u+\Delta H$
C. $\Delta u=0$
D. $w=0$

Answer: A

- Watch Video Solution

6.is an intensive property .
A. mass
B. volume
C. enthalpy
D. $\frac{\text { mass }}{\text { volume }}$

Answer: D

- Watch Video Solution

7. An ideal gas expands from the volume of $1 \times 10^{-3} \mathrm{~m}^{3}$ to $1 \times 10^{-2} \mathrm{~m}^{3}$ at 300 K against a constant pressure at $1 \times 10^{5} \mathrm{Nm}^{-2}$. The work done is
A. -900 J
B. 900 kJ
C. 270 kJ
D. -900 kJ

Answer: A

A. positive
B. negative
C. zero
D. either positive or negative

Answer: B

- Watch Video Solution

9. The heat of formation of CO and CO_{2} are $-26.4 k C a l$ and $-94 k C a l$, respectively. Heat of combustion of carbon monoxide will be
A. $+26.4 k \mathrm{cal}$
B. -67.6 kcal
C. -120.6 kcal
D. +52.8 kcal

- Watch Video Solution

10. C (diamond $) \rightarrow C$ (graphite), $\Delta H=-v e$, this indicates that
A. graphite is more stable than diamond
B. graphite has more energy than diamond
C. both are equally stable
D. stability cannot be predicted

Answer: A

- Watch Video Solution

11. The
enthalpies
of
formation
of
$\mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{Cr}_{2} \mathrm{O}_{3}$ are $-1596 k J$ and $-1134 k J$, respectively.
ΔH for the reaction.
$2 \mathrm{Al}+\mathrm{Cr}_{2} \mathrm{O}_{3} \rightarrow 2 \mathrm{Cr}+\mathrm{Al}_{2} \mathrm{O}_{3}$ is
A. $-1365 k J$
B. 2730 kJ
C. $-2730 k J$
D. $-462 k J$

Answer: D

- Watch Video Solution

12. Which of the following is not a thermodynamic function?
A. internal energy
B. enthalpy
C. entropy
D. frictional energy

Answer: D

- Watch Video Solution

13. If one mole of ammonia and one mole of hydrogen chloride are mixed in a closed container to form ammonium chloride gas, then
A. $\Delta H>\Delta U$
B. $\Delta H-\Delta U=0$
C. $\Delta H+\Delta U=0$
D. $\Delta H<\Delta U$

Answer: D

- Watch Video Solution

14. Change in internal energy, when 4 kJ of work is done on the system and 1 kJ of heat is given out by the system is
A. $+1 k J$
B. $-5 k J$
C. $+3 k J$
D. $-3 k J$

Answer: C

- Watch Video Solution

15. The work done by the liberated gas when 55.85 of iron (molar $55.85 \mathrm{gmol}^{-1}$) reacts with hydrochloric acid in an open beaker at $25^{\circ} \mathrm{C}$
A. -2.48 kJ
B. $-2.22 k J$
C. $+2.22 k J$
D. +2.48 kJ

D Watch Video Solution

16. The value of ΔH for cooling 2 moles of an ideal monoatomic gas from $125^{\circ} \mathrm{C}$ to $225^{\circ} \mathrm{C}$ at constant pressure will be [given $C_{P}=\frac{5}{2} R$]
A. $-250 R$
B. $-500 R$
C. 500 R
D. $+250 R$

Answer: B

- Watch Video Solution

17.

Given
that
$C_{(g)}+O_{2(g)} \rightarrow O_{2(g)} \Delta H^{\circ}=-a k J, 2 C O_{(g)}+O_{2(g)} \rightarrow 2 C_{2(g)}$,
$=-$ b kJ, Calculate the ΔH° for the reaction $C_{(g)}+1 / 2 O_{2(g)} \rightarrow C O_{(g)}$
A. $\frac{b+2 a}{2}$
B. $2 a-b$
C. $\frac{2 a-b}{2}$
D. $\frac{b-2 a}{2}$

Answer: D

- Watch Video Solution

18. When 15.68 litres of a gas mixture of methane and propane are fully combusted at $0^{\circ} \mathrm{C}$ and 1 atmosphere, 32 litres of oxygen at the same temperature and pressure are consumed. The amount of heat released from this combustion in kJ is $\left(\Delta H_{C}\left(C H_{4}\right)=-890 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}\right.$ and $\left.\Delta H_{C}\left(C_{3} H_{8}\right)=-2220 \mathrm{kJmol}^{-1}\right)$
A. $-889 \mathrm{KJmol}^{-1}$
B. $-1390 \mathrm{~K}_{\mathrm{mol}}{ }^{-1}$
C. $-3180 K J \mathrm{~mol}^{-1}$
D. $-635.47 K \mathrm{Jmol}^{-1}$

Answer: D

D Watch Video Solution

19. The bond dissociation energy of methane and ethane are 360 kJ mol^{-1} and $620 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. Then, the bond dissociation energy of C-C bond is \qquad
A. $170 \mathrm{KJmol}^{-1}$
B. $50 K \mathrm{Jmol}^{-1}$
C. $80 \mathrm{KJmol}^{-1}$
D. $220 \mathrm{KJmol}^{-1}$

Answer: C

20. The correct thermodynamic conditions for the spontaneous reaction at all temperature is \qquad
A. $\Delta H<0$ and $\Delta S>0$
B. $\Delta H<0$ and $\Delta S<0$
C. $\Delta H>0$ and $\Delta S=0$
D. $\Delta H>0$ and $\Delta S>0$

Answer: A

- Watch Video Solution

21. The temperature of the system, decreases in an \qquad .
A. Isothermal expansion
B. Isothermal Compression
C. adiabatic expansion
D. adiabatic compression

Answer: C

- Watch Video Solution

22. In isothermal ideal gas compression
A.,,+--
B.,,-+-
C.,,+-+
D.,,--+

Answer: D

- Watch Video Solution

23. Molar heat of vapourisation of a liquid is $4.8 \mathrm{kJmol}^{-1}$. If the entropy change is $16 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$, the boiling point of the liquid is
A. 323 K
B. $27^{\circ} \mathrm{C}$
C. 164 K
D. 0.3 K

Answer: B

- Watch Video Solution

24. Do you expect ΔS to be $+v e,-v e$, or zero for the reaction $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$
A. $C a_{(s)}+1 / 2 O_{2_{(g)}} \rightarrow C a O_{(s)}$
B. $C_{(s)}+O_{2_{(g)}} \rightarrow C O_{2(s)}$
C. $\mathrm{N}_{2_{(g)}}+\mathrm{O}_{2_{(g)}} \rightarrow 2 \mathrm{NO}_{(g)}$
D. $\mathrm{CaCO}_{3_{(S)}} \rightarrow \mathrm{CaO}{ }_{(S)}+\mathrm{CO}_{2_{(g)}}$

