©゙doubtnut

MATHS

BOOKS - SURA MATHS (TAMIL ENGLISH)

SETS RELATIONS AND FUNCTIONS

Exercise 11

1. Write the in roster form.
$\left\{\mathrm{x} \in \mathbb{N}: x^{2}<121\right.$ and x is a prime $\}$.

D Watch Video Solution
2. Write the in roster form.
the set of all positive roots of the equation $(x-1)(x+1)\left(x^{2}-1\right)=0$.
3. Write the in roster form.
$\{\mathrm{x} \in \mathbb{N}: 4 x+9<52\}$.

- Watch Video Solution

4. Write the in roster form.

$$
\left\{x: \frac{x-4}{x+2}=3, x \in \mathbb{R}-\{-2\}\right\}
$$

- Watch Video Solution

5. Write the set $\{-1,1\}$ in set builder form.

- Watch Video Solution

6. State whether the sets are finite or infinite.
$\{x \in \mathbb{N}: \mathrm{x}$ is an even prime number $\}$

- Watch Video Solution

7. State whether the sets are finite or infinite.
$\{x \in \mathbb{N}: \mathrm{x}$ is an odd prime number $\}$

- Watch Video Solution

8. State whether the sets are finite or infinite.
$\{x \in Z: \mathrm{x}$ is even and less than 10$\}$

- Watch Video Solution

9. State whether the sets are finite or infinite.
$\{x \in \mathbb{N}: \mathrm{x}$ is a rational number $\}$
10. State whether the sets are finite or infinite.
$\{x \in \mathbb{N}$: x is a rational number $\}$

D Watch Video Solution

11. By taking suitable sets A, B, C, verify the results :
$A \times(B \cap C)=(A \times B) \cap(A \times C)$

D Watch Video Solution

12. By taking suitable sets A, B, C, verify the results :
$A \times(B \cup C)=(A \times B) \cup(A \times C)$

Watch Video Solution
13. By taking suitable sets A, B, C, verify the results :
$(A \times B) \cap(B \times A)=(A \cap B) \times(B \cap A)$

- Watch Video Solution

14. By taking suitable sets A, B, C, verify the results :

$$
\mathrm{C}-(\mathrm{B}-\mathrm{A})=(\mathrm{C} \cap A) \cup(C \cap B)
$$

- Watch Video Solution

15. By taking suitable sets A, B, C, verify the results :
(B-A) $\cap C=(B \cap C)-A=B \cap(C-A)$

- Watch Video Solution

16. By taking suitable sets A, B, C, verify the results :
$(\mathrm{B}-\mathrm{A}) \cup C=(B \cup C)-(A-C)$
17. Justify the trueness of the statement " An element of a set can never be a subset of itself ".

- Watch Video Solution

18. If $n(p(A))=1024, n(A \cup$ $B)=15$ and $n(P(B))=32$, then find $n(A \cap$
B).

- Watch Video Solution

19. If $n(A \cap$
$B)=3$ and $n(A \cup$
$B)=10$ then find $n(P(A \triangle$
B))

- Watch Video Solution

20. For a set $\mathrm{A}, A \times A$ contains 16 elements and two of its elements are $(1,3)$ and $(0,2)$. Find the elements of A.

- Watch Video Solution

21. Let A and B be two sets such that $n(A)=3$ and $n(B)=2$. If $(x, 1)(y, 2)$ ($\mathrm{z}, 1$) are in $A \times B$, find A and B , where $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are distinct elements.

- Watch Video Solution

22. If $A \times A$ has 16 elements, $\mathrm{S}=\{(\mathrm{a}, \mathrm{b}) \in A \times A: a<b\},(-1,2)$ and $(0,1)$ are two elements of S, then find the remaining elements of S.

- Watch Video Solution

1. Discuss the relations for reflexivity, symmetricity and transitivity : The relation R defined on the set of all positive integers by " m Rn if m divides n ".

- Watch Video Solution

2. Discuss the relations for reflexivity, symmetricity and transitivity :

Let P denote the set of all straight lines in a plane. The relation R defined by " Rm if I is perpendicular to m ".

- Watch Video Solution

3. Discuss the relations for reflexivity, symmetricity and transitivity :

Let A be the set consisting of all the members of a family. The relation R defined by " $a R b$ if a is not a sister of b "

- Watch Video Solution

4. Discuss the relations for reflexivity, symmetricity and transitivity :

Let A be the set consisting of all the female members of a family. The relation R defined by " $a R b$ if a is not a sister of b ".

