

India's Number 1 Education App

MATHS

BOOKS - SURA MATHS (TAMIL ENGLISH)

DIFFERENTIAL CALCUS - DIFFERENTIABILITY AND METHODS OF DIFFERENTIATION

Exercise 10 1

1. Find the derivatives of the following functions using first principle.

f(x)=6

Watch Video Solution

2. Find the derivatives of the following functions using first principle.

f(x) = -4x + 7

3. Find the derivatives of the following functions using first principle.

$$f(x) = -x^2 + 2$$

4. Find the derivatives from the left and from the right at x=1 (if they exist) of the following functions. Are the functions differentiable at x=1?

$$f(x) = |x - 1|$$

5. Find the derivatives from the left and from the right at x=1 (if they exist) of the following functions. Are the functions differentiable at x=1?

$$f(x) = \sqrt{1 - x^2}$$

6. Find the derivatives from the left and from the right at x=1 (if they exist) of the following functions. Are the functions differentiable at x=1?

$$f(x) = \left\{egin{array}{ll} x, & x \leq 1 \ x^2, & x > 1 \end{array}
ight.$$

Watch Video Solution

7. Determine whether the following function is differentiable at the indicated values.

$$f(x) = x|x|$$
 at x=0

Watch Video Solution

8. Determine whether the following function is differentiable at the indicated values.

$$f(x) = \left| x^2 - 1
ight|$$
 at x=1

9. Determine whether the following function is differentiable at the indicated values.

$$f(x) = |x| + |x - 1|$$
 at x=0, 1

Watch Video Solution

10. Determine whether the following function is differentiable at the indicated values.

$$f(x) = \sin|x|$$
 at x=0

Watch Video Solution

11. Show that the following functions are not differentiable at the indicated value of x.

$$f(x)=\left\{egin{array}{ll} -x+2, & x\leq 2\ 2x-4, & x>2 \end{array}
ight., x=2$$

12. Show that the following functions are not differentiable at the indicated value of x.

$$f(x) = \left\{ egin{array}{ll} 3x, & x < 0 \ -4x, & x > 0 \end{array}, x = 0
ight.$$