Answer: D

- Watch Video Solution

25. The values of ΔH and ΔS for a reaction are respectively $30 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $100 \mathrm{KJ}^{-1} \mathrm{~mol}^{-1}$. Then the temperature above which the reaction will become spontaneous is \qquad
A. 300 K
B. 30 K
C. 100 K
D. 200 C

Answer: A

- Watch Video Solution

li Write Brief Answer To The Following Questions

1. State the first law of thermodynamics.

- Watch Video Solution

2. Define Hess's law of constant heat summation.

- Watch Video Solution

3. Hess's law states,

- Watch Video Solution

4. Explain intensive properties with two examples .
5. In an isothermal process

Watch Video Solution

6. ADIABATIC PROCESS

- Watch Video Solution

7. Define the following terms :
isobaric process

- Watch Video Solution

8. Define the following terms :
isochoric process

Watch Video Solution
9. what is the usual definition of entropy ? What is the unit of entropy?

- Watch Video Solution

10. Predict the sign of ΔG for the reaction at a very low temperature for which $\Delta H i s+v e$ and ΔS is positive.

- Watch Video Solution

11. Predict the feasibility of a reaction when
(i) both ΔH and ΔS positive

- Watch Video Solution

12. Predict the feasibility of a reaction when
(i) both ΔH and ΔS positive
13. Define Gibb's free energy .

- Watch Video Solution

14. Define enthalpy of combustion.

Watch Video Solution
15. The molar heat capacity of water is

- Watch Video Solution

16. Define the calorific value of food. What is the unit of calorific value?
$\mathrm{H}_{3} \mathrm{PO}_{3}$ with NaOH is $-106.68 \mathrm{~kJ} / \mathrm{mol}$. If enthalpy of neutralization of HCL with NaOH is $-55.84 \mathrm{~kJ} / \mathrm{mole}$, then calculate enthalpy of ionization of $\mathrm{H}_{3} \mathrm{PO}_{3}$ in to its ions in kJ.

Watch Video Solution

18. What is lattice energy?

- Watch Video Solution

19. Give two examples which are path dependent quantities. Are they properties of the system?

- Watch Video Solution

20. State Kelvin- Planck statement of second law of thermodynamics.
21. The equilibrium constant of a reaction is 10 , what will be the sign of ΔG ? Will this reaction be the sign of ΔG ? Will this reaction be spontaneous?

- Watch Video Solution

22. Enthalpy of neutralization is always a constant when a strong acid is neutralized by a strong base: account for the statement.

- Watch Video Solution

23. a) State the third law of thermodynamics. B) Define entropy.

- Watch Video Solution

24. Write down the Born-Haber cycle for the formation of CaCl_{2}

- Watch Video Solution

25. Identify the state and path functions out of the following a) Enthalpy
b) Entropy c) Heat d) Temperature e) Work f) Free energy.

- Watch Video Solution

26. State the various statements of second law of thermodynamics.

- Watch Video Solution

27. The condition for spontaneity of process is

- Watch Video Solution

28. List the characteristics of internal energy.

- Watch Video Solution

29. Explain how heat absorbed at constant pressure is measured using coffee calorimeter with neat diagram.

- Watch Video Solution

30. Calculate the work involved in expansion and compression process.

- Watch Video Solution

31. Give the relation between ΔU and ΔH.

- Watch Video Solution

32. Suggest and explain an indirect method to calculate lattice enthalpy of sodium chloride crystal.

Watch Video Solution

33. List the characteristics of Gibbs free energy.

- Watch Video Solution

34. Calculate the work done when 2 moles of an ideal gas expands reversibly and isothermally from a volume of 500 ml to a volume of $2 L$ at $25^{\circ} \mathrm{C}$ and normal pressure.

- Watch Video Solution

35. In a constant volume calorimeter, $3.5 g$ of a gas with molecular weight 28 was burnt in excess oxygen at 298.0 K . The temperature of the
calorimeter was found to increase from $298.0 \mathrm{~K} \rightarrow 298.45 \mathrm{~K}$ due to the combustion process. Given that the heat capacity of the calorimeter is $2.5 \mathrm{kJK}^{-1}$, find the numerical value for the enthalpy of combustion of the gas in $k \mathrm{Jmol}^{-1}$

- Watch Video Solution

36. Calculate the entropy change in the system, and surroundings, and the total entropy changes in the universe during a process in which 245 J of heat flow out of the system $77^{\circ} \mathrm{C}$ to the surrounding at $30^{\circ} \mathrm{C}$.

- Watch Video Solution

37. 1 mole of an ideal gas, maintained at 4.1 atm and at a certain temperature, absorbs heat 3710 J and expands to 2 litres. Calculate the entropy changes in expansion process.

- Watch Video Solution

38. 30.4 KJ is required to melt one mole of sodium chloride. The entropy change during melting is $28.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. Calculate the melting point of sodium chloride .

- Watch Video Solution

39. Calculate the standard heat of formation of propane, if its heat of combustion is-2220.2 $\mathrm{kJ} \mathrm{mol}^{-1}$, the heats of formation of $\mathrm{CO}_{2(g)}$ and $\mathrm{H}_{2} \mathrm{O}_{(l)}$ are -393.5 and $-285.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively.

- Watch Video Solution

40. you are given normal boiling points and standard enthalpies of vapourisation. Calculate the entropy of vapourisation of liquids listed below.
41. ΔH and ΔS for the reaction
$\mathrm{Ag}_{2} \mathrm{O}_{(s)} \rightarrow 2 \mathrm{Ag}_{(s)}+\frac{1}{2} \mathrm{O}_{2_{(g)}}$ are $30.56 \mathrm{kJmol}^{-1}$
and $66.0 \mathrm{Jk}^{-1} \mathrm{~mol}^{-1}$ respectively. Calculate the temperature at which the free energy for this reaction will be zero. What will be the direction of reaction at this temperature and at temperature below this and why ?

Given: $\Delta H=30.56 \mathrm{kJmol}^{-1}=30560 \mathrm{Jmol}^{-1}$
$\Delta S=66.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$\Delta G=0$

- Watch Video Solution

42. What is the equilibrium constant K_{c} for the following reaction at $400 K$?
$2 \mathrm{NOCI}(g) \Leftrightarrow 2 N O(g)+\mathrm{CI}_{2}(g)$
$\Delta H^{\Theta}=77.2 \mathrm{kJmol}^{-1}$ and $\Delta S^{\Theta}=122 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ at 400 K.

