©゙ doubtnut

 India's Number 1 Education App
MATHS

BOOKS - SURA MATHS (TAMIL ENGLISH)

TWO DIMENSIONAL ANALYTICAL

GEOMETRY

Exercise 61

1. Find the locus of P , if for all values of α, the coordinates of a moving point P is
$(9 \cos \alpha, 9 \sin \alpha)$
2. Find the locus of P , if for all values of α, the coordinates of a moving point P is
$(9 \cos \alpha, 6 \sin \alpha)$

D Watch Video Solution

3. Find the locus of a point P that moves at a constant distant of two units from the X -axis

4. Find the locus of a point P that moves at a constant

 distant of three units from the Y-axis
- Watch Video Solution

5. If θ is a parameter, find the equation of the locus of moving point, whose coordinates are $x=a \cos ^{3} y=a \sin ^{3} \theta$.
6. Find the value of k and b, if the points $P(-3,1)$ and $Q\left(2\right.$, b) lie on the locus of $x^{2}-5 x+k y=0$.

D Watch Video Solution

7. A straight rod of length 8 units slides with its ends A and B always on the x and y axes respectively. Find the locus of the mid point of the line segment $A B$.

D Watch Video Solution

8. Find the equation of the locus of a point such that
the sum of the squares of the distance from the
points $(3,5),(1,-1)$ is equal to 20 .

D Watch Video Solution

9. Find the equation of the locus of the point P such
that the line segment $A B$, joining the points $A(1,-6)$ and $B(4,-2)$, subtends a right angle at P.

D Watch Video Solution

10. If O is origin and R is a variable point on $y^{2}=4 x$,
then find the equation of the locus of the mid-point of
the line segment OR.
11. The coordinates of a moving point P are $\left(\frac{a}{2}(\operatorname{cosec} \theta+\sin \theta), \frac{b}{2}(\operatorname{cosec} \theta-\sin \theta)\right)$, where θ is a variable parameter. Show that the equation of the locus P is $b^{2} x^{2}-a^{2} y^{2}=a^{2} b^{2}$.

D Watch Video Solution

12. If $P(2,-7)$ is a given point and Q is a point on $\left(2 x^{2}+9 y^{2}=18\right)$, then find the equations of the locus of the mid-point of PQ .
13. If R is any point on the x-axis and Q is any point on they y-axis and P is a variable point on $R Q$ with $R P=b$, $P Q=a$, then find the equation of locus of P.

D Watch Video Solution

14. If the points $P(6,2)$ and $Q(-2,1)$ and R are the vertices of a $\triangle P Q R$ and R is the point on the locus of $y=x^{2}-3 x+4$, then find the equation of the locus of centroid of $\triangle P Q R$.
15. If Q is a point on the locus of
$x^{2}+y^{2}+4 x-3 y+7=0$, then find the equation of locus of P which divides segment OQ externally in the ratio 3:4, where O is origin.

D Watch Video Solution

16. Find the points on the locus of points that are 3
units from x-axis and 5 units from the point $(5,1)$.

- Watch Video Solution

17. The sum of the distance of a moving point from the points $(4,0)$ and $(-4,0)$ is always 10 units. Find the equation to the locus of the moving point.

D Watch Video Solution

Exercise 62

1. Find the equation of the lines passing through the point (1,1)
with y-intercept (-4)
2. Find the equation of the lines passing through the point (1,1)
with slope 3

D Watch Video Solution
3. Find the equation of the lines passing through the point (1,1)
and (-2,3)

D Watch Video Solution
4. Find the equation of the lines passing through the point (1,1)
and the perpendicular from the origin makes an angle 60° with x-axis.

D Watch Video Solution

5. If $p(r, c)$ is mid-point of a line segment between the axes, then show that $\frac{x}{r}+\frac{y}{c}=2$.

D Watch Video Solution

6. Find the equation of the line passing through the point (1,5) and also divides co-ordinate axes in the ratio 3:10.

- Watch Video Solution

7. If p is length of perpendicular from the origin to the line whose intercepts on the axes are a and b, then
show that $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$.

