©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - SURA PHYSICS (TAMIL

ENGLISH)

HEAT AND THERMODYNAMICS

Exercise Questions Multiple Choice Question

1. In hot summer after a both the body 's
A. internal energy decreases
B. internal energy increase
C. heat decreases
D. no change in internal energy and heat

Answer: A

D Watch Video Solution
2. The graph between volume and temperature in Charles'law is
A. an ellipse
B. a circle
C. a straight line
D. a parabola

Answer: C

D Watch Video Solution
3. For hydrogen gas $C_{p}-C_{v}=a$ and for oxygen gas $C_{p}-C_{v}=b$. The relation between a and b is
A. $a=4 b$
B. $a=b$
C. $a=16 b$
D. $a=8 b$

Answer: b

D Watch Video Solution

4. An ideal gas passes from one equllibrium
state $\left(P_{1}, V_{1}, T_{1}, N\right)$ to anoter equilibrium
state $\left(2 P_{1}, 3 V_{1}, T_{2}, N\right)$ Then
A. $T_{1}=T$
B. $T_{1}=\frac{T_{2}}{6}$
C. $T_{1}=6 T_{2}$
D. $T_{1}=3 T_{2}$

Answer: B

D Watch Video Solution
5. When a unifrom rod is heated which of the following quantity of the rod will increase
A. mass
B. weight
C. center of mass
D. moment of inertia

Answer: D

D Watch Video Solution

6. The change in internal energy when a gas is
cooled from $927^{\circ} C$ to $27^{\circ} C$ is
A. 200%
B. 100%
C. 300%
D. 400%

Answer: c

D Watch Video Solution
7. When you exercise in the morning by considering your body as thermodynamic system which of following is true?
A. $\Delta U>0, W>0$
B. $\Delta u<0, W>0$
C. $\Delta u<0, W<0$
D. $\Delta U=0, W>0$

Answer: B

D Watch Video Solution

8. A hot cup of coffee is kept on the table,

After some time is attains a thernal
considering the air molecules in the room as a
thermodynamic system which of the following
is true

> A. $\Delta U>, Q=0$
> B. $\Delta U>0, W<0$
> C. $\Delta U>0, Q>0$
> D. $\Delta=0, Q>0$

Answer: C

D Watch Video Solution
9. Each molecule of a gas has f degrees of
freedom. The ratio $\left(\frac{C_{p}}{C_{v}}\right)=\gamma$ for the gas is
A. $1+(\mathrm{f} / 2)$
B. $1+(1 / f)$
C. $1+(2 / f)$
D. $1+\{(\mathrm{f}-1) / 3\}$

Answer: c
(Watch Video Solution
10. A distant star emits radiation with maximum intensity at 350 nm . The temperature of the star is
A. 8280 k
B. 5000 k
C. 7260 k
D. 9044 k

Answer: A

D Watch Video Solution
11. identify the state variables given here ?
A. $\mathrm{Q}, \mathrm{T}, \mathrm{W}$
B. P, T, U
C. Q , W
D. P, T, Q

Answer: B
12. In an isochoric process we have
A. $W=0$
B. $Q=0$
C. $\Delta U=0$
D. $\Delta T=0$

Answer: A
13. The efficiency of a heat engine working between the freezing point and boiling point of water is
A. 0.0625
B. 0.2
C. 26.8%
D. 12.5%

Answer: C

D Watch Video Solution
14. An Ideal refrigerator has a freezer at temperature $-12^{\circ} C$. The coefficient of performance of the engine is 5 . The temperature of the air (to which the heat ejected) is
A. $50^{\circ} \mathrm{C}$
B. $45.2^{\circ} \mathrm{C}$
C. $40.2^{\circ} \mathrm{C}$
D. $37.5^{\circ} \mathrm{C}$

li Short Answer Question S

1. An object contains more heat -Is it a right statement ? If not why ?

- Watch Video Solution

2. The wavelength of maximum intensity of radiation emitted by a star is 289.8 nm . The
radiation intensity for the star is
(Stefan's constant $=5.67 \times 10^{-8} W^{-2} K^{-4}$, constant $b=2898 \mu m K$).
A. $5.67 \times 10^{8} \mathrm{~W} / \mathrm{m}^{2}$
B. $5.67 \times 10^{12} \mathrm{~W} / \mathrm{m}^{2}$
C. $10.67 \times 10^{7} \mathrm{~W} / \mathrm{m}^{2}$
D. $10.67 \times 10^{14} \mathrm{~W} / \mathrm{m}^{2}$

Answer: A

D Watch Video Solution
3. Define one mole.