- Watch Video Solution

43. The reaction of cyanamide, $\mathrm{NH}_{2} \mathrm{CN}(s)$, with dioxygen was carried out in a bomb calorimeter, and ΔU was found to be $-742.7 \mathrm{kmol}^{-1}$ at 298 K . Calculate enthalpy change for the reaction at 298 K .
$\mathrm{NH}_{2} \mathrm{CN}(g)+\frac{3}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{N}_{2}(g)+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l)$

Watch Video Solution

44. Calculate the enthalpy of hydrogenation of ethylene from the following data. Bond energies of $\mathrm{C}-\mathrm{H}, \mathrm{C}-\mathrm{C}, \mathrm{C}=\mathrm{C}$ and $\mathrm{H}-\mathrm{H}$ are 414,347,618 and $435 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

- Watch Video Solution

45. Calculate lattice energy for the change,
$L i^{+}(g)+C l^{-}(g) \rightarrow \operatorname{LiCl}(g)$
Given that
$\Delta H_{\text {sublimation }}$ of $L i=160.67 \mathrm{kJmol}^{-1}$, $\Delta H_{\text {ionisation }}$ of $L i(g)=520.07 \mathrm{kJmol}^{-1}$, ΔH_{f} of $\mathrm{LiCl}(s)=-401.66 \mathrm{kJmol}^{-1}$,
$\Delta H_{\text {Dissociation }}$ of $C l_{2}=244$.
$\Delta H_{E . A}$ of $C l(g)=-365$.

- Watch Video Solution

46. Calculate the enthalpy change for the reaction
$\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$ from the following data.
$2 \mathrm{Fe}+\frac{3}{2} \mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}, \Delta \mathrm{H}=-741 \mathrm{~kJ}$
$C+\frac{1}{2} O_{2} \rightarrow C O, \Delta H=-137 \mathrm{~kJ}$
$\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}, \Delta \mathrm{H}=-394.5 \mathrm{~kJ}$

- Watch Video Solution

47. When 1pentyne (A) is treated with 4 N alcoholic KOH at $175^{\circ} \mathrm{C}$, it is slowly converted into an equilibrium mixture of 1.3% of 1pentyne $(A), 95.2 \% 2$-pentyne (B) and 3.5% of 1, 2-pentandiene (C). The equilibrium was maintained at $175^{\circ} \mathrm{C}$. calculate ΔG^{Θ} for the following equilibria:
$B \Leftrightarrow A, \Delta G^{\Theta}={ }_{1}$?
$B \Leftrightarrow C, \Delta G^{\Theta}=$?

From the calculated value of $\Delta G^{\Theta}{ }_{1}$ and $\Delta G^{\Theta}{ }_{2}$, indicate the order of stability of A, B and C.

- Watch Video Solution

48. At $33 \mathrm{~K}, \mathrm{~N}_{2} \mathrm{O}_{4}$ is fifty percent dissociated Calculate the standard free energy change at this temperature and at one atmosphere.

- Watch Video Solution

49. The standard enthalpies of formation of SO_{2} and SO_{3} are -297 $\mathrm{kJ} \mathrm{mol}^{-1} 396 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. Calculate the standard enthalpy of reaction for the reaction: $\mathrm{SO}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}$

- Watch Video Solution

50. For the reaction at 298 K
$2 A+B \rightarrow C$
$\Delta H=400 \mathrm{kJmol}^{-1}$ and $\Delta S=0.2 k J K^{-1} \mathrm{~mol}^{-1}$
At what temperature will the reaction becomes spontaneous considering ΔH and ΔS to be contant over the temperature range.

- Watch Video Solution

51. Find out the value of equilibrium constant for the following reaction at 298 K .
$2 \mathrm{NH}_{3}(g)+\mathrm{CO}_{2}(g) \Leftrightarrow \mathrm{NH}_{2} \mathrm{CONH}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(1)$
Standard Gibbs energy change, $\Delta_{r} G^{\ominus}$ at the given temperature is $-13.6 \mathrm{kJmol}^{-1}$

- Watch Video Solution

52. A gas mixture of $3.67 L$ of ethylene and methane on complete combustion at $25^{\circ} \mathrm{C}$ produces 6.11 L of CO_{2}. Find out the heat evolved on buring $1 L$ of the gas mixture. The heats of combustion of ethylene and methane are -1423 and $-891 \mathrm{kJmol}^{-1}$, respectively, at $25^{\circ} \mathrm{C}$.

Additional Questions

1. Which of the following is an extensive property?
A. Molar Volume
B. Molality
C. Gibbs free energy
D. Free energy change

Answer: C

- Watch Video Solution

2. The molar heat of sublimation is equal to
A. sum of molar heats of fusion and vaporization
B. molar heat of vaporization
C. molar heat of fusion
D. molar heat of neutralization

Answer: A

- Watch Video Solution

3. An ideal gas occupying volume of $2 d m^{3}$ and a pressure of 5 bar undergoes isothermal and irreversible expansion against external pressure of 1 bat. The final volume of the system and the work involved in the process is
A. $-2.303 n R T \log \left(\frac{V_{f}}{V_{i}}\right)$
B. $2.303 n R T \log \left(\frac{V_{f}}{V_{i}}\right)$
C. $-\int_{V_{i}}^{V_{f}} V d V$
D. $\left(\frac{\Delta V}{\Delta T}\right)$

- Watch Video Solution

4. Statement-1: In a mixture containing Br^{-}and I^{-}, violet colour (of I_{2}) appears first in chloroform layer, when chlorine gas is passed through the mixture dissolves in water.