D Watch Video Solution

8. The normal boiling point of water is $100^{\circ} \mathrm{C}$ or $212^{\circ} \mathrm{F}$ and the freezing point of water is $0^{\circ} \mathrm{C}$ or $32^{\circ} F$.

Find the linear relationship between C and F.

D Watch Video Solution

9. The normal boiling point of water is $100^{\circ} C$ or
$212^{\circ} \mathrm{F}$ and the freezing point of water is $0^{\circ} \mathrm{C}$ or $32^{\circ} F$.

Find the value of C for $98.6^{\circ} \mathrm{F}$

D Watch Video Solution
10. The normal boiling point of water is $100^{\circ} \mathrm{C}$ or
$212^{\circ} \mathrm{F}$ and the freezing point of water is $0^{\circ} \mathrm{C}$ or $32^{\circ} F$.
the value of F for $38^{\circ} \mathrm{C}$.

D Watch Video Solution

11. An object was launched from a place P in constant speed to hit a target. At the $15^{\text {th }}$ second it was 1400 m away from the target and the $18^{t h}$ second 800 m away.

Find
the distance between the place and the target
12. An object was launched from a place P in constant speed to hit a target. At the $15^{\text {th }}$ second it was 1400 m away from the target and the $18^{\text {th }}$ second 800 m away.

Find
the distance covered by it in 15 seconds.

D Watch Video Solution

13. An object was launched from a place P in constant speed to hit a target. At the $15^{t h}$ second it was 1400 m away from the target and the $18^{t h}$ second 800 m away. Find
time taken to hit the target.
14. Population of a city in the years 2005 and 2010 are $1,35,000$ and $1,45,000$ respectively. Find the approximate population in the year 2015. (assuming that the growth of population is constant)

D Watch Video Solution

15. Find the equation of the line, if the perpendicular drawn from the origin makes an angle 30° with x-axis and its length is 12.
16. Find the equation of the straight lines passing through $(8,3)$ and having intercepts whose sum is 1 .

D Watch Video Solution

17. Show that the points $(1,3),(2,1)$ and $\left(\frac{1}{2}, 4\right)$ are collinear, by using
concept of slope

D Watch Video Solution

18. Show that the points $(1,3),(2,1)$ and $\left(\frac{1}{2}, 4\right)$ are collinear, by using
using a straight line and

D Watch Video Solution

19. Show that the points $(1,3),(2,1)$ and $\left(\frac{1}{2}, 4\right)$ are collinear, by using any other method.

D Watch Video Solution

20. A straight line is passing through the point $A(1,2)$
with slope $\frac{5}{12}$. Find points on the line which are 13 units away from A.
21. A 150 m long train is moving with constant velocity of $12.5 \mathrm{~m} / \mathrm{s}$. Find
the equation of the motion of the train,

- Watch Video Solution

22. A 150 m long train is moving with constant velocity
of $12.5 \mathrm{~m} / \mathrm{s}$. Find
time taken to cross a pole
23. A 150 m long train is moving with constant velocity of $12.5 \mathrm{~m} / \mathrm{s}$. Find

The time taken to cross the bridge of length 850 m is?

D Watch Video Solution

24. A spring was hung from a hook in the ceiling. A number of different weights were attached to the spring to make it stretch, and the total length of the spring was measured each time shown in the following table.

Draw a graph showing the results.
25. A spring was hung from a hook in the ceiling. A number of different weights were attached to the spring to make it stretch, and the total length of the spring was measured each time shown in the following table.

Find the equation relating the length of the spring to the weight on it.
26. A spring was hung from a hook in the ceiling. A number of different weights were attached to the spring to make it stretch, and the total length of the spring was measured each time shown in the following table.

What is the actual length of the spring.