D Watch Video Solution

4. What do you mean by open, closed and
isolated systems ? Give an example for each
system.

D Watch Video Solution

5. Define molar specific heat capacity .

6. What is thermal expansion ?

D Watch Video Solution

7. Give the expressions for linear, area and volume thermal expansions.

- Watch Video Solution

8. Define latent heat capacity. Give its unit

9. State Stefan-Boltzmann law.

- Watch Video Solution

10. What is Wien's law?

D Watch Video Solution
11. The unit of thermal conductivity is
A. $W m^{-1} K^{-1}$
B. $J m K^{-1}$
C. $J m^{-1} K^{-1}$
D. $W m K^{-1}$

Answer: A

- Watch Video Solution

12. What is black body ?
13. What is thermodynamic system ? Give example

D Watch Video Solution

14. Whatere the different types of thermodynamic systems ?

D Watch Video Solution

15. What is meant by thermal equilibrium ?
16. What is meant by state variable ? Give example

- Watch Video Solution

17. What are intensive and extensive variables
? Give examples.

- Watch Video Solution

18. What is an equation of state ? Give an example

- Watch Video Solution

19. State Zeroth law of thermodynamic .

D Watch Video Solution

20. Define the internal energy of the system

D Watch Video Solution
21. Are internal energy and heat energy the same? Exaplain .

(Watch Video Solution

22. Define one calorie.

D Watch Video Solution
23. What are the types of Thermodynamic properties?

- Watch Video Solution

24. Define High grade energy. Give some of the examples of High grade energy.

- Watch Video Solution

25. Can we measure the temperature of the object by touching it ?

D Watch Video Solution
26. Give the sign convention for Q and W.

D Watch Video Solution

27. Define Low grade energy. Give some of the examples of Low grade energy.

- Watch Video Solution

28. Give the expression for work done by the gas.

D Watch Video Solution

29. What is PV diagram ?

- Watch Video Solution

30. What are the types of comfort air

conditioning ?

D Watch Video Solution
31. Give the equation of state for an isothermal process.

D Watch Video Solution
32. Define thermodynamic efficiency.
33. Express the change in internal energy in terms of molar specific heat capacity .

- Watch Video Solution

34. A Carnot engine working between 400 K and 800 K has work output of 1000 J per cycle.

What is amount of heat energy supplied to
the engine from source per cycle.
A. $2800 \mathrm{~J} /$ cycle
B. $2350 \mathrm{~J} / \mathrm{cycle}$
C. 2000 J/cycle
D. 2950 J/cycle

Answer: C

D Watch Video Solution
35. Give the equation of state for an adiabatic process.
36. The mass of a helium atom is 6.66×10^{-27}
kg. Compute the specific heat at constant volume for helium gas (in J/kg.K) from the molar heat capacity at constant volume.

D Watch Video Solution

37. If the piston of a container is pushed fast inward .Will the ideal gas equation be valid in the intermediate stage ? If not, Why ?

- Watch Video Solution

38. Calculate the total rotational kinetic energy of all the molecules in one mole of air at $25^{\circ} \mathrm{C}$.

- Watch Video Solution

39. What is a cyclic process ?
40. What is meant by reversible and irreversible processes ?

D Watch Video Solution

41. State Clausius form of the second law of
thermodynamics.

- Watch Video Solution

42. State Kelvin- Planck statement of second law of thermodynamics.

D Watch Video Solution
43. Define heat engine .

- Watch Video Solution

44. Work done by 0.1 mole of a gas at $27^{\circ} \mathrm{C}$ to
double its volume at constant pressure is
$(\mathrm{R}=2 \mathrm{cal} / \mathrm{mol} / \mathrm{K})$
A. 54 cal
B. 600 cal
C. 60 cal
D. 546 cal

Answer: C

- Watch Video Solution

45. Can the given heat energy be completely converted to work in a cyclic process? If not , when can the heat can completely converted to work?

- Watch Video Solution

46. State the second law of thermodynamics in
therms of entropy.
47. Why does heat flow from a hot object to a cold object?