Statement-2: The order of the strength of reducing properties is as follows $\mathrm{I}^{-}>\mathrm{Br}^{-}>\mathrm{CI}^{-}>\mathrm{F}^{-}$.
A. 1,3,4
B. 4 only
C. 1,2,3
D. 2 and 3

Answer: A

5. The initial and final temperature of a heat engine are $816^{\circ} \mathrm{C}$ and $21^{\circ} \mathrm{C}$ respectively. The percentage efficiency is
A. 73%
B. 23%
C. 45%
D. 37%

Answer: A

- Watch Video Solution

6. The branch of science which deals the relation between energy, heat, work and accompanying changes around us is 'called ' \qquad
A. Thermodynamics
B. Chemical kinetics
C. Calorimetry
D. Potentiometer

Answer: A

- Watch Video Solution

7. The first law of thermodynamics is not adequate in predicting the direction of a process.(True/False)
A. reversibility
B. rate
C. spontaneity
D. none of these

Answer: C

- Watch Video Solution

8. A portion of matter under consideration, which is separated from rest of universe by real or imaginary boundaries is called \qquad
A. surroundings
B. system
C. boundary
D. Universe

Answer: B

- Watch Video Solution

9. An example of closed system is :
A. Solution of CuSO_{4} in a beaker
B. A gas contained in a cylinder fitted with piston
C. Hot water contained in a thermos flask
D. Tea in a cup

Answer: B

- Watch Video Solution

10. For an adiabatic process
A. $q=0$
B. $d P=0$
C. $\mathrm{dT}=0$
D. $d P=0$

Answer: D

11. A process in which volume remians constant is called
A. isobaric
B. cyclic
C. isothermal
D. isochoric

Answer: D

- Watch Video Solution

12. Internal energy is denoted by the symbol
A. H
B. S
C. G
D. U

Answer: D

13. Which of the following is an extensive property?
A. Volume
B. Internal energy
C. Mass
D. Temperature

Answer: D

- Watch Video Solution

14. Which of the following is an intensive property?
A. free energy
B. heat capacity
C. volume
D. molar volume

Answer: D

- Watch Video Solution

15. All the naturally occurring processes proceed spontaneously in a direction which leads to
A. reversible
B. irreversible
C. cyclic process
D. isochoric process

Answer: D

- Watch Video Solution

16. The process in which no heat enters or leaves the system is termed as
A. isothermal
B. isobaric
C. isochoric
D. adiabatic

Answer: D

- Watch Video Solution

17. The process in which temperature of the system remains constant is called Process
A. isobaric
B. isothermal
C. adiabatic
D. isochoric

Answer: B

18. For an isothermal process
A. $q=0$
B. $d V=0$
C. $\mathrm{dT}=0$
D. $\mathrm{dP}=0$

Answer: C

Watch Video Solution
19. Which among the following is not a state function?
A. Pressure
B. volume
C. Temperature
D. Work

Answer: D

- Watch Video Solution

20. ISOCHORIC PROCESS
A. w
B. $q+w$
C. q
D. 0

Answer: C

- Watch Video Solution

21. Which one of the following is a state function?
A. Pressure
B. Enthalpy
C. Heat
D. Both (a) and (b)

Answer: D

D Watch Video Solution

22. Which of the following is a path function
A. Enthalpy
B. Free energy
C. Internal energy
D. Work

Answer: D

23. CYCLIC PROCESS

A. maximum
B. minimum
C. zero
D. does not change

Answer: C

D Watch Video Solution

24. SI unit of heat is
A. Joule
B. Calorie
C. mole
D. Jmol^{-1}

Answer: A

- Watch Video Solution

25. If the heat flows out of the system into the surrounding, the q value becomes \qquad
A. $+V e$
B. $-V e$
C. equal to zero
D. maximum

Answer: B

26. $1 \mathrm{KJ}=. J ~$
A. 1000
B. 100
C. 10
D. 10000

Answer: A

- Watch Video Solution

27. The gravitational work done by an object is
A. Qv
B. fx
C. PV
D. mgh

- Watch Video Solution

28. In a compression process, $P_{\text {ext }}$ is \qquad
A. $\left(P_{\text {int }}+d P\right)$
B. $\left(P_{\text {int }}-d P\right)$
C. $\left(d P-P_{\mathrm{int}}\right)$
D. $\left(-P_{\text {int }}+d P\right)$

Answer: A

29. In an isothermal process for an ideal gas

$$
\text { A. } \Delta U=q V
$$

B. $\Delta U=w$
C. $\Delta U=q+w$
D. $\Delta U=0$

Answer: D

- Watch Video Solution

30. Explain extensive and intensive properties.
A. entropy, enthalpy
B. entropy, temperature
C. enthalpy, entropy
D. temperature ,entropy

Answer: B

31. Which of the following is a state function ?
A. q
B. w
C. $q+w$
D. All of these

Answer: C

- Watch Video Solution

32. For the reaction $P C l_{5_{(g)}} \rightarrow P C l_{3_{(g)}}+C l_{2_{(g)}}$
A. $\Delta H>\Delta U$
B. DeltaHItDeltaU`
C. DeltaH=DeltaU
D. Un predictable

- Watch Video Solution

33. Pick out true statements (s)
(i) q and w are path functions
(ii) $q+w$ is a state function
A. Only (i)
B. Only (ii)
C. Both (i) and (ii)
D. Both are incorrect statements

Answer: C

34. Identify the suitable conditions (s) which helps the adiabatic process to occur ?
(i) $\Delta=0$ (ii) $\Delta P=0$
(iii) $q=0$ (iv) $w=0$
A. Only (i)
B. Only (iii)
C. (i) and (ii)
D. (i) , (ii) and (iv)

Answer: B

Watch Video Solution

35.is an intensive property .
A. internal energy
B. volume
C. temperature
D. mass

Answer: C

- Watch Video Solution

36. State the first law of thermodynamics .
A. spontaneity
B. feasibility
C. both (a) \& (b)
D. neither (a) nor (b)

Answer: C

37. ΔH° of $H_{2} O_{(l)}$ is $\ldots \mathrm{KJ} / \mathrm{mol}$.
A. -74.85
B. +281
C. +242
D. +74.85

Answer: B

- Watch Video Solution

38. Heat of combustion of methane is $\mathrm{KJ} / \mathrm{mol}$.
A. -87.78
B. +87.78
C. -394.55
D. +394.55

D View Text Solution

39. The SI unit of Molar heat capacity is :
A. J mol ${ }^{-1}$
B. $\mathrm{KJ} \mathrm{mol}^{-1}$
C. $\mathrm{KJ}^{-1} \mathrm{~mol}{ }^{-1}$
D. $J K^{-1}$

Answer: C

40. Molar heat capacity at constant volume is
A. $\left(\frac{d H}{d T}\right)_{V}$
B. $\left(\frac{d U}{d T}\right)_{V}$
c. $\left(\frac{d q}{d T}\right)_{V}$
D. $\left(\frac{d V}{d T}\right)_{V}$

Answer: B

- Watch Video Solution

41. The relation between C_{P} and C_{V} is
A. $C_{P}=C_{V}-R$
B. $C_{P}+C_{V}=R$
C. $C_{P}-C_{V}=R$
D. $C_{V}=C_{P}-R$

Answer: C

42. The branch of science associated with determining the changes in energy of a system by measuring the heat exchanges with surrounding is called
A. Mechanics
B. aerodynamics
C. Kinetics
D. Thermodynamics