- Watch Video Solution

27. A spring was hung from a hook in the ceiling. A number of different weights were attached to the spring to make it stretch, and the total length of the
spring was measured each time shown in the following table.

If the spring has to stretch to 9 cm long, how much weight should be added?

D Watch Video Solution

28. A spring was hung from a hook in the ceiling. A number of different weights were attached to the spring to make it stretch, and the total length of the spring was measured each time shown in the following table.

How long will the spring be when 6 kilograms of weight on it?

- Watch Video Solution

29. A family is using Liquefied petroleum gas (LPG) of weight 14.2 kg for conumption.(Full weight 29.5 kg includes the empty cylinders tare weight of 15.3 kg). If it is use with constant rate then it lasts for 24 days.

Then the new cylinder is replaced
Q (i) Find the equation relating the quantity of gas in the cylinder to the days.
30. In a shopping mall there is a hall of cuboid shape with dimension $800 \times 800 \times 720$ units, which needs to be added the facility of an escalator in the path as shown by the dotted line in the figure. Find the minimum total length of the escalator.

- Watch Video Solution

31. In a shopping mall there is a hall of cuboid shape with dimension $800 \times 800 \times 720$ units, which needs to be added the facility of an escalator in the path as shown by the dotted line in the figure. Find
the heights at which the escalator changes its

direction.

D Watch Video Solution

32. In a shopping mall there is a hall of cuboid shape with dimension $800 \times 800 \times 720$ units, which needs to be added the facility of an escalator in the path as shown by the dotted line in the figure. Find the slopes of the escalator at the turning points.
33. Show that the lines are $3 x+2 y+9=0$ and $12 x+8 y-15=0$ are parallel lines.

- Watch Video Solution

2. Find the equation of the straight line parallel to $5 x-$
$4 y+3=0$ and having x-intercept 3.

D Watch Video Solution
3. Find the distance between the line $4 x+3 y+4=0$ and a point (i) (-2, 4) (ii) (7,-3)

D Watch Video Solution

4. Write the equation of the lines through the point (1,-1)
parallel to $x+3 y-4=0$

D Watch Video Solution

5. Write the equation of the lines through the point
perpendicular to $3 x+4 y=6$

D Watch Video Solution

6. If $(-4,7)$ is one vertex of a rhombus and if the equation of one diagonal is $5 x-y+7=0$, then find the equation of another diagonal.

D Watch Video Solution

7. Find the equation of the lines passing through the point of intersection lines $4 x-y+3=0$ and $5 x+2 y+7=0$ through the point $(-1,2)$
8. Find the equation of the lines passing through the point of intersection lines $4 x-y+3=0$ and $5 x+2 y+7=0$ Parallel to $x-y+5=0$

D Watch Video Solution

9. Find the equation of the lines passing through the point of intersection lines $4 x-y+3=0$ and $5 x+2 y+7=0$

Perpendicular to $x-2 y+1=0$
10. Find the equations of two straight lines which are parallel to the line $12 x+5 y+2=0$ and at a unit distance from the point (1, -1).

- Watch Video Solution

11. Find the equations of straight lines which are perpendicular to the line $3 x+4 y-6=0$ and are at a distance of 4 units from (2,1).

Watch Video Solution

12. Find the equation of a straight line parallel to $2 x+3 y=10$ and which is such that the sum of its intercepts on the axes is 15 .

D Watch Video Solution

13. Find the length of the perpendicular and the coordinates of the foot of the perpendicular from (-10,-2) to the line $x+y-2=0$.
14. If p_{1} and p_{2} are the lengths of the perpendiculars from the origin to the straight lines $x \sec \theta+y \cos e c \theta=2 a$ and $x \cos \theta-y \sin \theta=a \cos 2 \theta$, then prove that $p_{1}{ }^{2}+p_{2}{ }^{2}=a^{2}$.