- Watch Video Solution

48. Calculate the internal energy of 1 mole of an ideal gas at 250 C.

- Watch Video Solution

1. The ratio of $\frac{C_{p}}{C_{v}}=\gamma$ for a gas. It's molecular weight is M. It's specific heat capacity at constant pressure is

$$
\begin{aligned}
& \text { A. } \frac{R}{\gamma-1} \\
& \text { B. } \frac{\gamma R}{\gamma-1} \\
& \text { C. } \frac{\gamma R}{M(\gamma-1)} \\
& \text { D. } \frac{\gamma R M}{\gamma-1}
\end{aligned}
$$

Answer: c

2. The ratio of $\frac{C_{p}}{C_{v}}=\gamma$ for a gas. It's molecular weight is M. It's specific heat capacity at constant volume is

$$
\begin{aligned}
& \text { A. } \frac{R}{M(\gamma-1)} \\
& \text { B. } \frac{\gamma R}{\gamma-1} \\
& \text { C. } \frac{\gamma R}{M(\gamma-1)} \\
& \text { D. } \frac{\gamma R M}{\gamma-1}
\end{aligned}
$$

Answer: a

D Watch Video Solution

3. Differentiate between isothermal and adiabatic process.

- Watch Video Solution

4. A gas expands from 1 liter to 3 liter at atmospheric pressure. The work done by a gas
is about
A. 200 J
B. 2 J

C. 300 J

D. $2 \times 10^{5} \mathrm{~J}$

Answer: a

D Watch Video Solution

5. A centigrade and a Fahrenheit thermometer are dipped in boiling water. The water temperature is lowered until the Fahrenheit thermometer registered at $140^{\circ} \mathrm{F}$. What is the
fall in temperature as registered by the centigrade thermometer?
A. 80°
B. 60°
C. 40°
D. 30°

Answer: c
(Watch Video Solution

6. Discuss various modes of heat transfer.

D Watch Video Solution

7. The temperature of a body on Kelvin scale is
found to be $x^{\circ} K$. When it is measured by

Fahrenheit thermometer, it is found to be $x^{\circ} F$
. Then the value of x is
A. 313
B. 301.24
C. 574.25
D. 40

Answer: c

D Watch Video Solution

8. The temperature on Celsius scale is $25^{\circ} C$.

What is the corresponding temperature on
the Fahrenheit scale?
A. $40^{\circ} F$
B. $45^{\circ} F$
C. $50^{\circ} \mathrm{F}$
D. $77^{\circ} F$

Answer: d

D Watch Video Solution

9. One mole of an ideal gas with $\gamma=1.4$, is adiabatically compressed so that its temperature rises from $42^{\circ} \mathrm{C}$ to $48^{\circ} \mathrm{C}$. The
change in the internal energy of the gas is $(R=$ $8.3 \mathrm{~J} / \mathrm{mol} / \mathrm{K}$)
A. 124.65 J
B. 138.46 J
C. 156.32 J
D. 189.65 J

Answer: A

D Watch Video Solution

10. Express a temperature of $60^{\circ} \mathrm{F}$ in degree

Celsius and in Kelvin scale.

D Watch Video Solution
11. The temperature of an iron piece is heated from $30^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$. What is the change in it's temperature on the Fahrenheit scale?

D Watch Video Solution

12. The temperature of a substance increases
by $27^{\circ} \mathrm{C}$. What is the value of this increase in
Kelvin scale?
A. $300 K$
B. $46 K$
C. 7K
D. 27 K

Answer: d

D Watch Video Solution
13. A measured temperature on Fahrenheit scale is $200^{\circ} \mathrm{F}$. What will this reading be on

Celsius scale ?
A. $40^{\circ} \mathrm{C}$
B. $94^{\circ} \mathrm{C}$
C. $93.3^{\circ} \mathrm{C}$
D. $30^{\circ} \mathrm{C}$

Answer: c

D Watch Video Solution
14. What is the temperature on Fahrenheit scale corresponding to $30^{\circ} \mathrm{C}$?
A. $86^{\circ} F$
B. $52^{\circ} F$
C. $62^{\circ} F$
D. $72^{\circ} F$

Answer: a

D Watch Video Solution
15. The triple point of carbon dioxide is $216.55 K$. The corresponding temperature on the Celsius and Fahrenheit scale respectively are

$$
\text { A. } 56.45^{\circ} C,-69.61^{\circ} F
$$

B. $-56.45^{\circ} C, 69.61^{\circ} F$
C. $54.45^{\circ} \mathrm{C}, 69.61^{\circ} \mathrm{F}$
D. $-56.45^{\circ} \mathrm{C},-69.61^{\circ} \mathrm{F}$

Answer: d
16. The triple point of neon and carbon dioxide are 24.57 K and 216.55 K respectively. Express
the temperature on the Celsius and
Fahrenheit scales respectively.