Answer: B

- View Text Solution

43. Heat absorbed at constant volume is measured in \qquad Calorimeter.
A. Coffee cup
B. Differential scanning
C. Bomb
D. Adiabatic

Answer: C

- Watch Video Solution

44. For an exothermic reaction ΔH_{r} value will be
A. $+V e$
B. $-V e$
C. Zero
D. infinity

Answer: B

- Watch Video Solution

45. The heat of neutralisation of strong acid and strong base is
A. $+57.32 K J$
B. $+75.32 K J$
C. $-75.32 K J$
D. $-57.32 K J$

Answer: D

- View Text Solution

46. The SI unit of entropy is \qquad
A. JK
B. $J K^{-}$
C. $K J K^{-1}$
D. $K J / \mathrm{mole}$

Answer: B

47. The change in enthalpy when one mole of $C_{\text {diamond }}$ to $C_{\text {graphite }}$ is called \qquad
A. Molar heat of vaporisation
B. Molar heat of sublimation
C. Molar heat of transition
D. Molar heat of fusion

Answer: C

- View Text Solution

48. Hess's law can be applied to calculate .of reactions.
A. enthalpy
B. entropy
C. free energy
D. internal energy

Answer: A

- Watch Video Solution

49. Change in enthalpy is
A. Heat absorbed at constant pressure
B. The total energy change at constant pressure and temperature
C. Equal to change in internal energy at constant volume
D. All the above

Answer: A

50. The change in enthalpy of
$\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$ is called \qquad
A. Heat of reaction
B. Heat of neutralization
C. Heat of formation
D. Heat of liquid

Answer: B

- View Text Solution

51. \% efficiency can be calculated using the formula
A. $\frac{\text { output }}{\text { input }}$
B. $\frac{\text { input }}{\text { output }} \times 100$
C. $\frac{\text { input }}{\text { output }}$
D. $\frac{\text { output }}{\text { input }} \times 100$

Answer: D

- Watch Video Solution

52. If an automobile engine burns petrol at a temperature of $816^{\circ} \mathrm{C}$ and if surrounding temperature is $21^{\circ} \mathrm{C}$,what is its maximum percentage ?
A. 37%
B. 73%
C. 83%
D. 33%

Answer: B

- Watch Video Solution

53. which of the following processes are accompanied by an increase of entropy .
(i) Dissolution of iodine in solvent
(ii) HCl added to AgNO 3 solution and precipitate of AgCl is obtained
(iii) A partition is removed to allow two gases to mix.
A. (i) \& (ii)
B. (ii) \& (iii)
C. (i) \& (iii)
D. all the above

Answer: C

- View Text Solution

54. The enthalpies of all elements in their standard states are
A. 1
B. 0
C. <0
D. different for each elements

Answer: B

- Watch Video Solution

55. A reaction, $A+B \rightarrow C+D+q$ is found to have a positive entropy change. The reaction will be
A. Possible at high temperature
B. Possible only at low temperature
C. Not possible at any temperature
D. Possible at any temperature

Answer: D

- Watch Video Solution

56. Thermodynamics does not deal with
A. the feasibility of a chemical reaction
B. energy changes involved in chemical reaction
C. the extent to which a chemical reaction process
D. the rate at which a reaction occurs

Answer: D

D View Text Solution

57. Which of the following statement is /are correct ?
(i) The presence of reacting species in a covered beaker is an example of open system.
(ii) There is an exchange of energy as well as matter between system and the surroundings in a closed system.
(iii) The presence of reactants in a closed vessel is an example of closed system.
(iv) The presence of reactants in a thermos flask is an example of closed system.
A. (ii) \& (iii)
B. (ii) alone
C. (iii) alone
D. (i),(ii) \& (iv)

Answer: C

- View Text Solution

58. When water freezes in a glass beaker, ΔS of the system
A. $\Delta S>0$
B. $\Delta S<0$
C. $\Delta S=0$
D. $\Delta S \geq 0$

Answer: B

- Watch Video Solution

59. What is correct about ΔG ?
A. It is zero for reversible reaction
B. It is positive for spontaneous reactions
C. It is negative for non-spontaneous reactions
D. It is zero for non-spontaneous reactions

Answer: A

- Watch Video Solution

60. ΔG° of reversible reaction at its equilibrium is
A. positive
B. negative
C. Always zero
D. Both (a) \& (b)

Answer: C

- Watch Video Solution

61. In an exothermic reaction, heat is evolved and system loses heat to the surroundings. For such system.
(i) q_{p} will be negative (ii) $\Delta_{r} H$ will be positive
(iii) q_{p} will be positive
(iv) $\Delta_{r} H$ will be negative
A. (i), (ii)
B. (iii), (iv)
C. (i) \&(iv)
D. (ii) \& (iii)

Answer: C

- View Text Solution

62. In an endothermic reaction, the value of ΔH is always
A. $=0$
B. >0
C. <0
D. constant

Answer: B

63. Statement I : Combustion of all organic compounds is exothermic in nature.

Statement II : The enthalpies of all elements in their standard states are zero.
A. Both the statement are individually true but statement II is not the correct explanations of I .
B. Both the statement are individually true and statement II is the correct explanations of I.
C. Statement I is true but II is false.
D. Statement I is false but II is true.

Answer: A

- Watch Video Solution

64. For a given reaction ΔG obtained was having positive sign convention . State whether the reaction was spontaneous or nonspontaneous.
A. spontaneous
B. non- spontaneous
C. reversible
D. equilibrium

Answer: B

D Watch Video Solution

65. Pick out the suitable condition in which a spontaneous endothermic
reaction occurs.
A. $\Delta G>0$
B. $\Delta G<0$
C. $\Delta G=0$
D. ΔG may be + ve or - ve

Answer: B

66. Statement I : Flow of heat from colder of hotter object is spontaneous.

Statement II : entropy is a measure of randomness or disorderliness of the system .
A. Both the statement are individually true but statement II is not the correct explanations of I .
B. Both the statement are individually true and statement II is the correct explanations of I.
C. Statement I is true but II is false.
D. Statement I is false but II is true.