D Watch Video Solution

15. Find the distance between the parallel lines
$12 x+5 y=7$ and $12 x+5 y+7=0$
16. Find the distance between the parallel lines
$3 x-4 y+5=0$ and $6 x-8 y-15=0$

D Watch Video Solution

17. Find the family of straight lines (i) Perpendicular (ii)

Parallel to $3 x+4 y-12=0$.

D Watch Video Solution

18. If the line joining two points $A(2,0)$ and $B(3,1)$ is rotated about A in anticlockwise direction through an
angle of 15°, then find the equation of the line in new position.

- Watch Video Solution

19. A ray of light coming from the point (1,2) is reflected at a point A on the x-axis and it passes through the point $(5,3)$. Find the co-ordinates of the point A.

D Watch Video Solution

20. A line is drawn perpendicular to $5 x=y+7$. Find the equation of the line if the area of the triangle formed
by this line with co-ordinate axes is 10 sq. units.

D Watch Video Solution

21. Find the of the image of the point $(-2,3)$ about the line $x+2 y-9=0$.

- Watch Video Solution

22. A photocopy store charges Rs. 1.50 per copy for the first 10 copies and Rs. 1.00 per copy after the 10th copy. Let x be the number of copies, and let y be the total cost of photocopying.

Draw graph of the cost as x goes from 0 to 50 copies.

- Watch Video Solution

23. A photocopy store charges Rs. 1.50 per copy for the first 10 copies and Rs. 1.00 per copy after the 10th copy.

Let x be the number of copies, and let y be the total cost of photocopying.

Find the cost of making 40 copies

D Watch Video Solution

24. Find atleast two equations of the straight lines in
the family of the lines $y=5 x+b$, for which b and the $x-$
coordinate of the point of intersection of the lines with $3 x-4 y=6$ are integers.

D Watch Video Solution

25. Find all the equations of the straight lines in the family of the lines $y=m x-3$, for which m and the x coordinate of the point of intersection of the lines with $x-y=6$ are integers.

D Watch Video Solution

Exercise 64

1. Find the combined equation of the straight lines whose separate equations are $x-2 y-3=0$ and $x+y+5=0$.

D Watch Video Solution

2. Show that $4 x^{2}+4 x y+y^{2}-6 x-3 y-4=0$ represents a pair of parallel lines.

D Watch Video Solution

3. Show that $2 x^{2}+3 x y-2 y^{2}+3 x+y+1=0$ represents a pair of perpendicular lines.
4. Show that the equations
$2 x^{2}-x y-3 y^{2}-6 x+19 y-20=0$ represents a pair of intersecting lines. Show further that the angle between them is $\tan ^{-1}(5)$.

D Watch Video Solution

5. Prove that the equations to the straight lines through the origin each of which makes an angle α with the straight line
$y=x$ is
$x^{2}-2 x y \sec 2 \alpha+y^{2}=0$.
6. Find the equation of the pair of straight lines passing through the point $(1,3)$ and perpendicular to the lines $2 x-3 y+1=0$ and $5 x+y-3=0$.

- Watch Video Solution

7. Find the separate equation of the following pair of straight lines
$3 x^{2}+2 x y-y^{2}=0$

D Watch Video Solution
8. Find the separate equation of the following pair of straight lines
$6(x-1)^{2}+5(x-1)(y-2)-4(y-2)^{2}=0$

- Watch Video Solution

9. Find the separate equation of the following pair of straight lines
$2 x^{2}-x y-3 y^{2}-6 x+19 y-20=0$

- Watch Video Solution

10. The slope of one of the straight lines $a x^{2}+2 h x y+b y^{2}=0$ is twice that of the other, show that $8 h^{2}=9 a b$.

- Watch Video Solution

11. The slope of one of the straight lines $a x^{2}+2 h x y+b y^{2}=0$ is three times the other, show that $3 h^{2}=4 a b$.
12. A $\triangle O P Q$ is formed by the pair of straight lines
$x^{2}-4 x y+y^{2}=0$ and the line PQ . The equation of
$P Q$ is $x+y-2=0$. Find the equation of the median of the triangle $\triangle O P Q$ drawn from the origin 0 .

