©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - SURA MATHS (TAMIL ENGLISH)

VECTOR ALGEBRA -I

Exercise 81

1. Represent graphically the displacement of (i) $45 \mathrm{~km} 30^{\circ}$ north of east.
(ii) $80 \mathrm{~km}, 60^{\circ}$ south of west

- Watch Video Solution

2. Prove that the relation R defined on the set V of all vectors by $\vec{a} R \vec{b}$ if $\vec{a}=\vec{b}$, is an equivalence relation on V.
3. Let \vec{a} and \vec{b} be the position vectors of the points A and B. Prove that the position vectors of the points which trisects the line segment $A B$ are $\frac{\vec{a}+2 \vec{b}}{3}$ and $\frac{\vec{b}+2 \vec{a}}{3}$.

- Watch Video Solution

4. If D and E, are the midpoints of the sides $A B$ and $A C$ of a triangle $A B C$, prove that $\overrightarrow{B E}+\overrightarrow{D C}=\frac{3}{2} \overrightarrow{B C}$.

- Watch Video Solution

5. Prove that line segment joining the midpoints of two sides of a triangle is parallel to the third side whose length is half of the length of the third side.

- Watch Video Solution

6. Prove that the line segments joining the midpoints of the adjacent sides of a quadrilateral form a parallelogram.

- Watch Video Solution

7. If \vec{a} and \vec{b} represent a side and a diagonal of a parallelogram, find the other sides and the other diagonal.

- Watch Video Solution

8. If $\overrightarrow{P O}+\overrightarrow{O Q}=\overrightarrow{Q O}+\overrightarrow{O R}$, prove that the points $\mathrm{P}, \mathrm{Q}, \mathrm{R}$, are collinear.

- Watch Video Solution

9. If D is the midpoint of the side $B C$ of a triangle $A B C$, prove that $\operatorname{vec}(A B)+\operatorname{vec}(A C)=2 \operatorname{vec}(A D)$
10. If G is the centroid of a triangle $A B C$, prove that $\overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C}=\overrightarrow{0}$.

- Watch Video Solution

11. Let A, B, and C be the vertices of a triangle. Let D, E, and F be the midpoints of the sides $B C, C A$, and $A B$ respectively. Show that $\overrightarrow{A D}+\overrightarrow{B E}+\overrightarrow{C F}=\overrightarrow{0}$.

- Watch Video Solution

12. If $A B C D$ is a quadrilateral and E and F are the midpoints of $A C$ and $B D$ respectively, then prove that $\overrightarrow{A B}+\overrightarrow{A D}+\overrightarrow{C B}+\overrightarrow{C D}=4 \overrightarrow{E F}$.

- Watch Video Solution

1. Verify whether the ratios are direction cosines of some vector or not. $\frac{1}{5}, \frac{3}{5}, \frac{4}{5}$

- Watch Video Solution

2. Verify whether the ratios are direction cosines of some vector or not.
$\frac{1}{\sqrt{2}}, \frac{1}{2}, \frac{1}{2}$

- Watch Video Solution

3. Verify whether the ratios are direction cosines of some vector or not.
$\frac{4}{3}, 0, \frac{3}{4}$

- Watch Video Solution

4. Find the direction cosines of a vector whose direction ratios are (i) 1,2,3,
(ii) $3,-1,3$ (iii) 0,0,7
5. Find the direction cosines and direction ratios for the following vectors.
$3 \hat{i}-4 \hat{j}+8 \hat{k}$

- Watch Video Solution

6. Find the direction cosines and direction ratios for the following vectors.
$3 \hat{i}+\hat{j}+\hat{k}$

- Watch Video Solution

7. Find the direction cosines and direction ratios for the following vectors.
8. Find the direction cosines and direction ratios for the following vectors.

$$
5 \hat{i}-3 \hat{j}-48 \hat{k}
$$

- Watch Video Solution

9. Find the direction cosines and direction ratios for the following vectors.
$3 \hat{i}-3 \hat{k}+4 \hat{j}$

- Watch Video Solution

10. Find the direction cosines and direction ratios for the following vectors.
$\hat{i}-\hat{k}$

- Watch Video Solution

11. A triangle is formed by joining the points $(1,0,0),(0,1,0)$ and $(0,0,1)$. Find the direction cosines of the medians.