D Watch Video Solution

17. A diatomic gas initially at $30^{\circ} \mathrm{C}$ is compressed adiabatically to one- eighth of its original volume. The temperature after compression will be
A. $586 K$
B. $646 K$
C. $696 K$
D. $776 K$

Answer: C

D Watch Video Solution
18. Represent freezing and boiling
temperature of water in Celsius as well as in

Kelvin scales.
19. A diatomic gas initially at $18^{\circ} \mathrm{C}$ is compressed adiabatically to one eighth of its original volume. The temperature after compression will be
A. $395.4^{\circ} \mathrm{C}$
B. $144^{\circ} \mathrm{C}$
C. $18^{\circ} \mathrm{C}$
D. $887.4^{\circ} \mathrm{C}$

Answer: a

D Watch Video Solution

20. Convert $-40^{\circ} F$ into Celsius and Kelvin scale.

D Watch Video Solution

21. The temperature on Fahrenheit scale
corresponding to $200^{\circ} \mathrm{C}$ is
A. $318^{\circ} \mathrm{F}$
B. $336^{\circ} F$
C. $377^{\circ} \mathrm{F}$
D. $392^{\circ} \mathrm{F}$

Answer: d

D Watch Video Solution

22. A Carnot engine working between 300 K and 600 K has an output of $800 \mathrm{~J} / \mathrm{cycle}$. What
is the amount of heat energy supplied to the engine from source per cycle.
A. 1800 J / cycle
B. 1000 J / cycle
C. 2000 J / cycle
D. 1600 J / cycle

Answer: d
(Watch Video Solution
23. The temperature on Celsius scale corresponding to $280^{\circ} \mathrm{F}$ is
A. $140.85^{\circ} C$
B. $99.38^{\circ} \mathrm{C}$
C. $120.65^{\circ} \mathrm{C}$
D. $137.78^{\circ} \mathrm{C}$

Answer: d
(Watch Video Solution
24. In thermodynamic process, pressure of a
fixed mass of a gas is changes in such a manner that the gas molecules gives out 20 J of heat and 10 J of work is done in the gas. If the initial internal energy of the gas was 40 J , then the final internal energy will be
A. 30 J
B. 20 J
C. 60 J
D. 40 J

Answer: a

- Watch Video Solution

Iv Numerical Problems

1. Calculate the number of moles of air is in
the inflated ballon at room temperature as
shown in the figure

The radius of the ballon is 10 cm and pressure inside the balloon is 180 kPa .
2. In the planet Mars the average temperature is around $-53^{\circ} \mathrm{C}$ and atmospheric pressure is 0.7 kPa . Calculate the number of moles of the molecules inunit volume in the planet Mars.

- Watch Video Solution

3. If for a gas $\left(C_{p} / C_{v}\right)=1.67$, this gas is made up to molecules which are
A. diatomic
B. polyatomic
C. monoatomic
D. mixture of diatomic and polyatomic

Answer: c

D Watch Video Solution

4. The temperature of uniform rod of length L
having a coefficient of linear expansion α_{L} is
changed by ΔT. Calculate the new moment of
inertia of the uniform rod about axis passing through its center and perpendicular to an axis of the rod.

D Watch Video Solution

5. An ideal gas with pressure P, volume V and temperature T is expanded isothermally to a
volume $2 V$ and a final pressure P_{i}. If the same gas is expanded adiabatically to a volume $2 V$, the final pressure is P_{a}. The ratio of the
specific heats of the gas is 1.67 . The ratio of $\frac{P_{a}}{P_{i}}$ is

D Watch Video Solution

6. A man starts bicycling in the morning at a temperature around $25^{\circ} \mathrm{C}$ he checked the pressure of tire which is equal to be 500 Kpa .

Afternoon he found that the absolute pressure in the tyre is increased to 520 Kpa . By assuming the expansion of tyre is negligible what is the temperature of type at afternoon?
7. Normal human body of the temperature is $98.6^{\circ} \mathrm{F}$. During high fever if the temperature increases to $104^{\circ} \mathrm{F}$ what is the change in peak wavelength that emitted by our body ?
(Assume human body is a black body)

D Watch Video Solution

8. In an adiabatic expansion of the air the volume is increased by 4% what is
pereentage change in pressure ? (For air $\mathrm{y}=$ 1.4)

D Watch Video Solution

9. In a petrol engine (internal combustion engine) air at atmospheric pressure and temperature of $20^{\circ} C$ is compressed in the cylinder by the piston to $1 / 8$ of its original volume . Calculate the termperature of the compressed air .
10. Consider the following cyclic process consist of isotherm isochoric and isobar which is given in the figure .