- Watch Video Solution

13. Find p and q, if the following equation represents a pair of perpendicular lines
$6 x^{2}+5 x y-p y^{2}+7 x+q y-5=0$.

- Watch Video Solution

14. Find the value of k if the following equation represents a pair of straight lines. Further, find whether these lines are parallel or intersecting $12 x^{2}+7 x y-12 y^{2}-x+7 y+k=0$.

D Watch Video Solution

15. For what value of k does the equation $12 x^{2}+2 k x y+2 y^{2}+11 x-5 y+2=0 \quad$ represent two straight lines.
$9 x^{2}-24 x y+16 y^{2}-12 x+16 y-12=0$ represents
a pair of parallel lines. Find the distance between them.

D Watch Video Solution

17. Show that the equation
$4 x^{2}+4 x y+y^{2}-6 x-3 y-4=0$ represents a pair of parallel lines. Find the distance between them.
18. Prove that one of the straight lines given by $a x^{2}+2 h x y+b y^{2}=0$ will bisect the angle between the co-ordinate axes if $(a+b)^{2}=4 h^{2}$.

- Watch Video Solution

19. Prove that the straight lines joining the origin to
the points of intersection of
$3 x^{2}+5 x y-3 y^{2}+2 x+3 y=0$ and $3 x-2 y-1=0$
are at right angles.

- Watch Video Solution

1. The equation of the locus of the point whose distance from y-axis is half the distance from origin is
A. $x^{2}+3 y^{2}=0$
B. $x^{2}-3 y^{2}=0$
C. $3 x^{2}+y^{2}=0$
D. $3 x^{2}-y^{2}=0$

Answer: D
2. Which of the following equation is the locus of $\left(a t^{2}, 2 a t\right)$

$$
\begin{aligned}
& \text { A. } \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \\
& \text { B. } \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\
& \text { C. } x^{2}+y^{2}=a^{2} \\
& \text { D. } y^{2}=4 a x
\end{aligned}
$$

Answer: D

D Watch Video Solution

3. Which of the following point lie on the locus of $3 x^{2}+3 y^{2}-8 x-12 y+17=0$
A. $(0,0)$
B. $(-2,3)$
C. $(1,2)$
D. $(0,-1)$

Answer: C
4. If the point $(8,-5)$ lies on the locus $\frac{x^{2}}{16}-\frac{y^{2}}{25}=k$, then the value of k is
A. 0
B. 1
C. 2
D. 3

Answer: D

- Watch Video Solution

5. Straight line joining the points $(2,3)$ and $(-1,4)$ passes through the point (α, β) if
A. $\alpha+2 \beta=7$
B. $3 \alpha+\beta=9$
C. $\alpha+3 \beta=11$
D. $3 \alpha+\beta=11$

Answer: C
6. The slope of the line which makes an angle 45 with the line $3 x-y=-5$ are
A. $1,-1$
B. $\frac{1}{2},-2$
C. $1, \frac{1}{2}$
D. $2,-\frac{1}{2}$

Answer: B

D Watch Video Solution

7. Equation of the straight line forms an isosceles triangle with coordinate axes in the I-quadrant with perimeter $4+2 \sqrt{2}$ is
A. $x+y+2=0$
B. $x+y-2=0$
C. $x+y-\sqrt{2}=0$
D. $x+y+\sqrt{2}=0$

Answer: B

8. The coordinates of the four vertices of a quadrilateral are $(-2,4),(-1,2)$ and $(2,4)$ taken in order.

The equation of the line passing through the vertex
$(-1,2)$ and dividing the quadrilateral in the equal areas is
A. $x+1=0$
B. $x+y=1$
C. $x+y+3=0$
D. $x-y+3=0$