Answer: D

- Watch Video Solution

67. Which is true about cyclic process ?
A. $\Delta U=0, \Delta H=0$
B. $\Delta U<0, \Delta H<0$
C. $\Delta H=0, \Delta U<0$
D. $\Delta U=0, \Delta H<0$

Answer: A

- Watch Video Solution

68. The standard free energy change ΔG° is related to k (equilibrium constant) as
A. $\Delta G^{\circ}=R t \log k$
B. $\Delta G^{\circ}=R t \log k$
C. $\Delta G^{\circ}=-2.303 R T \log k$
D. $\Delta G^{\circ}=2.303 R T \log k$

Answer: C

69. The enthalpy and entropy change for a chemical reaction are -5.3×10^{3} cal and $4.7 \mathrm{cal} \mathrm{K}^{-1}$ respectively. Predict the nature of the reaction at 298 k .
A. Non feasible
B. Reversible
C. Non-spontaneous
D. Spontaneous

Answer: D

- View Text Solution

70. This quantity is the energy associated with a chemical that can be used to do work is
A. entropy
B. enthalpy
C. Internal energy
D. Free energy change

Answer: D

- View Text Solution

71. Identify the incorrect statement among the following .
A. Entropy $d s=d q_{\mathrm{rev}} / T$
B. ΔS is maximum for a reversible process
C. Entropy is a measure of randomness
D. Entropy of pure crystal is zero

Answer: B

72. Hot water contained in a closed beaker is an example for a \qquad System.
A. Closed
B. Open
C. Isolated
D. Isothermal

Answer: A

- Watch Video Solution

73. Which of the following does not result in an increase in the entropy ?
A. Crytallisation of sucrose from solution
B. rusting of iron
C. conversion of ice to water
D. Vapourisation of camphor

Answer: A

- Watch Video Solution

74. The condition for standard free energy is
A. $298 \mathrm{~K}, 1 \mathrm{~atm}$
B. $273 \mathrm{~K}, 1 \mathrm{~atm}$
C. $298^{\circ} \mathrm{C}, 5 \mathrm{~atm}$
D. $25 \mathrm{~K}, 1 \mathrm{~atm}$

Answer: A

- Watch Video Solution

$\Delta H=10 k \mathrm{cal} \mathrm{mol}^{-1}, \Delta S=20 \mathrm{cal} \mathrm{deg}^{-1} \mathrm{~mol}^{-1}$ and $T=300 \mathrm{k}$. Then
A. $-18,000$ cals mol^{-1}
B. 18,000 cals mol^{-1}
C. $-16,000$ cals mol^{-1}
D. 4,000 cals mol^{-1}

Answer: D

- Watch Video Solution

76. Consider the following statement(s) and identify the true statements
(s) with respect to entropy.
(i) The SI unit of entropy is $J K^{-1}$
(ii) For a reversible process $\Delta S_{\text {universe }}=0$
A. Only (i)
B. Only (iii)
C. Both (i) and (ii)
D. (i) , (ii) and (iii)

Answer: D

- View Text Solution

77. Assertion : $3 \mathrm{H}_{2_{(g)}}+\mathrm{N}_{2_{(g)}} \rightarrow 2 \mathrm{NH}_{3_{(g)}}$ is exothermic. Reason : The process passes into equilibrium state when $\Delta G_{T, P}$ becomes zero.
A. Both assertion and reason are true and reason is the correct explanation of the assertion
B. Both assertion and reason are true and reason is not the correct explanation of the assertion
C. Assertion is true but reason are false
D. Both assertion and reason are false.

Answer: B

D View Text Solution

78. Assertion : Enthalpy of neutralisation of 1 equivalent each of HCl and $\mathrm{H}_{2} \mathrm{SO}_{4}$ with NaOH is same

Reason : Enthalpy of neutralisation is always the heat evolved when 1 mole acid is neutralised by a base.
A. Both assertion and reason are true and reason is the correct explanation of the assertion
B. Both assertion and reason are true and reason is not the correct explanation of the assertion
C. Assertion is true but reason are false
D. Both assertion and reason are false.

Answer: C

79. Which laws can be used to predict whether a particle reaction is feasible or not under a given set of conditions ?
A. Chemical Kinetics
B. Thermodynamics
C. Chemical Equilibrium
D. $\mathrm{a} \& \mathrm{c}$

Answer: B

- View Text Solution

80. Which of the following is incorrect ?
A. The process in which the system and surrounding can be restored to the initial sate from the final sate without producing any charges
in the thermodynamic properties of the universe is called a reversible process.
B. There are two important conditions for the reversible process to occur.
C. The process should occur infinitesimally fastly
D. All the above are incorrect.

Answer: D

- View Text Solution

81. In which process there is no exchange of heat between the system and surrounding during the process?
A. Reversible process
B. Irreversible process
C. Adiabatic process
D. Cyclic process

Answer: C

- Watch Video Solution

82. The internal energy of a system is \qquad Property and function.
A. Intensive, sate
B. Extensive path
C. Intensive, path
D. Extensive state

Answer: D

- View Text Solution

83. Which thermodynamic law used in thermometers ?
A. Zeroth law of thermodynamics
B. First law of thermodynamics
C. Second law of thermodynamics
D. Third law of thermodynamics

Answer: A

- Watch Video Solution

84. A thermo chemical equation is a balanced \qquad .chemical equation that includes the enthalpy change.
A. Stoichiometric
B. Thermodynamic
C. Kinetics
D. Mechanics
85. The enthalpy change of combustion reaction are always \qquad
A. positive
B. negative
C. neutral
D. zero

Answer: B

- Watch Video Solution

86. The system would required heat to effect a given temperature rise than at constant volume .
A. less
B. more
C. small
D. lower

Answer: B

- View Text Solution

87. Absolute zero is a temperature that an object can get arbitrarily lose to but will remain unattainable.
A. absolute zero
B. temperature
C. pressure
D. volume

Answer: A

1. Given the relation between enthalpy (H) and internal energy (U).

- View Text Solution

2. Calculate ΔH_{f}^{0} for the reactions.
$\mathrm{CO}_{2_{(g)}}+H_{2_{(g)}} \rightarrow \mathrm{CO}_{2_{(g)}}+\mathrm{H}_{2} \mathrm{O}_{(g)}$ given that ΔH_{f}^{0} for $\mathrm{CO}_{2_{(g)}}, C O$ respectively.

D View Text Solution

3. Which law of thermodynamics deals with equivalence of different forms of energies?

- Watch Video Solution

4. One mole of an ideal gas is put through a series of changes as shown below in a cyclic process. Name the process $A \rightarrow B, B \rightarrow C$ and $C \rightarrow A$.