Draw the same cyclic process qualitatively in the V-T diagram wherew T is taken along X direction and V is taken along y -direction .

Analyze the nature of heat exchange in each process.

Process 1 to 2= increase in volume . so heat
must be added.

Process 2 to $3=$ volume remains constant increase in temperature. The given heat is used to increase the internal energy .

Process 3 to 1 : Pressure remains constant.
volume and Temperature are reduct . Heat
flows out of the system. It is an isobaric compression where the work is done on the system.
11. An ideal gas is taken in a cyclic process as
shown in the figure. Calculate
(a) work done by the gas
(b) work done on the gas
(c) Network done in the process

D View Text Solution
12. For a given ideal gas 6×10^{5} J heat energy
is supplied and the volume of gas is increased
from $4 m^{3}$ to $6 m^{3}$ at atmospheric pressure .
Calculate (a) the work done by the gas (b)

Change in internal energy of the gas
(c) graph this process in PV and TV diagram

D Watch Video Solution

13. Suppose a person wants to increase the efficient of the reversible heat engine that is operating between $100^{\circ} \mathrm{C}$ and $300^{\circ} \mathrm{C}$

He had two ways to increase the efficiency .
(a) By decreasing the cold reservoir
temperature from $100^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ and
keeping the hot reservoir temperature of the
hot reservoir from $300^{\circ} \mathrm{C}$ to $350^{\circ} \mathrm{C}$ by
keeping the cold reservoir temperature constnat which is the suitable method?

D Watch Video Solution

14. A Carnot engine whose efficiency is 45% takes heat from a source maintained at a temperature of $327^{\circ} \mathrm{C}$. To have an engine of efficiency 60% what must be the intake
temperature for the same exhaust (sink) temperature

D Watch Video Solution
15. An ideal refrigerator keeps its content at
$0^{\circ} C$ while the room temperature is $27^{\circ} C$
.Calculate its coefficient of performance.

- Watch Video Solution

16. The molar specific heats of an ideal gas at a constant pressure \& volume are denoted by
$C_{P} \& C_{v}$ if $r=\frac{C_{p}}{C_{v}} \& \mathrm{R}$ the universal gases constant then C_{v} is equal
A. $\frac{1+r}{1-r}$
B. $\frac{R}{(1-r)}$
C. $\frac{r-1}{R}$
D. $r R$

Answer: B

Additional Questions Multiple Choice Qustion

1. Steam at $100^{\circ} \mathrm{C}$ is passed into 20 g of water at 10^{C} when water acquires temp of $80^{\circ} \mathrm{C}$ the mass of water present will be (take specifies
heat of water $1 \mathrm{cal} g^{1} c^{-1} \&$ latent heat of
steam $=540 \mathrm{cal}^{-1} c^{-1}$
A. $42.5 g$
B. $22.5 g$
C. $24 g$
D. $31.5 g$

Answer: B

D Watch Video Solution

2. The value of coefficient of volume expansion of gycerine is $5 \times 10^{-4} k^{-1}$ fractional change in the density of gycerine for a rise of $40^{\circ} \mathrm{C}$ in its temps is
A. 0.020
B. 0.025
C. 0.010
D. 0.015

Answer: A

D Watch Video Solution
3. Two metal wires of identical dimensions are connected in series if σ_{1} and σ_{2} are the
conductivity of the metal wire respectively the effiective conductivity of the combination is

$$
\begin{aligned}
& \text { A. } \frac{\sigma_{1}+\sigma_{2}}{2 \sigma_{1} \sigma_{2}} \\
& \text { B. } \frac{\sigma_{1}+\sigma_{2}}{\sigma_{1} \sigma_{2}} \\
& \text { C. } \frac{\sigma_{1} \sigma_{2}}{\left(\sigma_{1}+\sigma_{2}\right)} \\
& \text { D. } \frac{2 \sigma_{1} \sigma_{2}}{\sigma_{1}+\sigma_{2}}
\end{aligned}
$$