- Watch Video Solution

5. Discuss the relations for reflexivity, symmetricity and transitivity :

On the set of natural numbers the relation R defined by " $x R y$ if $x+2 y=$ 1 ".

D Watch Video Solution

6. Let $X=\{a, b, c, d\}$, and $R=\{(a, a)(b, b)(a, c)\}$. Write down the minimum number of ordered pairs to be included to R to make it
(i) reflexive (ii) symmetric
(iii) transitive (iv) equivalence.
7. Let $A=\{a, b, c\}$, and $R=\{(a, a)(b, b)(a, c)\}$. Write down the minimum number of ordered pairs to be included to R to make it
(i) reflexive (ii) symmetric
(iii) transitive (iv) equivalence.

- Watch Video Solution

8. Let P be the set of all triangles in a plane and R be the relation defined on P as a $R b$ if a is similar to b. Prove that R is an equivalence relation.

- Watch Video Solution

9. On the set of natural number let R be the relation defined by $a R b$ if $2 \mathrm{a}+3 \mathrm{~b}=30$. Write down the relation by listing all the pair . check whether it is
(i) reflexive (ii) symmetric (iii) transitive (iv) equivalence

(.) Watch Video Solution

10. Prove that the relation " friendship " is not an equivalence relation on the set of all people in Chennai.

- Watch Video Solution

11. On the set of natural number let R be the relation defined by $a R b$ if $\mathrm{a}+\mathrm{b} \leq 6$. Write down the relation by listing all the pairs. Check whether it is
(i) reflexive (ii) symmetric
(iii) transitive (iv) equivalence.

- Watch Video Solution

12. Let $A=\{a, b, c\}$. What is the equivalence relation of smallest cardinality on A ? What is the equivalence relation of largest

cardinality on A?

- Watch Video Solution

13. In the set Z of integers, define $m R n$ if $m-n$ is divisible by 7. Prove that R is an equivalence relation.

- Watch Video Solution

Exercise 13

1. Suppose that 120 students are studying in 4 sections of eleventh
standard in a school. Let A denotes the set of students and B denote the set of the sections. Define a relation from A to B as " x related to y if the student x belongs to the section y ". Is this relation a function ?

What can you say about the inverse relation ? Explain your answer.
2. Write the values of f at $-4,1,-2,7,0$ if $f(x)=$
$\left\{\begin{array}{lcc}-x+4 & \text { if } & -\infty<x \leq-3 \\ x+4 & \text { if } & -3<x<-2 \\ x^{2}-x & \text { if } & -2 \leq x<1 \\ x-x^{2} & \text { if } & 1 \leq x<7 \\ 0 & & \text { otherwise }\end{array}\right.$

- Watch Video Solution

3. Write the values of f at $-3,5,2,-1,0$ if $f(x)=$
$\left\{\begin{array}{llc}x^{2}+x-5 & \text { if } & x \in(-\infty, 0) \\ x^{2}+3 x-2 & \text { if } & x \in(3, \infty) \\ x^{2} & \text { if } & x \in(0,2) \\ x^{2}-3 & & \text { otherwise }\end{array}\right.$

D Watch Video Solution

4. State whether the following relations are functions or not. If it is a function check for one- to- oneness and ontoness. If it is not a function state why?

If $A=\{a, b, c\}$ and $f=\{(a, c)(b, c)(c, b)\}:(f: A \rightarrow A)$.
5. State whether the following relations are functions or not. If it is a function check for one- to- oneness and ontoness. If it is not a function state why?

If $X=\{x, y, z\}$ and $f=\{(x, y)(x, z)(z, x)\}:(f: x \rightarrow X)$

- Watch Video Solution

6. Let $A=\{1,2,3,4$,$\} and B=\{a, b, c, d\}$. Give a function from $A \rightarrow B$ for each of the :
neither one -to -one and nor onto.

- Watch Video Solution

7. Let $A=\{1,2,3,4$,$\} and B=\{a, b, c, d\}$. Give a function from $A \rightarrow B$ for each of the :
not one-to -one but onto.

- Watch Video Solution

8. Let $A=\{1,2,3,4$,$\} and B=\{a, b, c, d\}$. Give a function from $A \rightarrow B$ for each of the : one-to-one but not onto.

- Watch Video Solution

9. Let $A=\{1,2,3,4$,$\} and B=\{a, b, c, d\}$. Give a function from $A \rightarrow B$ for each of the :
one -to -one and onto.