- View Text Solution

5. For a reaction $2 C l_{(g)} \rightarrow C l_{2}$ What are the signs of ΔH and ΔS ?

- View Text Solution

6. Define the following terms.

- View Text Solution

7. Define the team thermodynamics process .

- View Text Solution

8. State zeroth low of thermodynamics.

- View Text Solution

9. Predict the change in internal energy for an isolated system at constant volume.

- View Text Solution

10. One mole of a gaseous system absorbs 100 J of heat and does work equivalent to 50 . J. Calculate the change in the internal energy of the system.

- Watch Video Solution

11. Bring out the difference between extensive and intensive properties.
12. Distinguish the thermodynamic process depending upon heat absorbed or evolved in the overall process.

- View Text Solution

13. Answer the following questions with respect to I law of thermodynamics.
(i) State the law
(ii) Give its mathematical expression
(iii) List out its limitations

- View Text Solution

14. Segregated the following as open, closed or isolated systems.
(i) Tiger
(ii) The earth
(iii) Tea in a thermos flask
(iv) Tin in a carbonated drink
(v) Hellium filled balloon.
(vi) Ice cube tray filled with water.

- View Text Solution

15. Identify processes under the following conditions
(i) $\mathrm{dt}=0$ (ii) $\mathrm{dP}=0$ (iii) $\mathrm{dV}=0$

- View Text Solution

16. Identify the steps involved in the following cyclic process . Temperature at A, B and F is T_{1}, and at C, D and E is T_{2} Given $T_{1}>T_{2}$
17. Define standard heat of formation .
18. Give the application of Hess's law.

- View Text Solution

19. Heat is considered as a path function, but in an endothermic process, the heat absorbed by the system under certain specific conditions is independent of path. What are those conditions?

- View Text Solution

20. Give the relation between ΔU and ΔH.

- Watch Video Solution

21. Define enthalpy .
22. Define standard enthalpy changes .

- View Text Solution

23. Application of the heat of combustion?

- View Text Solution

24. Define the following.
(a) Molar Heat of fusion
(b) Molar Heat of vapourisation
(c) Molar Heat of sublimation
(d) Heat of Transition

- View Text Solution

25. What are the applications of Bomb Calorimeter?

- Watch Video Solution

26. For an isolated system,$\Delta U=0$ What will bs ΔS ?

- View Text Solution

27. What happened to work when
(i) gas expands against external pressure
(ii) gas is compressed
(iii) gas expands into vacuum
(iv) an ideal gas expands reversibly and isothermally .

- View Text Solution

28. what information is observed from positive, zero and negative volumes of change in entropy?
29. Consider the following changes in the physical state of water and state whether orderliness has increased or decreased and consequently predict the direction of entropy of the system.
(i) $\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(s)}$
(ii) Steam \rightarrow water

- View Text Solution

30. what is the need for second Law of thermodynamics.

- View Text Solution

31. Define standard entropy change.
32. Define entropy of transition.

- Watch Video Solution

33. What is entropy of Vaporization?

- Watch Video Solution

34. Define entropy of transition.

- Watch Video Solution

35. What are spontaneous process?

- View Text Solution

36. Predict the sign of entropy change in each of the following:

A liquid crystallises into solid.

- View Text Solution

37. Predict the sign of entropy change in each of the following:

C (graphite) \rightarrow C (Diamond)

- View Text Solution

38. Predict the sign of entropy change in each of the following:

Temperature of perfectly crystalline solid is raised from 0 K to 115 K .

- View Text Solution

39. Predict the sign of entropy change in each of the following:
$\mathrm{AgNO}_{3_{(g)}} \rightarrow \mathrm{AgNO}_{3_{(a q)}}$

- View Text Solution

40. what is the nature of the reaction for the following ?

$$
\Delta G>0
$$

- View Text Solution

41. what is the nature of the reaction for the following ?

$$
\Delta G<0
$$

D View Text Solution

42. what is the nature of the reaction for the following ?
$\Delta G=0$

D View Text Solution

43. Explain the relationship between free energy and equilibrium constant.
44. How does entropy vary when external pressure is less than internal pressure of the gaseous system?

- View Text Solution

45. Give one example for spontaneous combustion.

- Watch Video Solution

46. Why C_{p} Is always greater than C_{v} ?

- View Text Solution

Additional Long Answers

1. Write a short note on the following terms.

Open System

- View Text Solution

2. Write a short note on the following terms.

Closed System

- View Text Solution

3. Write a short note on the following terms.

Isolated System

- View Text Solution

4. Write a short note on the following terms.

Homogeneous System
5. Write a short note on the following terms.

Heterogeneous System

- View Text Solution

6. State and five ways of enunciating the first law of thermodynamics.

- View Text Solution

7. Discuss in detail about the variation of internal energy with respect to variation thermodynamic processes.
8. Write down the conventions that are followed while framing a thermo chemical equations.

- View Text Solution

9. The enthalpy of combustion for
$\mathrm{H}_{2}, \mathrm{C}_{\text {graphite }}$ and CH_{4} are $-285.8,-39.5$ and $-890.4 \mathrm{kjmol}^{-1}$ respectively. Calculate the standard enthalpy of formation ΔH_{f}^{0} for CH_{4}

- View Text Solution

10. Calculate the lattice energy of MgBr_{2} from the given date

- View Text Solution

11. Example The measurement of heat change at constant pressure with a neat diagram.
12. What is meant by reversible and irreversible processes ?

- Watch Video Solution

Numerical Problems

1. The entropy change in the conversion of water to ice at 272 k for the system is $-22.88 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ and that of surrounding is $+24.85 \mathrm{jk}^{-1} \mathrm{~mol}^{-1}$ State whether the process is spontaneous or not ?

- Watch Video Solution

2. The heat of combustion of solid naphthalene. $\left(C_{10} H_{10}\right)$ at constant volume was $-4984 \mathrm{kJmol}^{-1}$ at 298 K . Calculate the value of enthalpy change. Given:
$C_{10} H_{8_{(s)}}+120_{2_{(g)}} \rightarrow 10 \mathrm{CO}_{2_{(g)}}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}, \Delta U=-4984 \mathrm{~kJ} . \mathrm{mol}^{-1}$
$\Delta U=-4984 \mathrm{kJmol}^{-1}, R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-}$
$T=298 K$

- Watch Video Solution

3. Calculate the standard entropy of formation ΔS_{f}° of $\mathrm{CO}_{2_{(g)}}$. Given the standard entropies of $\mathrm{CO}_{2_{(g)}}, C_{(s)}, O_{2_{(g)}} \quad$ as $218.8,8.740$ and $205.60 \mathrm{Jk}^{-1}$ respectively .