Answer: B

D Watch Video Solution

4. Coefficient of linear expansion of brass and steel rods are σ_{1} and σ_{2} length of brass and
steel rods are $l_{1} \& l_{2}$ if $\left(l_{2}-l_{1}\right)$ is maintained same at all temperature which one of the following relation hold good ?

$$
\begin{aligned}
& \text { A. } \alpha_{2}^{1} l_{2}=\alpha_{2}^{2} l_{1} \\
& \text { B. } \alpha_{1} l_{1}=\alpha_{2} l_{2} \\
& \text { C. } \alpha_{1} l_{2}=\alpha_{2} l_{1} \\
& \text { D. } \alpha_{1} l_{2}^{2}=\alpha_{2} l_{1}^{2}
\end{aligned}
$$

- Watch Video Solution

5. A black body is continously radiating energy
at a temperature of 2880 k if U_{1}, U_{2} and U_{3} are the amount of radiation measured between the wavelength 599 \& $600 \mathrm{~nm}, 999$ \& 1000 nm \& 1499 \& 1500 nm respectively then (wires constant $\mathrm{b}=2.88 \times 10^{26} \mathrm{kmk}$)
A. $U_{2}<U_{3}$
B. $U_{1}=U_{2}=U_{3}$
C. $U_{1}<U_{2}<U_{3}$

D. $U_{2}>U_{1}>U_{3}$

Answer: A

D Watch Video Solution

6. Aluminium has specific heat capacity of
A. $450 \mathrm{Jkg}^{-1} .{ }^{\circ} \mathrm{C}^{-1}$
B. $900 \mathrm{Jkg}^{-1} .{ }^{\circ} \mathrm{C}^{-1}$
C. $1350 \mathrm{Jkg}^{-1} .{ }^{\circ} \mathrm{C}^{-1}$
D. $1800 \mathrm{Jkg}^{-1} .{ }^{\circ} \mathrm{C}^{-1}$

Answer: B

D Watch Video Solution

7. Internal energy comprises of two types of energies those are
A. mechanical and electrical energy
B. magnetic and electrical energy
C. kinetic and potential energy
D. kinetic and magnetic energy

Answer: C

- Watch Video Solution

8. A sample of 0.1 g of water at $100^{\circ} \mathrm{C}$ and normal pressure $\quad\left(1.013 \times 10^{5} \mathrm{Nm}^{-2}\right)$
requires 54 cal of heat energy to convert to
steam at $100^{\circ} \mathrm{C}$. If the volume of the steam produced is 167.1 cc , the change in internal energy of the sample is
A. 104.3 J
B. 208.7 J
C. 42.2 J
D. 84.5 J

Answer: b

D Watch Video Solution

9. Amount of energy required to change liquid
to gas and vice versa without any change in
temperature is termed as
A. Latent Heat and Fusion
B. Latent Heat of Vaporisation
C. Heat capacity
D. Specific heat capacity

Answer: B

- Watch Video Solution

10. The internal energy change in a system
that has absorbed 2 kcal of heat and done 500
J of work is
A. 6400 J
B. 5400 J
C. 7900 J
D. 8900 J

Answer: c

D Watch Video Solution

11. 110 J of heat is added to a gaseous system whose internal energy is 40 J . Then the amount of external work done is
A. 150 J
B. 70 J
C. 110 J
D. 40 J

Answer: b

- Watch Video Solution

12. Mercury has boiling point of
A. $157^{\circ} C$
B. $167^{\circ} C$
C. $357^{\circ} \mathrm{C}$
D. $457^{\circ} \mathrm{C}$

Answer: C

- Watch Video Solution

13. If c_{p} and c_{v} denotes specific heats per unit mass of an ideal gas of molecular weight M, then

$$
\begin{aligned}
& \text { A. } c_{p}-c_{v}=R / M^{2} \\
& \text { B. } c_{p}-c_{v}=R \\
& \text { C. } c_{p}-c_{v}=R / M \\
& \text { D. } c_{p}-c_{v}=M R
\end{aligned}
$$

Answer: c

- Watch Video Solution

14. One mole of an ideal gas requires $207 J$ heat to rise the temperature by $10 K$ when heated at constant pressure. If the same gas is
heated at constant volume to raise the temperature by the same $10 K$, the heat required is
(Given the gas constant, $\mathrm{R}=8.3 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$).
A. 198.7 J
B. 29 J
C. 215.3 J
D. 124 J