D Watch Video Solution

10. Find the domain of $\frac{1}{1-2 \sin x}$.
11. Find the largest possible domain of the real valued function $f(x)=$
$\frac{\sqrt{4-x^{2}}}{\sqrt{x^{2}-9}}$.

- Watch Video Solution

12. Find the range of the function $\frac{1}{2 \cos x-1}$.

- Watch Video Solution

13. Show that the relation $x y=-2$ is a function for a suitable domain.

Find the domain and the range of the function.

- Watch Video Solution

14. If $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are defined by $f(x)=|x|+x$ and $g(x)=|x|-x$, find g o f and fog .

- Watch Video Solution

15. If f, g, h are real valued function defined on R, then prove that ($\mathrm{f}+\mathrm{g}$)oh=foh+goh. what can you say about fo(g+h)? Justify your answer.

- Watch Video Solution

16. If $: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=3 x-5$, prove that f is a bijection and find its inverse.

- Watch Video Solution

17. The weight of the muscles of a man is a function of his body weight
x and can be expressed as $W(x)=0.35 x$. Determine the domain of this
function.

- Watch Video Solution

18. The distance of an object falling is a function of time t and can be expressed as $s(t)=-16 t^{2}$. Graph the function and determine if it is one-to-one.

- Watch Video Solution

19. The total cost of airfare on a given route is comprised of the base cost C and the fuel surcharge S in rupee. Both C and S are functions of the mileage $\mathrm{m}, \mathrm{C}(\mathrm{m})=0.4 \mathrm{~m}+50$ and $\mathrm{S}(\mathrm{m})=0.03 \mathrm{~m}$. Determine a function for the total cost of a ticket in terms of the mileage and find the airfare for flying 1600 miles.
20. A salesperson whose annual earnings can be represented by the function $A(x)=30,000+0.04 x$, where x is the rupee value of the merchandise he sells. His son is also in sales and his earnings are represented by the function $S(x)=25,000+0.05 x$. Find $(A+S)(x)$ and determine the total family income if they each sell Rs $1,50,00,000$ worth of merchandise.

- Watch Video Solution

21. The function for exchanging American dollars for Singapore Dollar on a given day is $f(x)=1.23 x$, where x represents the number of American dollars. On the same day the function for exchanging Singapore Dollar to Indian Rupee is $g(y)=50.50$ y , where y represents the number of Singapore dollars. Write a function which will give the exchange rate of American dollars in terms of Indian rupee.

- Watch Video Solution

22. The owner of a small restaurant can prepare a particular meal at a cost of Rupees 100 . He extimate that if the menu price of the meal is x rupees, then the number of customers who will order that meal at that price in an evening is given by the function $D(x)=200-x$. Express his day revenue total cost and profit on this meal as a function of x .

D Watch Video Solution

23. The formula for converting from Fahrenheit to Celsius temperatures is $\mathrm{y}=\frac{5 x}{9}-\frac{160}{9}$. Find the inverse of this function and determine whether the inverse is also a function.

- Watch Video Solution

24. A simple ciphertakes a number and codes it, using the function $f(x)$ $=3 x-4$. Find the inverse of this function, determine whether the inverse
is also a function and verify the symmetrical property about the line $y=$ x (by drawing the lines).

- Watch Video Solution

Exercise 14

1. For the curve $\mathrm{y}=x^{3}$ given in figure draw,
$y=-x^{3}$

- Watch Video Solution

2. For the curve $\mathrm{y}=x^{3}$ given in figure draw,
$y=x^{3}+1$
3. For the curve $\mathrm{y}=x^{3}$ given in figure drawy $=x^{3}-1$

- Watch Video Solution

4. For the curve $\mathrm{y}=x^{3}$ given in figure draw, $\mathrm{y}=(x+1)^{3}$

- Watch Video Solution

5. For the curve, $y=x^{\frac{1}{3}}$ given in figure draw.
$y=-x^{\left(\frac{1}{3}\right)}$

- Watch Video Solution

6. For the curve , $y=x^{\frac{1}{3}}$ given in figure draw.
$y=x^{\left(\frac{1}{3}\right)}+1$
7. For the curve , $y=x^{\frac{1}{3}}$ given in figure draw.
$y=x^{\left(\frac{1}{3}\right)}-1$

- Watch Video Solution

8. For the curve , $y=x^{\frac{1}{3}}$ given in figure draw.
$(x+1)^{\left(\frac{1}{3}\right)}$

- Watch Video Solution

9. Graph the functions $\mathrm{f}(\mathrm{x})=x^{3}$ and $\mathrm{g}(\mathrm{x})=\sqrt[3]{x}$ on the same co-ordinate plane. Find fog and graph it on the plane as well. Explain your results.