- Watch Video Solution

4. The standard heat of formation of $\mathrm{H}_{2} \mathrm{O}_{(l)}$ from its elements H_{2} and O_{2} is $-290.83 \mathrm{kJmol}^{-1}$ and the standard entropy change for the same reaction is $-330 J K^{-1}$ at $25^{\circ} \mathrm{C}$. Will the reaction be spontaneous at $25^{\circ} \mathrm{C}$.

Given: $\Delta H^{\circ}=-290.83 k \mathrm{Jmol}^{-1}$

$$
=-290830 \mathrm{Jmol}^{-1}
$$

$\Delta S^{\circ}=-330 J K^{-1}$
$T=25^{\circ} C=298 K$

- Watch Video Solution

5. ΔH and ΔS for the reaction
$\mathrm{Ag}_{2} \mathrm{O}_{(s)} \rightarrow 2 \mathrm{Ag}(\mathrm{s})+\frac{1}{2}{O_{(g)}}$ are $30.56 \mathrm{kJmol}^{-1}$
and $66.0 \mathrm{Jk}^{-1} \mathrm{~mol}^{-1}$ respectively. Calculate the temperature at which the free energy for this reaction will be zero. What will be the direction of reaction at this temperature and at temperature below this and why?

Given: $\Delta H=30.56 \mathrm{kJmol}^{-1}=30560 \mathrm{Jmol}^{-1}$
$\Delta S=66.0 J K^{-1} \mathrm{~mol}^{-1}$
$\Delta G=0$

D Watch Video Solution

6. will the reaction, $I_{2_{(g)}}+H_{2} S_{(g)} \rightarrow 2 H I_{(g)}+S_{(s)}$ proceed spontaneously in the forward direction at 298K? You are given with ΔG° for HI and H_{2} as 1.8 and $-33.8 \mathrm{kJmol}^{-1}$ respectively .

Given : $I_{2_{(g)}}+H_{2} S_{(g)} \rightarrow 2 H I_{(g)}+S_{(s)}$
$\Delta G_{H I}^{\circ}=1.8 \mathrm{kJmol}^{-1}$
$\Delta G_{H_{2} S}^{\circ}=1.8 \mathrm{kJmol}^{-1}$

- Watch Video Solution

7. Calculate the standard free energy change (ΔG°) of the following reaction and say whether it is feasible at 373 K or not $\frac{1}{2} K_{2_{(g)}}+\frac{1}{2} I_{2_{(g)}} \rightarrow H I_{(g)}, \Delta H_{r}^{\circ}$ is $25.95 \mathrm{kJmol}^{-1} \quad$ standard entropies of $\quad H I_{(g)}, H_{2_{(g)}}$ and $I_{2_{(g)}} \quad$ are 206.3, 140.6 and $118.7 \mathrm{Jk}^{-1} \mathrm{~mol}^{-1}$

Given $S_{I_{2}}^{\circ}=118.7 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, S_{H I}^{\circ}=206.3 \mathrm{JK}^{-1}$
$\mathrm{mol}^{-1}, S_{\mathrm{H}_{2}}^{\circ}=140.6 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Formula : $\Delta S^{\circ}=S_{H I}^{\circ} \frac{1}{2}\left(S_{H_{2}}^{\circ}+S_{I_{2}{ }^{\circ}}\right)$
$\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}$

- Watch Video Solution

8. Calculate the maximum \% efficiency of thermal engine operating between 110° and 25°.

- Watch Video Solution

9. Calculate the entropy change in the system, and in the surroundings and the total entropy change in the universe when during a process 75 J of heat flow out of the system at $55^{\circ} \mathrm{C}$ to the surrounding at $20^{\circ} \mathrm{C}$.

- Watch Video Solution

10. Calculate the entropy change of process $\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(g)}$ at 373 K . Enthalpy of vaporization of water is $40850 \mathrm{~J} \mathrm{Mole}^{-1}$

- Watch Video Solution

11. The boiling point of water at a pressure of 50 atm is 538 K .Compare the theoretical efficiencies of a stem engine operating between the boiling point of water at

1 atm pressure
12. The boiling point of water at a pressure of 50 atm is 538 K .Compare the theoretical efficiencies of a stem engine operating between the boiling point of water at

50 atm pressure, assuming the temperature of the sink to be $35^{\circ} \mathrm{C}$ in each case.

- Watch Video Solution

13. From the following data.
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \mathrm{\Delta} \mathrm{H}^{\circ}=-890 \mathrm{kJmol}^{-1}$
$\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(g)} \Delta H^{\circ}=44 \mathrm{kJmol}^{-1}$ at 298 K
Calculate the enthalpy of the reaction

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}^{\circ}=?
$$

14. Calculate the heat of glucose and its calorific value from following data :
(i) $C_{\text {(graphite) }}+O_{2(g)} \rightarrow C O_{2(g)}, \Delta H=-395 \mathrm{KJ}$
(ii) $\mathrm{H}_{2(g)}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(l)}, \Delta H=-269.4 \mathrm{KJ}$
(iii) $6 \mathrm{C}+6 \mathrm{H}_{2(\mathrm{~g})}+3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6(\mathrm{~s})}, \Delta \mathrm{H}=-1169.8 \mathrm{KJ}$

- Watch Video Solution

15. Calculate the entropy change in the engine that reacives 957.5 kJ of heat reversibly at $110^{\circ} \mathrm{C}$ temperature.

- Watch Video Solution

16. Calculate the entropy change of a process possessing
$\Delta H_{t}=2090 \mathrm{Jmol}^{-1}$.

- Watch Video Solution

17. 250 J of work is done on the system and at the same time 100 J of heat is given out. What is the change in the internal energy?

Given

$w=250 J$
[Work done on the system, $w>0$ Heat given out of t l
$q=100 J$

- Watch Video Solution

18. The heat of combustion of ethyl alcohol is 34,600 cals. The heat of formation of CO_{2} and water are -96.200 and -68.000 calories respectively at constant pressure. What is the heat formation of ethyl alcohol ?

Given :
$\Delta H_{f}^{\circ}, C O_{2}=-96200 \mathrm{cal}, \Delta H_{f}^{\circ}, H_{2} O=-68000 \mathrm{cal}$
$\Delta H_{c}{ }^{\circ}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=34.600 \mathrm{cal}$

- Watch Video Solution

19. Calculate the change of entropy for the process, water (liq) to water (vapor,373) involving $\Delta H_{\text {vap }}=40850 \mathrm{Jmol}^{-1}$ at 373 K .