Watch Video Solution

13. If $f(x) = |x+100| + x^2$, test whether f'(100) exists.

14. Examine the differentiability of functions in R by drawing the diagrams.

 $|\sin x|$

15. Examine the differentiability of functions in R by drawing the diagrams.

 $|\cos x|$

Exercise 10 2

1. Find the derivatives of the following functions with respect to corresponding independent variables.

$$f(x) = x - 3\sin x$$

2. Find the derivatives of the following functions with respect to corresponding independent variables.

$$y = \sin x + \cos x$$

Watch Video Solution

3. Find the derivatives of the following functions with respect to corresponding independent variables.

$$f(x) = x \sin x$$

4. Find the derivatives of the following functions with respect to corresponding independent variables.

$$y = \cos x - 2\tan x$$

5. Find the derivatives of the following functions with respect to corresponding independent variables.

$$g(t) = t^3 \cos t$$

$$q(t) = 4 \sec t + \tan t$$

7. Find the derivatives of the following functions with respect to corresponding independent variables.

$$y = e^x \sin x$$

8. Find the derivatives of the following functions with respect to corresponding independent variables.

$$y = \frac{\tan x}{x}$$

$$y = \frac{\sin x}{1 + \cos x}$$

Watch Video Solution

10. Find the derivatives of the following functions with respect to corresponding independent variables.

$$y = \frac{x}{\sin x + \cos x}$$

Watch Video Solution

11. Find the derivatives of the following functions with respect to corresponding independent variables.

$$y = \frac{\tan x - 1}{\sec x}$$

$$y = \frac{\sin x}{x^2}$$

Watch Video Solution

13. Find the derivatives of the following functions with respect to corresponding independent variables.

$$y = \tan \theta (\sin \theta + \cos \theta)$$

Watch Video Solution

14. Find the derivatives of the following functions with respect to corresponding independent variables.

$$y = \cos ecx. \cot x$$

$$y = x \sin x \cos x$$

Watch Video Solution

16. Find the derivatives of the following functions with respect to corresponding independent variables.

$$y = e^{-x} \log x$$

Watch Video Solution

17. Find the derivatives of the following functions with respect to corresponding independent variables.

$$y = (x^2 + 5) \cdot \log(1 + x)e^{-3x}$$

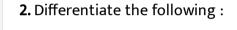
 $y = \sin x^{\circ}$

Watch Video Solution

19. Find the derivatives of the following functions with respect to corresponding independent variables.

 $y = \log_{10} x$

Watch Video Solution


20. Draw the function f'(x) if $f(x)=2x^2-5x+3$

1. Differentiate the following :

$$y=\left(x^2+4x+6
ight)^5$$

$$y = \tan 3x$$

3. Differentiate the following :

$$y = \cos(\tan x)$$

4. Differentiate the following :

$$y=\sqrt[3]{1+x^3}$$

5. Differentiate the following :
$$y=e^{\sqrt{x}}$$

6. Differentiate the following:

 $y = \sin(e^x)$

7. Differentiate the following: $F(x) = \left(x^3 + 4x\right)^7$

$$h(t) = \left(t - rac{1}{t}
ight)^{rac{3}{2}}$$

9. Differentiate the following :

 $f(t) = \sqrt[3]{1 + \tan t}$

 $y = \cos(a^3 + x^3)$

10. Differentiate the following:

11. Differentiate the following:

$$y=e^{\,-\,mx}$$

12. Differentiate the following :

 $y = 4 \sec 5x$

13. Differentiate the following:

$$y = (2x - 5)^4 (8x^2 - 5)^{-3}$$

14. Differentiate the following :

$$y=\left(x^2+1
ight)\sqrt[3]{x^2+2}$$

15. Differentiate the following:

$$y=xe^{\,-\,x^2}$$

Watch Video Solution

16. Differentiate the following:

$$s(t) = \sqrt[4]{rac{t^3+1}{t^3-1}}$$

Watch Video Solution

17. Differentiate the following:

$$f(x) = \frac{x}{\sqrt{7 - 3x}}$$

Watch Video Solution

18. Differentiate the following:

$$y = \tan(\cos x)$$

19. Differentiate the following :
$$y = \frac{\sin^2 x}{\cos x}$$

 $y=5^{rac{-1}{x}}$

20. Differentiate the following :

$y = \sqrt{1 + 2 \tan x}$

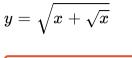
21. Differentiate the following:

$$y = \sin^3 x + \cos^3 x$$

22. Differentiate the following:

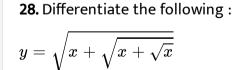
$y = \sin^2(\cos kx)$

23. Differentiate the following:


 $y = \left(1 + \cos^2 x\right)^6$

24. Differentiate the following:

25. Differentiate the following :


$$y = \frac{e^{3x}}{1 + e^x}$$

27. Differentiate the following : $y = e^{x \cos x}$

29. Differentiate the following :

$$y = \sin(\tan(\sqrt{\sin x}))$$

30. Differentiate the following :

$$y=\sin^{-1}\!\left(\frac{1-x^2}{1+x^2}\right)$$

Exercise 10 4

1. Find the derivatives of the following:

$$y = x^{\cos x}$$

2. Find the derivatives of the following:

$$y = x^{\log x} + (\log x)^x$$

3. Find the derivatives of the following:

$$\sqrt{xy} = e^{(x-y)}$$

4. Find the derivatives of the following:

$$x^y = y^x$$

- 5. Find the derivatives of the following:
- $(\cos x)^{\log x}$

6. Find the derivatives of the following :

$$rac{x^2}{a^2} + rac{y^2}{b^2} = 1$$

${\bf 7.}\,{\rm Find}$ the derivatives of the following :

$$\sqrt{x^2+y^2}=\tan^{-1}\!\left(\frac{y}{x}\right)$$

8. Find the derivatives of the following :

 $\tan(x+y) + \tan(x-y) = x$

9. if
$$\cos(xy)$$
=x, show that $\dfrac{dy}{dx}=\dfrac{-\left(1+y\sin(xy)\right)}{x\sin xy}.$

10. Find the derivatives of the following: $\tan^{-1}\sqrt{\frac{1-\cos x}{1+\cos x}}$

11. Find the derivatives of the following:

$$\tan^{-1}\!\left(\frac{6x}{1-9x^2}\right)$$

- 12. Find the derivatives of the following:
- $\cos\left(2\tan^{-1}\sqrt{\frac{1-x}{1+x}}\right)$

13. Find the derivatives of the following:

$$x = a\cos^3 t, y = a\sin^3 t$$

14. Find the derivatives of the following:

$$x = a(\cos t + t\sin t), y = a(\sin t - t\cos t)$$

15. Find the derivatives of the following:

$$x = \frac{1 - t^2}{1 + t^2}, y = \frac{2t}{1 + t^2}$$

16. Find the derivatives of the following :

$$\cos^{-1}\!\left(rac{1-x^2}{1+x^2}
ight)$$

17. Find the derivatives of the following :

$$\sin^{-1}\bigl(3x-4x^3\bigr)$$

18. Find the derivatives of the following :

$$\tan^{-1} \left(\frac{\cos x + \sin x}{\cos x - \sin x} \right)$$

- **19.** Find the derivative of $\sin x^2$ with respect to x^2 .
 - Watch Video Solution