- Watch Video Solution

12. If $\frac{1}{2}, \frac{1}{\sqrt{2}}$ a are the direction cosines of some vector, then find a.

- Watch Video Solution

13. If $(a, a+b, a+b+c)$ is one set of direction ratios of the line joining $(1,0,0)$ and ($0,1,0$), then find a set of values of a, b, c.

- Watch Video Solution

14. Show that the vectors $2 \hat{i}-\hat{j}+\hat{k}, 3 \hat{i}-4 \hat{j}-4 \hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ form a right angled triangle.
15. Find the value of λ for which the vectors $\vec{a}=3 \hat{i}+2 \hat{j}+9 \hat{k}$ and $\vec{b}=\hat{i}+\lambda \hat{j}+3 \hat{k}$ are parallel.

Watch Video Solution

16. Show that the vectors are coplanar
$\hat{i}-2 \hat{j}+3 \hat{k},-2 \hat{i}+3 \hat{j}-4 \hat{k},-\hat{j}+2 \hat{k}$

- Watch Video Solution

17. Show that the vectors are coplanar
$2 \hat{i}+3 \hat{j}+\hat{k}, \hat{i}-\hat{j}, 7 \hat{i}+3 \hat{j}+2 \hat{k}$

- Watch Video Solution

18. Show that the points whose position vectors $4 \hat{i}+5 \hat{j}+\hat{k},-\hat{j}-\hat{k}, 3 \hat{i}+9 \hat{j}+4 \hat{k}$ and $-4 \hat{i}+4 \hat{j}+4 \hat{k}$ are coplanar.
19. $\vec{a}=2 \hat{i}+3 \hat{j}-4 \hat{k}, \vec{b}=3 \hat{i}-4 \hat{j}-5 \hat{k}$, and
$\vec{c}=-3 \hat{i}+2 \hat{j}+3 \hat{k}$, find the magnitude and direction cosines of
$\vec{a}+\vec{b}+\vec{c}$

Watch Video Solution

20. If

$$
\vec{a}=2 \hat{i}+3 \hat{j}-4 \hat{k}, \vec{b}=3 \hat{i}-4 \hat{j}-5 \hat{k}
$$

$\vec{c}=-3 \hat{i}+2 \hat{j}+3 \hat{k}$, find the magnitude and direction cosines of $3 \vec{a}-2 \vec{b}+5 \vec{c}$

- Watch Video Solution

21. The position vectors of the vertices of a triangle are $\hat{i}+2 \hat{j}+3 \hat{k}, 3 \hat{i}-4 \hat{j}+5 \hat{k}$ and $-2 \hat{i}+3 \hat{j}-7 \hat{k}$. Find the perimeter of the triangle
22. Find the unit vector parallel to $3 \vec{a}-2 \vec{b}+4 \vec{c}$, if $\quad \vec{a}=3 \hat{i}-\hat{j}-4 \hat{k}, \vec{b}=-2 \hat{i}+4 \hat{j}-3 \hat{k}, \vec{c}=\hat{i}+2$

- Watch Video Solution

23. The position vectors $\vec{a}, \vec{b}, \vec{c}$ of three points satisfy the relation $2 \vec{a}-7 \vec{b}+5 \vec{c}=\overrightarrow{0}$. Are these points collinear?

- Watch Video Solution

24. The position vectors of the points P, Q, R, S are $\hat{i}+\hat{j}+\hat{k}, 2 \hat{i}+5 \hat{j}, 3 \hat{k}+2 \hat{j}-3 \hat{k}$, and $\quad \hat{i}-6 \hat{j}-\hat{k}$ respectively. Prove that the line PQ and RS are parallel.