Answer: D

9. The intercepts of the perpendicular bisector of the

line segment joining $(1,2)$ and $(3,4)$ with coordinate axes are
A. $5,-5$
B. 5, 5
C. 5, 3
D. 5, -4

Answer: B
10. The equation of the line with slope 2 and the length of the perpendicular from the origin equal to $\sqrt{5}$ is
A. $x+2 y=\sqrt{5}$
B. $2 x+y=\sqrt{5}$
C. $2 x-y=5$
D. $x+2 y-5=0$

Answer: C

D Watch Video Solution
11. A line perpendicular to the line $5 x-y=0$ forms a triangle with the coordinate axes. If the area of the triangle is 5 sq. units, then its equation is
A. $x+5 y \pm 5 \sqrt{2}=0$
B. $x-5 y \pm 5 \sqrt{2}=0$
C. $5 x+y \pm 5 \sqrt{2}=0$
D. $5 x-y \pm 5 \sqrt{2}=0$

Answer: A
12. Equation of the straight line perpendicular to the
line $x-y+5=0$, through the point of intersection the $y-$ axis and the given line
A. $x-y-5=0$
B. $x+y-5=0$
C. $x+y+5=0$
D. $x+y+10=0$

Answer: B
13. If the equation of the base opposite to the vertex
$(2,3)$ of a equilateral triangle is $x+y=2$, then the length of a side is
A. $\sqrt{\frac{3}{2}}$
B. 6
C. $\sqrt{6}$
D. $3 \sqrt{2}$

Answer: C

D Watch Video Solution
14. The line $(p+2 q) x+(p-3 q) y=p-q$ for different values of p and q passes through the point
A. $\left(\frac{3}{5}, \frac{5}{2}\right)$
B. $\left(\frac{2}{5}, \frac{2}{5}\right)$
C. $\left(\frac{3}{5}, \frac{3}{5}\right)$
D. $\left(\frac{2}{5}, \frac{3}{5}\right)$

Answer: D
15. The point on the line $2 x-3 y=5$ is equidistance from
$(1,2)$ and $(3,4)$ is
A. $(7,3)$
B. $(4,1)$
C. $(1,-1)$
D. $(-2,3)$

Answer: B

- Watch Video Solution

16. The image of the point $(2,3)$ in the line $y=-x$ is
A. $(-3,-2)$
B. $(-3,2)$
C. $(-2,-3)$
D. $(3,2)$

Answer: A

D Watch Video Solution

17. The length of \perp from the origin to the line $\frac{x}{3}-\frac{y}{4}=1$ is
A. $\frac{11}{5}$
B. $\frac{5}{12}$
C. $\frac{12}{5}$
D. $\frac{-5}{12}$

Answer: C

- Watch Video Solution

18. The y-intercept of the straight line passing through
$(1,3)$ and perpendicular to $2 x-3 y+1=0$ is
A. $\frac{3}{2}$
B. $\frac{9}{2}$
C. $\frac{2}{3}$
D. $\frac{2}{9}$

- Watch Video Solution

19. If the two straight lines
$x+(2 k-7) y+3=0$ and $3 k x+9 y-5=0$ are perpendicular then the value of k is
A. $k=3$
B. $k=\frac{1}{3}$
C. $k=\frac{2}{3}$
D. $k=\frac{3}{2}$
20. If a vertex of a square is at the origin and its one side lies along the line $4 x+3 y-20=0$, then the area of the square is
A. 20 sq. units
B. 16 sq. units
C. 25 sq. units
D. 4 sq. units

Answer: B
21. If the lines represented by the equation $6 x^{2}+41 x y-7 y^{2}=0$ make angle α and β with x axis, then $\tan \alpha \tan \beta=$
A. $-\frac{6}{7}$
B. $+\frac{6}{7}$
C. $-\frac{7}{6}$
D. $\frac{7}{6}$

