© 'doubtnut

MATHS

BOOKS - SURA MATHS (TAMIL ENGLISH)

QUESTION PAPER -19

Section I

1. The value of x , for which the matrix $\mathrm{A}=\left[\begin{array}{cc}e^{x-2} & e^{7+x} \\ e^{2+x} & e^{2 x+3}\end{array}\right]$ is singular is
A. 7
B. 6
C. 9
D. 8

Answer:
2. The $n^{\text {th }}$ term of the sequence $2,7,14,23$,is:
A. $n^{2}+2 n+1$
B. $n^{2}+2 n-1$
C. $n^{2}-2 n-1$
D. $n^{2}-2 n+1$

Answer:

- Watch Video Solution

3. $\int \frac{\sec x}{\sqrt{\cos 2 x}} d x=$
A. $\tan ^{-1}(\cos x)+c$
B. $\sin ^{-1}(\tan x)+c$
C. $\tan ^{-1}(\sin x)+c$
D. $2 \sin ^{-1}(\tan x)+c$

Answer:

- Watch Video Solution

4. The line $\frac{x}{a}-\frac{y}{b}=0$ has the slope 1 , if:
A. $a=b$
B. only for $\mathrm{a}=1, \mathrm{~b}=1$
C. $a>b$
D. $a<b$

Answer:

- Watch Video Solution

5. The number of five digit numbers in which all digits are even, is :
A. 4×5^{4}
B. 4×5^{5}
C. 5^{5}
D. 5×5

Answer:

D Watch Video Solution

6. If $f(x)=\left\{\begin{array}{l}2 a-x, \text { for } \quad-a<x<a \\ 3 x-2 a, \text { for } x \geq a\end{array}\right.$ then which of the following is true?
A. $f(x)$ is continuous for all x in R
B. $\mathrm{f}(\mathrm{x})$ is differentiable for all $x \geq a$
C. $f(x)$ is not differentiable at $x=a$
D. $f(x)$ is discontinuous at $x=a$

Answer:

7. A number is selected from the set $\{1,2,3, \ldots .20\}$. The probability that the selected number is divisible by 3 or 4 is ...
A. $\frac{1}{2}$
B. $\frac{2}{3}$
C. $\frac{2}{5}$
D. $\frac{1}{8}$

Answer:

- Watch Video Solution

8. Which of the following is not a periodic function with period 2π ?
A. $\tan x$
B. $\cos x$
C. $\sin x$
D. $\operatorname{cosec} x$

- Watch Video Solution

9. Straight line joining the points $(2,3)$ and $(-1,4)$ passes through the point (α, β) if
A. $\alpha+3 \beta=11$
B. $3 \alpha+\beta=11$
C. $\alpha+2 \beta=7$
D. $3 \alpha+\beta=9$

Answer:

10. The minimum and the maximum values of $|\cos x|-2$ are respectively:
A. 0 and 2
B. -2 and 0
C. -2 and -1
D. -1 and 1

Answer:

Watch Video Solution
11.
$A=\left\{(x, y) / y=e^{x}, x \in[0, \infty)\right\}$ and $B=\{(x, y) / y=\sin x, x \in[0, \infty)$ then $n(A n B)$ is
A. ∞
B. 1
C. ϕ
D. 0

Answer:

- Watch Video Solution

12. For the function $f(x)= \begin{cases}x+2, & x>0 \\ x-2, & x<0\end{cases}$
A. $\lim _{x \rightarrow 2^{-}} f(x)=-1$
B. $\lim _{x \rightarrow 0} f(x)$ does not exist
C. $\lim _{x \rightarrow 0^{-}} f(x)=-1$ $x \rightarrow 0^{-}$
D. $\lim _{x \rightarrow 0^{+}} f(x)=1$

Answer:

- Watch Video Solution

13. If $f(x)=x^{2}-3 x$, then the points at which $\mathrm{f}(\mathrm{x})=\mathrm{f}^{\prime}(\mathrm{x})$ are:
A. both irrational
B. one rational and another irrational
C. Both positive integers
D. both negative integers

Answer:

D Watch Video Solution

14. The unit vector parallel to the resultant of the vectors $\hat{i}+\hat{j}+\hat{k}$ and $\hat{i}-2 \hat{j}+\hat{k}$ is:
A. $\frac{2 \hat{i}-\hat{j}+\hat{k}}{\sqrt{5}}$
B. $\frac{2 \hat{i}-\hat{j}}{\sqrt{5}}$
C. $\frac{\hat{i}-\hat{j}-\hat{k}}{\sqrt{5}}$
D. $\frac{2 \hat{i}+\hat{j}}{\sqrt{5}}$

Answer:

Watch Video Solution

15. It is given that the events A and B are such that $P(A)=\frac{1}{4}, P(A / B)=\frac{1}{2}$ and $P(B / A)=\frac{2}{3}$. Then $\mathrm{P}(\mathrm{B})$ is
A. $\frac{2}{3}$
B. $\frac{1}{2}$
C. $\frac{1}{6}$
D. $\frac{1}{3}$

Answer:

- Watch Video Solution

16. If \vec{a}, \vec{b} are the position vectors A and B then which one of the following points whose position vector lies on $A B$, is
A. $\frac{2 \vec{a}+\vec{b}}{3}$
B. $\frac{\vec{a}-\vec{b}}{3}$
C. $\vec{a}+\vec{b}$
D. $\frac{2 \vec{a}-\vec{b}}{2}$

Answer:

- Watch Video Solution

17. If $|x+2| \leq 8$, then x belongs to?
A. $(6,10)$
B. $(-10,6)$
C. $[6,10]$
D. $[-10,6]$

Answer:

18. The expansion of $(1-x)^{-2}$ is?
A. $1-x+x^{2}-\ldots$
B. $1+x+x^{2}+\ldots$
C. $1-2 x+3 x^{2}-\ldots$.
D. $1+2 x+3 x^{2}+\ldots$.