- Watch Video Solution

25. Find the value or values of m for which $\mathrm{m}(\hat{i}+\hat{j}+\hat{k})$ is a unit vector.

- Watch Video Solution

26. Show that the points $A(1,1,1), B(1,2,3)$ and $C(2,-1,1)$ are vertices of an isosceles triangle.

- Watch Video Solution

Exercise 83

1. Find $\vec{a} \cdot \vec{b}$ when

$$
\vec{a}=\hat{i}-2 \hat{j}+\hat{k} \quad \text { and } \quad \vec{b}=3 \hat{i}-4 \hat{j}-2 \hat{k}
$$

2. Find $\vec{a} \cdot \vec{b}$ when
$\vec{a}=2 \hat{i}+2 \hat{j}-\hat{k} \quad$ and $\quad \vec{b}=6 \hat{i}-3 \hat{j}+2 \hat{k}$

- Watch Video Solution

3. Find the value λ for which the vectors \vec{a} and \vec{b} are perpendicular, where
$\vec{a}=2 \hat{i}+\lambda \hat{j}+\hat{k} \quad$ and $\quad \vec{b}=\hat{i}-2 \hat{j}+3 \hat{k}$

- Watch Video Solution

4. Find the value λ for which the vectors \vec{a} and \vec{b} are perpendicular, where

$$
\vec{a}=2 \hat{i}+4 \hat{j}-\hat{k} \quad \text { and } \quad \vec{b}=3 \hat{i}-2 \hat{j}+\lambda \hat{k}
$$

5. If \vec{a} and \vec{b} are two vectors such that $|\vec{a}|=10,|\vec{b}|=15 \quad$ and $\quad \vec{a} \cdot \vec{b}=75 \sqrt{2}$, find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

6. Find the angle between the vectors
$2 \hat{i}+3 \hat{j}-6 \hat{k} \quad$ and $6 \hat{i}-3 \hat{j}+2 \hat{k}$

- Watch Video Solution

7. Find the angle between the vectors
$\hat{i}-\hat{j}$ and $\hat{j}-\hat{k}$.

- Watch Video Solution

8. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a}+2 \vec{b}+\vec{c}=\overrightarrow{0}$ and $|\vec{a}|=3,|\vec{b}|=4,|\vec{c}|=7$, find the angle between \vec{a} and \vec{b}.

(Watch Video Solution

9. Show
that
the
vectors
$\vec{a}=2 \hat{i}+3 \hat{j}+6 \hat{k}, \vec{b}=6 \hat{i}+2 \hat{j}-3 \hat{k}, \quad$ and $\quad \vec{c}=3 \hat{i}-6 \hat{j}+2 \hat{k}$, are mutually orthogonal.

- Watch Video Solution

10. Show that the vectors $-\hat{i}-2 \hat{j}-6 \hat{k}, 2 \hat{i}-\hat{j}+\hat{k}$ and $-\hat{i}+3 \hat{j}+5 \hat{k}$, form a right angled triangle.

- Watch Video Solution

11. If $|\vec{a}|=5,|\vec{b}|=6,|\vec{c}|=7$ and $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$, find $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$.

- Watch Video Solution

12. Show that the points (2,-1,3), (4,3,1) and (3,1,2) are collinear.

- Watch Video Solution

13. If \vec{a}, \vec{b} are unit vectors and θ is the angle between them, show that $\sin \frac{\theta}{2}=\frac{1}{2}|\vec{a}-\vec{b}|$

- Watch Video Solution

14. If \vec{a}, \vec{b} are unit vectors and θ is the angle between them, show that $\cos \frac{\theta}{2}=\frac{1}{2}|\vec{a}+\vec{b}|$
15. If \vec{a}, \vec{b} are unit vectors and θ is the angle between them, show that
$\tan \frac{\theta}{2}=\frac{|\vec{a}-\vec{b}|}{|\vec{a}+\vec{b}|}$

(Watch Video Solution

16. Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors such that $|\vec{a}|=3,|\vec{b}|=4,|\vec{c}|=5$ and each one of them being perpendicular to the sum of the other two, find $|\vec{a}+\vec{b}+\vec{c}|$.