Answer: A

22. The area of the triangle formed by the lines
$x^{2}-4 y^{2}=0$ and $x=a$ is
A. $2 a^{2}$
B. $\frac{\sqrt{3}}{2} a^{2}$
C. $\frac{1}{2} a^{2}$
D. $\frac{2}{\sqrt{3}} a^{2}$

Answer: C
23. If one of the line given by $6 x^{2}-x y+4 c y^{2}=0$ is $3 x+4 y=0$, then c equals to
A. -3
B. -1
C. 3
D. 1

Answer: A

- Watch Video Solution

24. θ is acute angle between the lines $x^{2}-x y-6 y^{2}=0$, then $\frac{2 \cos \theta+3 \sin \theta}{4 \sin \theta+5 \cos \theta}$ is
A. 1
B. $-\frac{1}{9}$
C. $\frac{5}{9}$
D. $\frac{1}{9}$

Answer: C

25. The equation of one of the line represented by the equation $x^{2}+2 x y \cot \theta-y^{2}=0$ is
A. $x-y \cot \theta=0$
B. $x+y \tan \theta=0$
C. $x \cos \theta+y(\sin \theta+1)=0$
D. $x \sin \theta+y(\cos \theta+1)=0$

Answer: D

- Watch Video Solution

1. The value of x so that 2 is the slope of the line through $(2,5)$ and $(x, 3)$ is
A. -1
B. 1
C. 0
D. 2

Answer: B

D Watch Video Solution

2. If the points $(a, 0)(0, b)$ and (x, y) are collinear, then
A. $\frac{x}{a}-\frac{y}{b}=1$
B. $\frac{x}{a}+\frac{y}{b}=1$
C. $\frac{x}{a}+\frac{y}{b}=-1$
D. $\frac{x}{a}+\frac{y}{b}=0$

Answer: B

- Watch Video Solution

3. Distance between the lines $5 x+3 y-7=0$ and
$15 x+9 y+14=0$ is

> A. $\frac{35}{\sqrt{34}}$
> B. $\frac{1}{3 \sqrt{34}}$
C. $\frac{35}{3 \sqrt{34}}$
D. $\frac{35}{2 \sqrt{34}}$

Answer: C

- Watch Video Solution

4. The value of λ for which the lines $3 x+4 y=5,5 x+4 y=4$ and $\lambda x+4 y=6$ meet at a point is
A. 2
B. 1
C. 4
D. 3

D Watch Video Solution

5. Find the odd one out of the following :
A. $(0,5),(0,7)(-7,0)$
B. $(5,0),(-9,0)(11,0)$
C. $(1,1),(-5,-5),(-11,-11)$
D. $(0,-2),(-7,0),(4,4)$

Answer: D

Additional Problems Section B

1. Transform the equation $3 x+4 y+12=0$ in to normal form.

- Watch Video Solution

2. Find the equation of the line perpendicular to x-axis and having intercept -2 on x-axis.

- Watch Video Solution

3. Find the equation to the straight line which cuts off equal positive intercepts on the axes and their product is 25 .

D Watch Video Solution

4. Find the value of α and p if the equation $x \cos \alpha+y \sin \alpha=p$ is the normal form of the line $\sqrt{3 x}+y+2=0$.

D Watch Video Solution

1. Find the locus of a point, so that the join of $(-5,1)$ and $(3,2)$ subtends a right angle at the moving point.

D Watch Video Solution

2. Find the equation of the perpendicular bisector of
the line segment joining the points $\mathrm{A}(2,3)$ and $\mathrm{B}(6,-5)$.

D Watch Video Solution

Additional Problems Section D

1. Find the locus of a point which divides so that the sum of its distances from $(-4,0)$ and $(4,0)$ is 10 units.

D Watch Video Solution

2. Find the equation of the perpendicular bisector of the line segment joining the points $(1,1)$ and $(2,3)$.

D Watch Video Solution

3. Find the distance of the line $4 x-y=0$ from the point

P(4,1) measured along the line making an angle 135 degree with the positive x-axis.