Answer: d

15. Bolye's law states that
A. $P \times V=$ constant
B. $\frac{P}{V}=$ constant
C. $P \times V^{2}=$ constant
D. $\frac{P}{V^{2}}=$ constant

Answer: A
16. When an ideal diatomic gas is heated at constant pressure the fraction of the heat energy applied which increases the internal energy of gas is

> A. $\frac{2}{5}$
> B. $\frac{3}{5}$
> C. $\frac{3}{7}$
> D. $\frac{5}{7}$

Answer: D

17. A cylinder contains hydrogen gas at pressure of 249 kPa and temperature $27^{\circ} \mathrm{C}$. It's density is
(Given, $R=8.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$)
A. $0.5 \mathrm{~kg} / \mathrm{m}^{3}$
B. $0.2 \mathrm{~kg} / \mathrm{m}^{3}$
C. $0.1 \mathrm{~kg} / \mathrm{m}^{3}$
D. $0.02 \mathrm{~kg} / \mathrm{m}^{3}$

Answer: b

D Watch Video Solution

18. In a thermodynamic process, pressure of a
fixed mass of a gas is changed in such a manner that the gas releases 20 J of heat and
$8 J$ of work is done on the gas. If the initial
internal energy of the gas was 30 J , what will
be the final internal energy?
A. 42 J
B. $12 J$
C. 10 J
D. 18 J

Answer: d

D Watch Video Solution

19. 1 mole of a gas with $\gamma=\frac{7}{5}$ is mixed with 1 mole of gas with $\gamma=\frac{5}{3}$, then value of γ of the resulting mixture is
A. $\frac{7}{5}$
B. $\frac{2}{5}$
C. $\frac{3}{2}$
D. $\frac{12}{7}$

Answer: C

D Watch Video Solution

20. A gaseous mixture consists of 16 g of helium and 16 g of oxygen the ratio of two specific heats of the mixture is
A. 1.4
B. 1.54
C. 1.59
D. 1.62

Answer: D

D Watch Video Solution
21. One kg of a diatomic gas is at a pressure of $8 \times 10^{4} \mathrm{Nm}^{-2}$ the density of the gas if
$4 \mathrm{~kg} / \mathrm{m}^{g}$.What is the energy of the gas due to
its thermal mole

A. $3 \times 10^{4} J$
B. $5 \times 10^{4} J$
C. $6 \times 10^{4} J$
D. $7 \times 10^{4} J$

Answer: B
(Watch Video Solution
22. The work fo 146 kJ is performed in order to
compress me kilomole of a gas adiabatically
and in this process the temperature of gas
increases by $7{ }^{\circ} C$ the gases
A. a mixture of monoatomic and
diamotomic
B. monoatomic
C. diatomic
D. triatomic

Answer: C

D Watch Video Solution

23. At boyle's temperature
A. Joule effect is positive
B. Vanderwaal's equation is zero
C. gas obeys Boyle's law
D. none of the above

Answer: C
24. The equation of state for 5 g of oxygen at a pressure P and temeprature T , when occupying a volume V , will be

$$
\begin{aligned}
& \text { A. } P V=\left(\frac{5}{32}\right) R T \\
& \text { B. } P V=5 R T \\
& \text { C. } P V=\left(\frac{5}{2}\right) R T \\
& \text { D. } P V=\left(\frac{5}{16}\right) R T
\end{aligned}
$$

25. Surface of the lake is at $2^{\circ} \mathrm{C}$ and depth of
the lake is 20 m find the temperature of the bottom of the lake
A. $2^{\circ} C$
B. $3^{\circ} \mathrm{C}$
C. $4^{\circ} \mathrm{C}$
D. none of the above
26. One mole of an ideal monoatomic gas undergoes a process described by the equation $P V^{3}=$ constant. The heat capacity of the gas during this process is
A. $\frac{3}{2} R$
B. $\frac{5}{2} R$
C. $2 R$
D. R

Answer: d

D Watch Video Solution

27. A mono atomic gas is suddenly compressed
to $\left(\frac{1}{8}\right)^{t h}$ of its initial volume adiabatically
the ratio of its final pressure to the initial
pressure is (Given : the ratio of the specific heats of the given gas to be $5 / 3$)
A. 32
B. $\frac{40}{3}$
C. $\frac{24}{5}$
D. 8

Answer: A

D Watch Video Solution

28. The termeprature of a given is increased from $27^{\circ} C$ to $327^{\circ} C$ the rms velocity of the molecules increases
A. $\sqrt{2}$ times