- Watch Video Solution

17. Find the projection of the vector $\hat{i}+3 \hat{j}+7 \hat{k}$ on the vector $2 \hat{i}+6 \hat{j}+3 \hat{k}$.

- Watch Video Solution

18. Find λ, when the projection of $\vec{a}=\lambda \hat{i}+\hat{j}+4 \hat{k}$ on $\vec{b}=2 \hat{i}+6 \hat{j}+3 \hat{k} \quad$ is 4 units.

- Watch Video Solution

19. Three vectors \vec{a}, \vec{b} and \vec{c} are such that $|\vec{a}|=2,|\vec{b}|=3,|\vec{c}|=4$, and $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$.
Find $4 \vec{a} \cdot \vec{b}+3 \vec{b} \cdot \vec{c}+3 \vec{c} \cdot \vec{a}$.

- Watch Video Solution

Exercise 84

1. Find the magnitude of $\vec{a} \times \vec{b}$ if $\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}$ and $\vec{b}=3 \hat{i}+5 \hat{j}-2 \hat{k}$.

- Watch Video Solution

2.

$\vec{a} \times(\vec{b}+\vec{c})+\vec{b} \times(\vec{c}+\vec{a})+\vec{c} \times(\vec{a}+\vec{b})=\overrightarrow{0}$

- Watch Video Solution

3. Find the vectors of magnitude $10 \sqrt{3}$ that are perpendicular to the plane which contains $\hat{i}+2 \hat{j}+\hat{k}$ and $\hat{i}+3 \hat{j}+4 \hat{k}$

D Watch Video Solution

4. Find the unit vectors perpendicular to each of the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$, where $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}$.

- Watch Video Solution

5. Find the area of the parallelogram whose two adjacent sides are determined by the vectors $\hat{i}+2 \hat{j}+3 \hat{k}$ and $3 \hat{i}-2 \hat{j}+\hat{k}$.
6. Find the area of the triangle whose vertices are $A(3,-1,2), B(1,-1,-3)$ and $C(4,-3,1)$.

- Watch Video Solution

7. If $\vec{a}, \vec{b}, \vec{c}$ are position vectors of the vertices A, B, C of a triangle $A B C$, show that the area of the triangle $A B C$ is $\frac{1}{2}|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|$. Also deduce the condition for collinearity of the points A, B and C .

- Watch Video Solution

8. For any vector \vec{a} prove that
$|\vec{a} \times \hat{i}|^{2}+|\vec{a} \times \hat{j}|^{2}+|\vec{a} \times \hat{k}|^{2}=2|\vec{a}|^{2}$.
9. Let $\vec{a}, \vec{b}, \vec{c}$ be unit vectors such that $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}=0$ and the angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$. Prove that $\vec{a}= \pm \frac{2}{\sqrt{3}}(\vec{b} \times \vec{c})$.

- Watch Video Solution

10. Find the angle between the vectors $2 \hat{i}+\hat{j}-\hat{k}$ and $\hat{i}+2 \hat{j}+\hat{k}$ using vector product.

- Watch Video Solution

Exercise 85

1. The value of $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{D A}+\overrightarrow{C D}$ is
A. $\overrightarrow{A D}$
B. $\overrightarrow{C A}$
C. $\overrightarrow{0}$
D. $-\overrightarrow{A D}$

Answer: C

- Watch Video Solution

2. If $\vec{a}+2 \vec{b}$ and $3 \vec{a}+m \vec{b}$ are parallel, then the value of m is
A. 3
B. $\frac{1}{3}$
C. 6
D. $\frac{1}{6}$

Answer:

- Watch Video Solution

3. The unit vector parallel to the resultant of the vectors $\hat{i}+\hat{j}-\hat{k} \quad$ and $\quad \hat{i}-2 \hat{j}+\hat{k}$ is
A. $\frac{\hat{i}-\hat{j}+\hat{k}}{\sqrt{5}}$
B. $\frac{2 \hat{i}+\hat{j}}{\sqrt{5}}$
C. $\frac{2 \hat{i}-\hat{j}+\hat{k}}{\sqrt{5}}$
D. $\frac{2 \hat{i}-\hat{j}}{\sqrt{5}}$

Answer: A: B

- Watch Video Solution

4. A vector $\overrightarrow{O P}$ makes 60° and 45° with the positive direction of the x and y axes respectively. Then the angle between $\overrightarrow{O P}$ and the z-axis is
A. 45°
B. 60°
C. 90°
D. 30°

Answer:

- Watch Video Solution

5. If $\overrightarrow{B A}=3 \hat{i}+2 \hat{j}+\hat{k}$ and the position vector of B is $\hat{i}+3 \hat{j}-\hat{k}$ then the position vector A is
A. $4 \hat{i}+2 \hat{j}+\hat{k}$
B. $4 \hat{i}+5 \hat{j}$
C. $4 \hat{i}$
D. $-4 \hat{i}$

Answer: A:D

- Watch Video Solution

6. A vector makes equal angle with the positive direction of the coordinate axes. Then each angle is equal to
A. $\cos ^{-1}\left(\frac{1}{3}\right)$
B. $\cos ^{-1}\left(\frac{2}{3}\right)$
C. $\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
D. $\cos ^{-1}\left(\frac{2}{\sqrt{3}}\right)$

Answer: A: C

- Watch Video Solution

7. The vectors $\vec{a}-\vec{b}, \vec{b}-\vec{c}, \vec{c}-\vec{a}$ are
A. parallel to each other
B. unit vectors
C. mutually perpendicular vectors
D. coplanar vectors.

Answer: A:C

- Watch Video Solution

8. If $A B C D$ is a parallelogram, then $\overrightarrow{A B}+\overrightarrow{A D}+\overrightarrow{C B}+\overrightarrow{C D}$ is equal to
A. $2(\overrightarrow{A B}+\overrightarrow{A D})$
B. $4 \overrightarrow{A C}$
C. $4 \overrightarrow{B D}$
D. $\overrightarrow{0}$

Answer: D

- Watch Video Solution

9. One of the diagonals of parallelogram ABCD with \vec{a} and \vec{b} as adjacent sides is $\vec{a}+\vec{b}$. The other diagonal $\overrightarrow{B D}$ is
A. $\vec{a}-\vec{b}$
B. $\vec{b}-\vec{a}$
C. $\vec{a}+\vec{b}$
D. $\frac{\vec{a}+\vec{b}}{2}$

Answer: A: B::C

- Watch Video Solution

10. If \vec{a}, \vec{b} are the position vectors A and B then which one of the following points whose position vector lies on $A B$, is
A. $\vec{a}+\vec{b}$
B. $\frac{2 \vec{a}-\vec{b}}{2}$
C. $\frac{2 \vec{a}+\vec{b}}{3}$
D. $\frac{\vec{a}-\vec{b}}{3}$

Answer: A::B::C

- Watch Video Solution

11. If $\vec{a}, \vec{b}, \vec{c}$ are the position vectors of three collinear points, then which of the following is true?
A. $\vec{a}=\vec{b}+\vec{c}$
B. $2 \vec{a}=\vec{b}+\vec{c}$
c. $\vec{b}=\vec{c}+\vec{a}$
D. $4 \vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$

Answer: A::B::C

12. If $\vec{r}=\frac{9 \vec{a}+7 \vec{b}}{16}$ then the point P whose position vector \vec{r} divides the line joining the points with position vectors \vec{a} and \vec{b} in the ratio
A. 7: 9 internally
B. 9: 7 internally
C. 9: 7 externally
D. 7: 9 externally