(D) Watch Video Solution

10. Write the steps to obtain graph of steps to obtain the graph of the function $\mathrm{y}=3(x-1)^{2}+5$ from the graph $\mathrm{y}=x^{2}$.

D Watch Video Solution

11. From the curve $y=\sin x$, graph the functions.
$y=\sin (-x)$

- Watch Video Solution

12. From the curve $y=\sin x$, graph the functions.
$y=-\sin (-x)$,

- Watch Video Solution

13. From the curve $y=\sin x$, graph the functions.
$\mathrm{y}=\sin \left(\frac{\pi}{2}+x\right)$ which is $\cos \mathrm{x}$.
14. From the curve $y=\sin x$, graph the functions.
$\mathrm{y}=\sin \left(\frac{\pi}{2}-x\right)$ which is also $\cos \mathrm{x}$.

- Watch Video Solution

15. From the curve $y=x$, draw
$y=-x$

- Watch Video Solution

16. From the curve $y=x$, draw
$y=2 x$

- Watch Video Solution

17. From the curve $y=x$, draw
$y=x+1$

- Watch Video Solution

18. From the curve $y=x$, draw
$\mathrm{y}=\frac{1}{2} x+1$

- Watch Video Solution

19. From the curve $y=x$, draw $2 x+y+3=0$.

D Watch Video Solution

20. From the curve $\mathrm{y}=|\mathrm{x}|$, draw
$y=|x-1|+1$
21. From the curve $\mathrm{y}=|\mathrm{x}|$, draw
$y=|x+1|-1$

Watch Video Solution
22. From the curve $\mathrm{y}=|\mathrm{x}|$, draw
$y=|x+2|-3$.

Watch Video Solution
23. From the curve $y=\sin x$ draw $y=\sin |x|$ (Hint : $\sin (-x)=-\sin x$.

- Watch Video Solution

1. If $\mathrm{A}=\left\{(\mathrm{x}, \mathrm{y}): \mathrm{y}=e^{x}, x \in R\right\}$ and $\mathrm{B}=\left\{(\mathrm{x}, \mathrm{y}): \mathrm{y}=e^{-x}, x \in \mathrm{R}\right\}$ then $\mathrm{n}(\mathrm{A}$ $\cap B)$ is
A. Infinity
B. 0
C. 1
D. 2

Answer: A

D Watch Video Solution

2. If $A=\{(x, y): y=\sin x, x \in R\}$ and $B=\{(x, y): y=\cos x, x \in R\}$ then A
$\cap B$ contains
A. no element
B. infinitely many elements
C. only one element
D. cannot be determined.

Answer: A

- Watch Video Solution

3. The relation R defined on a set $\mathrm{A}=\{0,-1,1,2\}$ by xRy if $\left|x^{2}+y^{2}\right| \leq 2$, then which one of the following is true?
A. $R=\{(0,0),(0,-1),(0,1),(-1,0),(-1,1),(1,2),(1,0)\}$
B. $R^{-1}=\{(0,0),(0,-1),(0,1),(-1,0),(1,0)\}$
C. Domain of R is $\{0,-1,1,2\}$
D. Range of R is $\{0,-1,1\}$

Answer: A

4. If $f(x)=|x-2|+|x+2|, x \in R$, then
A. $f(x)=\left\{\begin{array}{lll}-2 x & \text { if } & x \in(-\infty,-2] \\ 4 & \text { if } & x \in(-2,2] \\ 2 x & \text { if } & x \in(2, \infty)\end{array}\right.$
B. $f(x)=\left\{\begin{array}{lll}2 x & \text { if } & x \in(-\infty,-2] \\ 4 & \text { if } & x \in(-2,2] \\ -2 x & \text { if } & x \in(2, \infty)\end{array}\right.$
C. $f(x)=\left\{\begin{array}{lll}-2 x & \text { if } & x \in(-\infty,-2] \\ -4 & \text { if } & x \in(-2,2] \\ 2 x & \text { if } & x \in(2, \infty)\end{array}\right.$
D. $f(x)=\left\{\begin{array}{lll}-2 x & \text { if } & x \in(-\infty,-2] \\ 2 & \text { if } & x \in(-2,2] \\ 2 x & \text { if } & x \in(2, \infty)\end{array}\right.$

Answer: B::D

- Watch Video Solution

5. Let \mathbb{R} be the set of all real numbers. Consider the following subsets of the plane $\mathbb{R} \times \mathbb{R}: S=\{(x, y): y=x+1$ and $0<x<2\}$ and $T=\{(x, y): x-y$ is an integer \}. Then which of the following is true?
A. T is an equivalence relation but S is not an equivalence relation.
B. Neither S nor T is an equivalence relation
C. Both S and T are equivalence relation
D. S is an equivalence relation but T is not an equivalence relation.