20. Find the derivative of $\sin^{-1}\left(\frac{2x}{1+x^2}\right)$ with respect to $\tan^{-1}x$.

21. If
$$u=\tan^{-1}\frac{\sqrt{1+x^2-1}}{x}$$
 and $v=\tan^{-1}x$, find $\frac{du}{dv}$.

- **22.** Find the derivative with $\tan^{-1}\left(\frac{\sin x}{1+\cos x}\right)$ with respect to $\tan^{-1}\left(\frac{\cos x}{1+\sin x}\right)$.
 - Watch Video Solution

- **23.** If $y = \sin^{-1} x$ then find y''.
 - Watch Video Solution

24. If $y = e^{\tan^{-1}x}$, show that $(1+x^2)y'' + (2x-1)y' = 0$.

Watch Video Solution

25. If $y = \frac{\sin^{-1}x}{\sqrt{1-x^2}}$ show that $(1-x^2)y_2 - 3xy_1 - y = 0$.

Watch Video Solution

26. If $x = a(\theta + \sin \theta), y = a(1 - \cos \theta)$ then prove that at

$$heta=rac{\pi}{2},y$$
' ' $=rac{1}{a}.$

27. If $\sin y = x \sin(a+y)$, then prove that $\frac{dy}{dx} = \frac{\sin^2(a+y)}{\sin a}, a \neq n\pi$.

28. If $y=\left(\cos^{-1}x\right)^2$ prove that $\left(1-x^2\right)\frac{d^2y}{dx^2}-x\frac{dy}{dx}-2=0$. Hence

find y_2 when x=0

Watch Video Solution

Exercise 10 5

1.
$$\frac{d}{dx} \left(\frac{2}{\pi} \sin x^{\circ} \right)$$
 is

A.
$$\frac{\pi}{180}$$
 cos x°

B.
$$\frac{1}{90}\cos x^{\circ}$$

C.
$$\frac{\pi}{90}$$
cos x°

D.
$$\frac{2}{\pi}$$
 $\cos x^\circ$

Answer: B

2. If
$$y=f(x^2+2)$$
 and $f'(3)=5$, then $\frac{dy}{dx}$ at x=1 is

Answer: D

3. If
$$y=\frac{1}{4}u^4$$
 and $u=\frac{2}{3}x^3+5$, then $\frac{dy}{dx}$ is

A.
$$rac{1}{27}x^2ig(2x^3+15ig)^3$$

B.
$$\frac{2}{27}x \left(2x^3 + 5\right)^3$$

C.
$$\frac{2}{27}x^2ig(2x^3+15ig)^3$$

D.
$$\frac{2}{27}x \left(2x^3 + 5\right)^3$$

Answer: C

Watch Video Solution

- **4.** If $f(x)=x^2-3x$, then the points at which $f(x)=f^{\,\prime}(x)$ are
 - A. both positive integers
 - B. both negative integers
 - C. both irrational
 - D. one rational and another irrational

Answer: C

- **5.** If $y = \frac{1}{a-z}$, then $\frac{dz}{dy}$ is
 - A. $(a z)^2$

B.
$$-(z-a)^2$$

C.
$$(z + a)^2$$

D.
$$-(z+a)^2$$

Answer: A

Watch Video Solution

6. If $y=\cos \left(\sin x^2\right)$, then $\frac{dy}{dx}$ at $x=\sqrt{\frac{\pi}{2}}$ is

- A. -2
- B. 2

$$\mathsf{C.} - 2\sqrt{\frac{\pi}{2}}$$

D. 0

Answer: D

7. If
$$y = mx + c$$
 and $f(0) = f'(0) = 1$, then $f(2)$ is

Answer: C

Watch Video Solution

8. If $f(x) = x \tan^{-1} x$, then f'(1) is

A.
$$1 + \frac{\pi}{4}$$

$$\mathsf{B.}\,\frac{1}{2}+\frac{\pi}{4}$$

$$\mathsf{C.}\,\frac{1}{2}-\frac{\pi}{4}$$

Answer: B

Watch Video Solution

9. d/dx(`e^(x+5logx))

A.
$$e^x$$
. $x^4(x+5)$

B.
$$e^x$$
. $x(x + 5)$

$$\mathsf{C.}\,e^x+\frac{5}{x}$$

D.
$$e^x-rac{5}{x}$$

Answer: A

- **10.** If the derivative of $(ax-5)e^{3x}$ at x=0 is -13, then the value of a is
 - A. 8