Answer:

- Watch Video Solution

19. If : $R \rightarrow R$ is defined by $\mathrm{f}(\mathrm{x})=|\mathrm{x}|-5$, then the range of f is :
A. $(-\infty,-5)$
B. $(-\infty, 5)$
C. $[-5, \infty)$
D. $(-5, \infty)$

D Watch Video Solution

20. Which one of the following is not true about the matrix $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 5\end{array}\right)$
A. an upper triangular matrix
B. a lower triangular matrix
C. a scalar matrix
D. a diagonal matrix

Answer:

1. Write the use of horizontal line test.

- Watch Video Solution

2. Write the relationship between Permutation and Combination?

- Watch Video Solution

3. Count the number of positive integers greater than 6000 and less than 7000 which are divisible by 5 , provided that no digits are repeated?

- Watch Video Solution

4. Find the separate equations from a combined equation of a straight line $2 x^{2}+x y-3 y^{2}=0$

- Watch Video Solution

5. Define diagonal and scalar matrices?

- Watch Video Solution

6. Find a unit vector along the directions of the vector $5 \hat{i}-3 \hat{j}+4 \hat{k}$?

- Watch Video Solution

7. Define a continuous function on the closed interval [a,b]

- Watch Video Solution

8. Consider the function $f(x)=\sqrt{x}, x \geq 0$. Does $\lim _{x \rightarrow 0} f(x)$ exist?

- Watch Video Solution

9. An integer is chosen at random from the first ten positive integers.Find the probability that it is a multiple of three?

(D) Watch Video Solution

10. Is it correct to say $A \times A=\{(a, a): a \in A\}$? Justify your answer.

- Watch Video Solution

Section lii

1. A football player can kick a fotball from ground level with an initial velocity (u) of $80 \mathrm{ft} /$ second. Find the maximum horixzontal distance the football travels and at what angle
(Take $R=\frac{u^{2} \sin 2 \alpha}{g}$, and $g=32$)

- Watch Video Solution

2. Find the coefficient of x^{3} in the expansion of $(2-3 x)^{7}$?
3. Find the nearest point on the line $x-2 y-5$ from the origin.

- Watch Video Solution

4. Prove that square matrix can be expressed as the sum of a symmetric matrix and a skew-symmetric matrix.

- Watch Video Solution

5. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a}+2 \vec{b}+\vec{c}=\overrightarrow{0}$ and $|\vec{a}|=3,|\vec{b}|=4,|\vec{c}|=7$, find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

6. Examine the continuity of the following : $\cot x+\tan x$

Watch Video Solution

7. Find $\frac{d y}{d x}$ in the following :
$y=\sin ^{1}\left(\frac{1-x^{2}}{1+x^{2}}\right), 0<x<1$.

- Watch Video Solution

8. Find $\frac{d y}{d x}$ if $\mathrm{x}=\mathrm{a}(\mathrm{t}-\operatorname{sint}), \mathrm{y}=\mathrm{a}(1-\cos \mathrm{t})$?

- Watch Video Solution

9. Evaluate: $\int(x-3) \sqrt{x+2} d x$.
10. Construct a suitable domain X such that $\mathrm{f}: X \rightarrow N$ defined by $\mathrm{f}(\mathrm{n})=\mathrm{n}$
+3 to be one to one and onto.

- Watch Video Solution

Section Iv

1. For the given base curve $y=\sin x$ draw $y=\frac{1}{2} \sin 2 x$

- Watch Video Solution

2. Write any five different forms of an equation of a straight line.

- Watch Video Solution

3. Solve the equation $\sqrt{6-4 x-x^{2}}=\mathrm{x}+4$
4. Do the limits of following functions exists as $x \rightarrow 0$? State reason for your answer.
$\frac{\sin (x-\lfloor x\rfloor)}{x-\lfloor x\rfloor}$

- Watch Video Solution

5. Evaluate, $\int \frac{2 x+4}{x^{2}+4 x+6}$

Watch Video Solution

6. Prove that $\sqrt[3]{x^{3}+7}-\sqrt[3]{x^{3}+4}$ is approximately equal to $\frac{1}{x^{2}}$ when x is large.

- Watch Video Solution

7. Find the unit vectors perpendicular to each of the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$, where $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}$.

- Watch Video Solution

8. Find $\frac{d^{2} y}{d x^{2}}$ if $x^{2}+y^{2}=4$

- Watch Video Solution

9. The chances of X, Y and Z becoming managers of a certain company are
$4: 2: 3$. The probabilities that bonus scheme will be introduced if X, Y and
Z become managers are $0.3,0.5$ and 0.4 respectively. If the bonus scheme has been introduced, what is the probability that Z was appointed as the manager?

- Watch Video Solution

10. Prove that $\left|\begin{array}{lll}1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2}\end{array}\right|=(x-y)(y-z)(z-x)$

- Watch Video Solution

11. Evaluate $\int\left(x^{\wedge} 2+x+1\right) / \sqrt{x} d x$.

- Watch Video Solution