Answer: A: B::C

- Watch Video Solution

6. Let A and B be subsets of the universal set \mathbb{N}, the set of natural numbers. Then $\mathrm{A}^{\prime} \cup\left[(A \cap B) \cup B^{\prime}\right]$ is
A. A
B. A^{\prime}
C. B
D. \mathbb{N}

Answer:

- Watch Video Solution

7. The number of students who take both the subjects Mathematics and Chemistry is 70 . This represent 10% of the enrollment in Mathematics and 14% of the enrollment in Chemistry. The number of students take at least one of these two subjects, is
A. 1120
B. 1130
C. 1100
D. insufficient data

Answer: A::C

8. If $\mathrm{n}((A \times B) \cap(A \times C))=8 \operatorname{and} n(B \cup C)=2$, then $\mathrm{n}(\mathrm{A})$ is
A. 6
B. 4
C. 8
D. 16

Answer: D

- Watch Video Solution

9. If $\mathrm{n}(\mathrm{A})=2$ and $\mathrm{n}(B \cup C)=3$ then $\mathrm{n}[(A \times B) \cup(A \times C)]$ is
A. 2^{3}
B. 3^{2}
C. 6
D. 5

Answer:

- Watch Video Solution

10. If two sets A and B have 17 elements in common, then the number of elements common to the set $A \times B$ and $B \times A$ is
A. 2^{17}
B. 17^{2}
C. 34
D. insufficient data

Answer: A::B

- Watch Video Solution

11. For non-empty sets A and B , if $\mathrm{A} \subset B \operatorname{then}(A \times B) \cap(B \times A)$ is equal to
A. $A \cap B$
B. $A \times A$
C. $B \times B$
D. none of these.

Answer: A

(D) Watch Video Solution

12. The number of relations on a set containing 3 elements is
A. 9
B. 81
C. 512
D. 1024

Answer: C

- Watch Video Solution

13. Let R be the universal relation on a set X with more than one element. Then R is
A. not reflexive
B. not symmetric
C. transitive
D. none of these.

Answer: A

14. Let $X=\{1,2,3,4\}$ and $R=\{(1,1),(1,2),(1,3),(2,2),(3,3),(2,1),(3,1),(1,4),(4,1)\}$. Then R is
A. reflexive
B. symmetric
C. transitive
D. equivalence

Answer: C

(D) Watch Video Solution

15. The range of the function $\frac{1}{1-2 \sin x}$ is
A. $(-\infty,-1) \cup\left(\frac{1}{3}, \infty\right)$
B. $\left(-1, \frac{1}{3}\right)$
C. $\left[-1, \frac{1}{3}\right]$
D. $(-\infty,-1] \cup\left[\frac{1}{3}, \infty\right)$

Answer: A::C

- Watch Video Solution

16. The range of the function $\mathrm{f}(\mathrm{x})=|\lfloor x\rfloor-x|, x \in \mathbb{R}$ is
A. $[0,1]$
B. $[0, \infty)$
C. $[0,1)$
D. $(0,1)$

Answer: A

- Watch Video Solution

17. The rule $\mathrm{f}(\mathrm{x})=x^{2}$ is a bijection if the domain and the co-domain are given by
A. \mathbb{R}, \mathbb{R}
B. $\mathbb{R},(0, \infty)$
C. $(0, \infty), \mathbb{R}$
D. $[0, \infty),[0, \infty)$

Answer:

- Watch Video Solution

18. The number of relations form a set containing melements to a set containing n elements is
A. $m n$
B. m
C. n
D. $m+n$

Answer:

- Watch Video Solution

19. The function $f:[0,2 \pi] \rightarrow 1[-1,1]$ defined by $f(x)=\sin x$ is
A. one-to -one
B. onto
C. bijection
D. cannot be defined

Answer:

20. If the function $\mathrm{f}:[-3,3] \rightarrow \mathrm{S}$ defined by $\mathrm{f}(\mathrm{x})=x^{2}$ is onto, then S is
A. $[-9,9]$
B. \mathbb{R}
C. $[-3,3]$
D. $[0,9]$

Answer:

- Watch Video Solution

21. Let $X=\{1,2,3,4\}, Y=\{a, b, c, d\}$ and $f=\{(1, a),(4, b),(2, c),(3, d),(2, d)\}$. Then f is
A. an one-to-one function
B. an onto function
C. a function which is not one-to-one
D. not a function

Answer: D

- Watch Video Solution

22. The inverse of $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{lll}x & \text { if } & x<1 \\ x^{2} & \text { if } & 1 \leq x \leq 4 \text { is } \\ 8 \sqrt{x} & \text { if } & x>4\end{array}\right.$
A. $f^{-1}(x)=\left\{\begin{array}{lll}x & \text { if } & x<1 \\ \sqrt{x} & \text { if } & 1 \leq x \leq 16 \\ \frac{x^{2}}{64} & \text { if } & x>16\end{array}\right.$
B. $f^{-1}(x)=\left\{\begin{array}{lll}-x & \text { if } & x<1 \\ \sqrt{x} & \text { if } & 1 \leq x \leq 16 \\ \frac{x^{2}}{64} & \text { if } & x>16\end{array}\right.$
C. $f^{-1}(x)=\left\{\begin{array}{lll}x^{2} & \text { if } & x<1 \\ \sqrt{x} & \text { if } & 1 \leq x \leq 16 \\ \frac{x^{2}}{64} & \text { if } & x>16\end{array}\right.$
D. $f^{-1}(x)=\left\{\begin{array}{lll}2 x & \text { if } & x<1 \\ \sqrt{x} & \text { if } & 1 \leq x \leq 16 \\ \frac{x^{2}}{8} & \text { if } & x>16\end{array}\right.$
23. Let $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=1-|x|$. Then the range of f is
A. \mathbb{R}
B. $(1, \infty)$
C. $(-1, \infty)$
D. $(-\infty, 1)$

Answer: D

- Watch Video Solution

24. The function $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=\sin x+\cos x$ is
A. an odd function
B. neither an odd function nor an even function
C. an even function
D. both odd function and even function.

Answer: A::C::D

- Watch Video Solution

25. The function $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=$ $\frac{\left(x^{2}+\cos x\right)\left(1+x^{4}\right)}{(x-\sin x)\left(2 x-x^{3}\right)}+e^{-|x|}$ is
A. an odd function
B. neither an odd function nor an even function
C. an even function
D. both odd function and even function.

Answer: A::C

1. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined as $\mathrm{f}(\mathrm{x})=x^{4}$. Choose the correct answer.
A. f is one -one onto (2) f is onto
B. f is onto
C. f is one - one but not onto
D. f is neither one -one nor onto

Answer:

- Watch Video Solution

2. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ to given by $\mathrm{f}(\mathrm{x})=\left(3-x^{3}\right)^{\frac{1}{3}}$. Then of (x) is
A. $x^{\frac{1}{a}}$
B. x^{a}
C. x
D. $3-x^{a}$

Answer:

- Watch Video Solution

3. Let $\mathrm{A}=\{-2,-1,0,1,2\}$ and $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{Z}$ be given by $\mathrm{f}(\mathrm{x})=x^{2}-2 x-3$ then preimage of 5 is
A. -2
B. -1
C. 0
D. 1

Answer: B

- Watch Video Solution

4. Which one of the following is a finite set ?
A. $\{x: x \in \mathbb{Z}, x<5\}$
B. $\{x: x \in W W, x \geq 5\}$
C. $\{x: x \in \mathbb{N}, x>5\}$
D. $\{x: x$ is an even prime number $\}$

Answer: A::B

- Watch Video Solution

5. If $\subseteq B$, then $A \backslash B$ is
A. B
B. A
C. \emptyset
D. $\frac{B}{A}$

Answer:

6. Given $A=\{5,6,7,8\}$. Which one of the following is incorrect?
A. $\emptyset \subseteq A$
B. $A \subseteq A$
C. $\{7,8,9\} \subseteq A$
D. $\{5\} \subseteq A$

Answer: A::B

- Watch Video Solution

7. The shaded region in the adjoining diagram represents.
A. $A \backslash B$
B. $B \backslash \mathrm{~A}$
C. $\mathrm{A} \Delta \mathrm{B}$
D. A^{\prime}

Answer: A::B::D

- Watch Video Solution

8. The shaded region in the adjoining diagram represents.
A. $A \backslash B$
B. A^{\prime}
C. B^{\prime}
D. $B \backslash \mathrm{~A}$

Answer: A::B

9. Let R be a relation on the set \mathbb{N} given by ${ }^{`} R R=\{(a, b): a=b-2, b$ gt6\}. Then
A. $(2,4) \in R$
B. $(3,8) \in R$
C. $(6,8) \in \mathrm{R}$
D. $(8,7) \in \mathrm{R}$

Answer:

- Watch Video Solution

10. If $A=\{1,2,3\}, B=\{1,4,6,9\}$ and R is a relation from A to B defined by " x is greater than y ". The range of R is
A. $\{1,4,6,9\}$
B. $\{4,6,9\}$
C. \{1\}
D. none of these.