Answer: A::B::C::D

- Watch Video Solution

13. If $\lambda \hat{i}+2 \lambda \hat{j}+2 \lambda \hat{k}$ is a unit vector, then the value of λ is
A. $\frac{1}{3}$
B. $\frac{1}{4}$
C. $\frac{1}{9}$
D. $\frac{1}{2}$

Answer: A:C

- Watch Video Solution

14. Two vertices of a triangle have position vectors $3 \hat{i}+4 \hat{j}-4 \hat{k}$ and $2 \hat{i}+3 \hat{j}+4 \hat{k}$. If the position vector of the centroid is $\hat{i}+2 \hat{j}+3 \hat{k}$, then the position vector of the third vertex is
A. $-2 \hat{I}-\hat{j}+9 \hat{k}$
B. $-2 \hat{I}-\hat{j}-6 \hat{k}$
C. $2 \hat{i}-\hat{j}+6 \hat{k}$
D. $-2 \hat{I}+\hat{j}+6 \hat{k}$

Answer: A: B

- Watch Video Solution

15. If $|\vec{a}+\vec{b}|=60,|\vec{a}-\vec{b}|=40 \quad$ and $\quad|\vec{b}|=46$, then $|\vec{a}|$ is
A. 42
B. 12
C. 22
D. 32

Answer: C

- Watch Video Solution

16. If \vec{a} and \vec{b} having same magnitude and angle between them is 60° and their scalar product is $\frac{1}{2}$ then $|\vec{a}|$ is
A. 2
B. 3
C. 7
D. 1

- Watch Video Solution

17. The value of $\theta \in\left(0, \frac{\pi}{2}\right)$ for which the vectors $\vec{a}=(\sin \theta) \hat{i}+(\cos \theta) \hat{j} \quad$ and $\quad \hat{b}=\hat{i}-\sqrt{3} \hat{j}+2 \hat{k}$ are perpendicular, is equal to
A. $\frac{\pi}{3}$
B. $\frac{\pi}{6}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{2}$

Answer: C

18. If $|\vec{a}|=13,|\vec{b}|=5$ and $\vec{a} \cdot \vec{b}=60$ then $|\vec{a} \times \vec{b}|$ is
A. 15
B. 35
C. 45
D. 25

Answer: B

- Watch Video Solution

19. Vectors \vec{a} and \vec{b} are inclined at an angle $\theta=120^{\circ}$. If $|\vec{a}|=1,|\vec{b}|=2$, then $[(\vec{a}+3 \vec{b}) \times(3 \vec{a}-\vec{b})]^{2}$ is equal to
A. 225
B. 275
C. 325
D. 300

Watch Video Solution

20. If \vec{a} and \vec{b} are two vectors of magnitude 2 and inclined at an angle 60°, then the angle between \vec{a} and $\vec{a}+\vec{b}$ is
A. 30°
B. 60^{2}
C. 45°
D. 90°

Answer: C

- Watch Video Solution

21. If the projection of $5 \hat{i}-\hat{j}-3 \hat{k}$ on the vector $\hat{i}+3 \hat{j}+\lambda \hat{k}$ is same as the projection of $\hat{i}+3 \hat{j}+\lambda \hat{k}$ on $5 \hat{i}-\hat{j}-3 \hat{k}$ then λ is equal to.
A. ± 4
B. ± 3
C. ± 5
D. ± 1

Answer: A::B::D

- Watch Video Solution

22. If $(1,2,4)$ and $(2,-3 \lambda,-3)$ are the initial and terminal points of the vector $\hat{i}+5 \hat{j}-7 \hat{k}$, then value of λ is equal to
A. $\frac{7}{3}$
B. $-\frac{7}{3}$
C. $-\frac{5}{3}$
D. $\frac{5}{3}$

Answer: C

23. If the points whose position vectors $10 \hat{i}+3 \hat{j}, 12 \hat{i}-5 \hat{j}$ and $a \hat{i}+11 \hat{j}$ are collinear then a is equal to
A. 6
B. 3
C. 5
D. 8

Answer:

- Watch Video Solution

24. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+x \hat{j}+\hat{k}, \vec{c}=\hat{i}-\hat{j}+4 \hat{k} \quad$ and
$\vec{a} \cdot(\vec{b} \times \vec{c})=70$, then x is equal to
A. 5
B. 7
C. 26
D. 10

Answer: B

- Watch Video Solution

25. If $\vec{a}=\hat{i}+2 \hat{j}+2 \hat{k},|\vec{b}|=5$ and the angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$, then the area of the triangle formed by these two vectors as two sides is
A. $\frac{7}{4}$
B. $\frac{15}{4}$
C. $\frac{3}{4}$
D. $\frac{17}{4}$

Answer: A::D

D Watch Video Solution

Additional Problems Section A 1 Mark

1. If $m(\overrightarrow{2}+\vec{j}+\vec{k})$ is a unit vector then the value of m is
A. $\pm \frac{1}{\sqrt{3}}$
B. $\pm \frac{1}{\sqrt{5}}$
C. $\pm \frac{1}{\sqrt{6}}$
D. $\pm \frac{1}{\sqrt{2}}$

Answer: A

- Watch Video Solution

2. The vectors having initial and terminal points as $(2,5,0)$ and $(-3,7,4)$ respectively is
A. $-\hat{i}+12 \hat{j}+4 \hat{k}$
B. $5 \hat{i}+2 \hat{j}-4 \hat{k}$
C. $-5 \hat{i}+2 \hat{j}+4 \hat{k}$
D. $\hat{i}+\hat{j}+\hat{k}$

Answer: A::B::D

- Watch Video Solution

3. The value of λ when the vectors $\vec{a}=2 \vec{i}+\lambda \vec{j}+\vec{k}$ and $\vec{b}=\vec{i}+2 \vec{j}+3 \vec{k}$ are othogonal is
A. 0
B. 1
C. $\frac{3}{2}$
D. $-\frac{5}{2}$

Answer: B

4. The value of λ for which the vectors $3 \hat{i}-6 \hat{j}+\hat{k}$ and $2 \hat{i}-4 \hat{j}+\lambda \hat{k}$ are parallel is
A. $\frac{2}{3}$
B. $\frac{3}{2}$
C. $\frac{5}{2}$
D. $\frac{2}{5}$

Answer: B::C

- Watch Video Solution

5. Match List -I with List II

ListI

ListII
i.
$\hat{i} . \hat{i}$
(a) 0
i. $\quad \hat{i} . \hat{j}$
(b) \hat{k}
iiii. $\hat{i} \times \hat{i}$
(c) 1
iv. $\quad \hat{i} \times \hat{j}$
(d) 0
(i) (ii) (iii) (iv)
(b) (c) (d) (a)

R (i) (ii) (iii) (iv)
(c) (a) (d)
(b)
(i) (ii) (iii) (iv)
C.
(d) (b) (a) (c)
D.
(i) (ii) (iii) (iv)
(d) (c) (b) (a)

Answer: A::B::C::D

- Watch Video Solution

6. Assertion (A) : If ABCD is a prallelogram, $\overrightarrow{A B}+\overrightarrow{A D}+\overrightarrow{C B}+\overrightarrow{C D}$ then is equal to zero.

Reason (R): $\overrightarrow{A B}$ and $\overrightarrow{C D}$ are equal in magnitude and opposite in direction. Also $\overrightarrow{A D}$ and $\overrightarrow{C B}$ are equal in magnitude and opposite in direction
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true and R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: A::B::C::D

- Watch Video Solution

7. Find the odd one out of the following
A. $\hat{i}+2 \hat{j}+3 \hat{k}$
B. $2 \hat{i}+4 \hat{j}+6 \hat{k}$
C. $7 \hat{i}+14 \hat{j}+21 \hat{k}$
D. $\hat{i}+3 \hat{j}+2 \hat{k}$

Answer: A::B::C

(Watch Video Solution

8. Assertion (A) : $\vec{a}, \vec{b}, \vec{c}$ are the position vector of three collinear points then $2 \vec{a}=\vec{b}+\vec{c}$