B. -2

C. 5

D. 2

Answer: D

Watch Video Solution

11. $x = \frac{1-t^2}{1+t^2}, y = \frac{2t}{1+t^2}$ then $\frac{dy}{dx}$ is

A.
$$-rac{y}{x}$$

B. $\frac{y}{x}$

 $\mathsf{C.} - rac{x}{y}$

D. $\frac{x}{y}$

Answer: C

12. If
$$x=a\sin\theta$$
 and $y=b\cos\theta,$ then $\frac{d^2y}{dx^2}$ is

A.
$$\frac{a}{b^2} \sec^2 \theta$$

$$\mathsf{B.} - \frac{b}{a} \mathrm{sec}^2 \, \theta$$

$$\mathsf{C.} - \frac{b}{a^2} \mathrm{sec}^3 \, \theta$$

D.
$$\frac{b^2}{a^2} \mathrm{sec}^3 \, \theta$$

Answer: C

Watch Video Solution

13. The differential coefficient of $\log_{10} x$ with respect to $\log_x 10$ is

$$\mathsf{B.-}(\log_{10} x)^2$$

$$\mathsf{C.} \left(\log_x 10\right)^2$$

D.
$$\frac{x^2}{100}$$

Answer: B

Watch Video Solution

- **14.** If f(x) = x + 2, then f'(f(x)) at x=4 is
 - A. 8
 - B. 1
 - C. 4
 - D. 5

Answer: B

- **15.** If $y=\frac{\left(1-x\right)^2}{x^2}$, then $\frac{dy}{dx}=$ is
 - A. $rac{2}{x^2}+rac{2}{x^3}$

$$ext{B.} - rac{2}{x^2} + rac{2}{x^3} \ ext{C.} - rac{2}{x^2} - rac{2}{x^3} \ ext{D.} - rac{2}{x^3} + rac{2}{x^2}$$

Answer: D

Watch Video Solution

16. If pv = 81, then $\frac{dp}{dv}$ at v=9 is

A. 1

B. -1

C. 2

D. -2

Answer: B

17. If
$$f(x)=egin{cases} x-5 & ext{if} & x\leq 1 \ 4x^2-9 & ext{if} & 1< x< 2 \ ext{, then the right hand derivative} \ 3x+4 & ext{if} & x\geq 2 \end{cases}$$

of
$$f(x)$$
 at $x=2$ is.............

Answer: C

Watch Video Solution

18. It is given that f'(a) exists,then $\lim_{x \to a} \frac{xf(a) - af(x)}{x - a} is$:

A.
$$f(a) - af^{\prime}(a)$$

$$\mathsf{C.} - f'(a)$$

D.
$$f(a) + af'(a)$$

Answer: A

Watch Video Solution

- - A. 0
 - B. 1
 - C. 2
 - D. does not exist

Answer: D

 $Ifg(x) = \left(x^2 + 2x + 3\right), f(x) \ ext{ and } \ f(0) = 5 \ ext{ and } \ \lim_{x \to 0} \ rac{f(x) - 5}{x} = 4the$

A. 20

B. 14

C. 18

D. 12

Answer: B

A. 1

B. -1

C. 0

Watch Video Solution

21. If $f(x)=\left\{egin{array}{ll} x+2&-1< x<3\ 5&x=3\ 8-x&x>3 \end{array}
ight.$, then at x=3, f'(x) is

D. does not exist

Answer: D

Watch Video Solution

- **22.** The derivative of f(x)=xert xert at x=-3 is
 - A. 6
 - B. -6
 - C. does not exist
 - D. 0

Answer: A

23. If
$$f(x) = \left\{ egin{array}{ll} 2a-x & {
m for} & -a < x < a \\ 3x-2a & {
m for} & x \geq a \end{array}
ight.$$
 , then which one of the

following is true?