Answer: A

Watch Video Solution

11. For real numbers x and y define $x R y$ if $x-y+\sqrt{2}$ is an irrational number. Then the relation R is
A. reflexive
B. symmetric
C. transitive
D. none of these.

Answer:

12. Let R be the relation over the set of all straight lines in a plane such that $l_{1} R l_{2} \Leftrightarrow l_{1} \perp l_{2}$. Then R is
A. symmetric
B. reflexive
C. transitive
D. an equivalence relation

Answer: C

- Watch Video Solution

13. Which of the following is not an equivalence relation on z ?
A. $\mathrm{aRb} \Leftrightarrow a+b$ is an even integer
B. $a R b<=>a-b$ is an even integer
C. $a R b \Leftrightarrow a<b$
D. $a R b \Leftrightarrow a=b$

Answer: A: B

- Watch Video Solution

14. Which of the following functions from z to itself are bijections (oneone and onto)?
A. $f(x)=x^{3}$
B. $f(x)=x+2$
C. $f(x)=2 x+1$
D. $\mathrm{f}(\mathrm{x})=x^{2}+x$

Answer: B

15. Let $\mathrm{f}: \mathrm{Z} \rightarrow Z$ be given by $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ccc}\frac{x}{2} & \text { if } & \text { is even } \\ 0 & \text { if } & \text { is odd }\end{array}\right.$ Then f is
A. one-one but not onto
B. onto but not one -one
C. one-one and onto
D. neither one-one nor onto

Answer: B

(D) Watch Video Solution

16. If $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ is given by $\mathrm{f}(\mathrm{x})=3 \mathrm{x}-5$, then $f^{-1}(\mathrm{x})$ is
A. $\frac{1}{3 x-5}$
B. $\frac{x+5}{3}$
C. does not exist since f is not one-one
D. does not exists since f is not onto

Answer: C

- Watch Video Solution

17. If $\mathrm{f}(\mathrm{x})=2 \mathrm{x}-3$ and $\mathrm{g}(\mathrm{x})=x^{2}+x-2$ then go $\mathrm{f}(\mathrm{x})$ is
A. $2\left(2 x^{2}-5 x+2\right)$
B. $\left(2 x^{2}-5 x-2\right)$
C. $2\left(2 x^{2}+5 x+2\right)$
D. $\left(2 x^{2}+5 x-2\right)$

Answer: B

- Watch Video Solution

18. Let $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$ be given by $\mathrm{f}(\mathrm{x})=\mathrm{x}+\sqrt{x^{2}}$ is
A. injective
B. surjective
C. bijective
D. none of these.

Answer:

- Watch Video Solution

19. Choose the correct statement .
A. One-to-one function have inverse
B. Onto function have inverse
C. bijection function have inverse
D. many - to -one function hae inverse

Answer: A::B::C

20. Match List - I with List II

List I

i. $\quad\{(1,1)(2,2)(3,3)(1,2)\}$
ii. $\{(1,2)(2,1)(2,3)(3,2)\}$
ii. $\quad\{(1,1)(2,3)(1,3)\}$
iv.
$\{(1,1)(2,2)(3,3)(1,2)(2,1)(2,3)(1,3)\}$

ListII
(b) equivalence
(b) transitive
(c) Symmetric
(d) reflexive
A. $c \mathrm{db}$ a
B. dcba
C. badc
D. b abc