Reason (R): Collinear points, have same direction
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true and R is not a correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: A::B::C::D

- Watch Video Solution

9. Find the odd one out of the following
A. matrix multiplication
B. vector cross product
C. Subtraction

D. Matris Addition

Answer: A: D

- Watch Video Solution

Additional Problems Section B 2 Mark

1. If $\vec{a}=3 \hat{i}-2 \hat{j}+\hat{k}$ and $\vec{b}=2 \hat{i}-4 \hat{j}+\hat{k}$ then find $|\vec{a}-2 \vec{b}|$.

- Watch Video Solution

2. Write two different vectors having same magnitude.

- Watch Video Solution

3. Find the scalar and vector components of the vector with initial point
$(2,1)$ and terminal point $(-5,7)$
4. Show that the vectors $2 \hat{i}-3 \hat{j}+4 \hat{k}$ are $-4 \hat{i}+6 \hat{j}-8 \hat{k}$ are collinear.

- Watch Video Solution

5. If $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}$ and $\vec{b}=2 \hat{i}+3 \hat{j}-5 \hat{k}$ then find $a \times b$. Verify that \vec{a} and $\vec{a} \times \vec{b}$ are perpendicular to each other.

- Watch Video Solution

Additional Problems Section C 3 Mark

1. Find the unit vector in the direction of the vector

$$
\vec{a}-2 \vec{b}+3 \vec{c} \quad \text { if } \quad \vec{a}=\hat{i}+\hat{j}, \vec{b}=\hat{j}+\hat{k} \quad \text { and } \quad \vec{c}=\hat{i}+\hat{k}
$$

- Watch Video Solution

2. Find the direction cosines of the vector joining the points $A(1,2,-3)$ and $B(-1,-2,1)$ directed from A to B.

- Watch Video Solution

3. Find $|\vec{x}|$ if for a unit vector $\vec{a},(\vec{x}-\vec{a})(\vec{x}+\vec{a})=12$

- Watch Video Solution

4. Let \vec{a}, \vec{b} and \vec{c} be non-coplanar vectors. Let A, B and C be the points whose position vectors with respect to the origin O are $\vec{a}+2 \vec{b}+3 \vec{c},-2 \vec{a}+3 \vec{b}+5 \vec{c}$ and $7 \vec{a}-\vec{c}$ respectively. Then prove that A, B and C are collinear.

- Watch Video Solution

5. If $A B C D E$ is a pentagon then prove that $\overrightarrow{A B}+\overrightarrow{A E}+\overrightarrow{B C}+\overrightarrow{D C}+\overrightarrow{E D}+\overrightarrow{A C}=3 \overrightarrow{A C}$

- Watch Video Solution

Additional Problems Section D 5 Mark

1. Let $\vec{a}=2 \vec{j}+\vec{j}-2 \vec{k}, \vec{b}=\vec{i}+\vec{j}$. If \vec{c} is a vector such that $\vec{a} \cdot \vec{c}=|\vec{c}|,|\vec{c}-\vec{a}|=2 \sqrt{2}$ and the angle between $\vec{a} \times \vec{b}$ and \vec{c} is 30°. Find the value of $|(\vec{a} \times \vec{b}) \times \vec{c}|$

- Watch Video Solution

2. Prove that the smaller angle between any two diagonals of a cube is $\cos ^{-1} \frac{1}{3}$.

- Watch Video Solution

3. If \vec{a}, \vec{b} and \vec{c} are three vectors such that $|\vec{a}|=3,|\vec{b}|=4$ and $|\vec{c}|=\sqrt{24}$ and sum of any two vectors is orthogonal to the third vector
, then find $|\vec{a}+\vec{b}+\vec{c}|$.

- Watch Video Solution

4. If $|\vec{a}|=|\vec{b}|=|\vec{a}+\vec{b}|=1$ then prove that $|\vec{a}-\vec{b}|=\sqrt{3}$.

- Watch Video Solution