A. f(x) is not differentiable at x=a

B. f(x) is discontinuous at x=a

C. f(x) is continuous for all x in R

D. f(x) is differentiable for all $x \geq a$

Answer: A

24. If
$$f(x) = \begin{cases} ax^2 - b, & -1 < x < 1 \\ \frac{1}{|x|}, & \text{elsewhere} \end{cases}$$
 is differentiable at x=1, then

A.
$$a = \frac{1}{2}, b = \frac{-3}{2}$$

B.
$$a = \frac{-1}{2}, b = \frac{3}{2}$$

C.
$$a = -\frac{1}{2}, b = -\frac{3}{2}$$

D.
$$a=rac{1}{2},b=rac{3}{2}$$

Answer: C

View Text Solution

- 25. The number of points in R in which the function $f(x) = |x-1| + |x+3| + \sin x$ is not differentiable, is
 - A. 3
 - B. 2
 - D. 4

C. 1

Answer: B

View Text Solution

1. If
$$y = \sin^{-1} x + \cos^{-1} x$$
 then $\frac{dy}{dx}$ is

C.
$$\frac{\pi}{2}$$

Answer: D

2. If
$$x=a(\theta+\sin\theta), y=a(1+\cos\theta)$$
 then $\frac{dy}{dx}$ is

A.
$$\tan \frac{\theta}{2}$$

$$B.-\tan\frac{\theta}{2}$$

$$\mathsf{C}.\cot\frac{\theta}{2}$$

$$\mathsf{D.}-\cot\frac{\theta}{2}$$

Answer: B

Watch Video Solution

3. If $y=a+bx^2$, where a, b are arbitrary constants, then

A.
$$rac{d^2y}{dx^2}=2xy$$

B.
$$x rac{d^2y}{dx^2} = y_1$$

C.
$$x rac{d^2y}{dx^2} - rac{dy}{dx} + y = 0$$

D.
$$x \frac{d^2y}{dx^2} = 2xy$$

Answer: B

4. Match list

List I

List II

 $\begin{bmatrix} a & b \\ b & a \end{bmatrix}$ (a) identity

ii. $\begin{bmatrix} 0 & b \\ -b & 0 \end{bmatrix}$ (b) singular matrix

iii. $\begin{bmatrix} a & a \\ b & b \end{bmatrix}$ (c) Skew-Symmetric

(d) Symmetric

The correct match is

(i) (ii) (iii) (iv)

A. d c b a

B. cdba

C.badc

D. b d a c

Answer: B

- 5. Choose the correct statement
 - A. Derivative of odd function is odd
 - B. Derivative of even function is even
 - C. Inverse of odd function is even
 - D. Inverse function of sinx is $\sin^{-1} x$

Answer: D

- **6.** Assertion (A) : $f(x)=\left\{egin{array}{ll} x+1, & x<2 \\ 2x-1, & x\geq 2 \end{array}
 ight.$ then f'(2) does not exist.
- Reason (R): f(x) is not continuous at 2.
 - A. Both A and R are true and R is the correct explanation of A
 - B. Both A and R are true but R is not the correct explanation of A
 - C. A is true R is false

D. A is false R is true

Answer: C

Watch Video Solution

Additional Problems Section B 2 Marks

Watch Video Solution

1. Differentiate: 2^x .

Watch Video Solution

2. Differentiate $\frac{\sin(ax+b)}{\cos(cx+d)}$.

Watch Video Solution

3. Differentiate $x^2(x+1)^3(x+2)^4$ with respect to 'x'.

4. If $y=500e^{7x}+600e^{-7x}$ show that $\dfrac{d^2y}{dx^2}=49y$.

Additional Problems Section C 3 Marks

1. If
$$f(x)=2x^2+3x-5$$
, then prove that $f^{\,\prime}(0)+3f^{\,\prime}(\,-1)=0$

- **2.** Show that $f(x)=x^2$ is differentiable at x=1 and find $f^{\prime}(1)$.
 - Watch Video Solution

3. Differentiate $f(x)=e^{2x}$ from first principles.

4. If
$$y=\sqrt{x+1}+\sqrt{x-1}$$
, prove that $\sqrt{x^2-1}\frac{dy}{dx}=rac{1}{2}y$

5. If $x = a \sec^3 \theta$ and $y = a \tan^3 \theta$ find $\frac{dy}{dx}$ at $\theta = \frac{\pi}{3}$.

Watch Video Solution

Additional Problems Section D 5 Marks

1. If
$$y=\sqrt{rac{1+e^x}{1-e^x}}$$
 , show that $rac{dy}{dx}=rac{e^x}{(1-e^x)\sqrt{1-e^{2x}}}.$

6. Differentiate $\log \! \left(1 + x^2 \right)$ with respect to $\tan^{-1} x$.

- **2.** Differentiate $\tan^{-1}(\sec x + \tan x)$, $-\frac{\pi}{2} < x < \frac{\pi}{2}$ with respect to 'x'.
 - Watch Video Solution

- **3.** Differentiate x^x with respect to $x \log x$.
 - Watch Video Solution

- **4.** If $x=4z^2+5, y=6z^2+7z+3$, find $\frac{d^2y}{dx^2}$.
 - Watch Video Solution