Answer: A::B::C::D

(D) Watch Video Solution

1. If $\mathrm{n}(A \cap \mathrm{~B})=3$ and $\mathrm{n}(A \cup B)=10$ then find $\mathrm{n}[\mathrm{P}(A \Delta B)]$

- Watch Video Solution

2. In the set Z of integers, define $m R n$ if $m-n$ is a multiple of 12. Prove that R is an equivalence relation.

- Watch Video Solution

3. Draw the curves of (i) $\mathrm{y}=x^{2}$ by using the graph of curve $\mathrm{y}=\mathrm{x}$

- Watch Video Solution

4. Find the number of subsets of A if $A=\{X: X=4 n+1,2$

$$
\leq n \leq 5, n \in \mathbb{N}\}
$$

5. Let $\mathrm{f}=\{(1,4),(2,5),(3,5)\}$ and $\mathrm{g}=\{(4,1),(5,2),(6,4)\}$. Find gof Can you find fog?

(D) Watch Video Solution

6. Define one to one function?

- Watch Video Solution

7. If $A=\{1,2,3,4\}$ and $B=\{3,4,5,6\}$, find n $((A \cup B) \times(A \cap B) \times(A \Delta B))$.

- Watch Video Solution

8.

Prove
$A \times A$ has 9 elements, $S=\{(a, b) \in A \times A: a>b\},(2,-1)$ and $(2,1)$ are two elements. , then find the remaining elements of S.

- Watch Video Solution

Additional Problems Section C

1. Draw the graph of the functions $f(x)=|x|, f(x)=|x-1|$ and $f(x)=$ $(x-1)^{2}$

- Watch Video Solution

2. If $\mathrm{f}: \mathrm{R}-(-1,1) \rightarrow \mathrm{R}$ is defined by $\mathrm{f}(\mathrm{x})=\frac{x}{x^{2}-1}$, verify whether f is one to one.

- Watch Video Solution

3. If A and B are two sets so that $n(B-A)=2 n \quad(A-B)$ $=4 n(A \cap B)$ and \quad if $n(A \cup B)=14$, then find $\mathrm{n}(\mathrm{P}(\mathrm{A}))$.
4. If the function f and g are given by $f=\{(1,2),(3,5),(4,1)\} g=\{(2,3),(5,1)$, $(1,3)\}$ find range of f and g. Also write down fog.

- Watch Video Solution

5. Find the pairs of equal sets, if any, give reasons:
$A=\{0\}, B=\{x: x>15$ and $x<5\}$,
$C=\{x: x-5=0\}, D=\left\{x: x^{2}=25\right\}$,
$\mathrm{E}=\left\{\mathrm{x}: \mathrm{x}\right.$ is an integral positive root of the equation $\left.x^{2}-2 x-15=0\right\}$.

- Watch Video Solution

1. A relation R is defined on the set z of integers as follows: (x, y) $\in \mathbb{R} \Leftrightarrow x^{2}+y^{2}=25$. Express R and R^{-1} as the set of ordered pairs and hence find their respective domains.

- Watch Video Solution

2. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=2 x-3$, then prove that f is a bijection and find its inverse.

- Watch Video Solution

3. If the function f is defined as $f(x)= \begin{cases}3 x-2 & x>3 \\ x^{3}-2 & -2 \leq x \leq 2 \\ 2 x+1 & x<-2\end{cases}$

Then find the values, if exists $f(4), f(-4), f(0), f(-7)$.

- Watch Video Solution

4. Let $A=\{0,1,2,3\}$. Construct relation on A of the following type. not reflexive, not symmetric, not transitive

- Watch Video Solution

5. Let $A=\{0,1,2,3\}$. Construct relation on A of the following type. not reflexive, not symmetric, transitive

- Watch Video Solution

6. Let $A=\{0,1,2,3\}$. Construct relation on A of the following type. not reflexive, symmetric, not transitive

- Watch Video Solution

7. Let $A=\{0,1,2,3\}$. Construct relation on A of the following type.
not reflexive, symmetric , transitive
8. Let $A=\{0,1,2,3\}$. Construct relation on A of the following type.
reflexive, not symmetric, not transitive

- Watch Video Solution

9. In a survey of 5000 persons in a town, it was found that 45% of the persons know Languages A, 25\% know language, B, 10\% know language C, 5% know languages A and B, 4\% know languages B and C, and 4\% know Language A and C. If 3% of the persons know and the three Languages, find the number of persons who knows only Languages A.

- Watch Video Solution

10. Let $\mathrm{f}, \mathrm{g}: \mathbb{R} \rightarrow \mathbb{R}$ be defined as $\mathrm{f}(\mathrm{x})=2 \mathrm{x}-|\mathrm{x}|$ and $\mathrm{g}(\mathrm{x})=2 \mathrm{x}+|\mathrm{x}|$. Find $\mathrm{f}(\mathrm{g})$.
11. Let $A=\{2,3,5\}$ and relataion $R=\{(2,5)\}$ write down the minimum number of ordered pairs to be indluded to R to make it an equivalence relation.