B. 2 times

C. $2 \sqrt{2}$ times
D. 4 times

Answer: A

- Watch Video Solution

29. A monatomic gas at a pressure P, having a volume V expands isothermally to a volume 2 V and then adiabatically to a volume 16 V . The
final pressure of the gas is
(Take $\gamma=\frac{5}{3}$)
A. $64 P$
B. $32 P$
C. $P / 64$
D. $16 P$

Answer: c
(Watch Video Solution
30. The mean kinetic energy of one mole of gas per degree of freedom (on basis of kinetic theory of gases) is

> A. $\frac{1}{2} K T$
> B. $\frac{3}{2} K T$
> C. $\frac{3}{2} R T$
> D. $\frac{1}{2} R T$

Answer: D

D Watch Video Solution
31. First law of thermodynamics corresponds to
A. conservation of energy
B. heat flow from hotter to cooler body
C. law of conservation of angular

momentum

D. Newton's law of cooling

Answer: A
32. During an adiabatic expansion of 2 moles
of a gas, the change in internal energy was
found -50 J . The work done during the process is
A. zero
B. 100
C. -50
D. 50
33. An ideal gas at a pressures of 1 atmosphere and temperature of $27^{\circ} \mathrm{C}$ is compressed adiabatically until its pressure becomes 8
times the initial pressure. Then, the final temperature is
(Take, $\gamma=3 / 2$).
A. $627^{\circ} \mathrm{C}$
B. $527^{\circ} \mathrm{C}$
C. $427^{\circ} \mathrm{C}$
D. $327^{\circ} \mathrm{C}$

Answer: d

D Watch Video Solution

34. In an adiabatic process the state of a gas is
changed from $\quad P_{1}, V_{1}, T_{1}, \rightarrow P_{2}, V_{2}, T_{2}$.
Which of the following relation is correct ?

$$
\begin{aligned}
& \text { A. } T_{1} V_{1}^{\gamma-1}=T_{2} V_{2}^{\gamma-1} \\
& \text { B. } P_{1} V_{1}^{\gamma-1}=P_{2} V_{2}^{\gamma-1}
\end{aligned}
$$

$$
\text { C. } T_{1} P_{1}^{\gamma}=T_{2} P_{2}^{\gamma}
$$

D. $T_{1} V_{1}^{\gamma}=T_{2} V_{2}^{\gamma}$

Answer: A

D Watch Video Solution

35. Universal gas constant is
A. C_{p} / C_{r}
B. $C_{p}-C_{v}$
C. $C_{p}+C_{r}$
D. $\frac{C_{v}}{C_{p}}$

Answer: B

D Watch Video Solution

36. A gas is suddenly compressed to $1 / 4$ th of
its original volume at normal temperature. The
increase in its temperature is
(Take, $\gamma=1.5$).
A. 273 K
B. 573 K
C. 373 K
D. 473 K

Answer: a

D Watch Video Solution

37. In a thermodynamic process, pressure of a fixed mass of a gas is changed in such a manner that the gas releases 30 J of heat and $10 J$ of work is done on the gas. If the initial
internal energy of the gas was 30 J , then the
final internal energy will be
A. 2 J
B. -18 J
C. 10 J
D. 58 J

Answer: c
(Watch Video Solution

38. In an isothermal process

A. there is no change in internal energy
B. there is no change in temperature
C. there is no change in enthalpy
D. all the above

Answer: D
39. A process in which the temperature of working substance reamains constant during
its expansion or compression
A. isothermal
B. adiabatic
C. isobaric
D. isochoric

Answer: A

D Watch Video Solution
40. A gas for which $\gamma=1.5$ is suddenly compressed to $1 / 4$ th of the initial volume.

Then the ratio of the final to the initial pressure is
A. 1:16
B. 1:8
C. 1:4
D. 8:1

Answer: d
41. The specific heat of water is
A. 1.817
B. 2512
C. 4.187
D. none

Answer: C
42. The sum of internal energy (u) and the product of pressure and volume (P.V) is
A. enthalpy
B. work done
C. entropy
D. none

Answer: A
(Watch Video Solution
43. An ideal gas is expanded adiabatically at an
initial temperature of 300 K , so that it's
volume is doubled. The final temperature of
the hydrogen gas is
(Take, $\gamma=1.40$).
A. 227.36 K
B. 500.30 K
C. 454.76 K
D. $-47^{\circ} \mathrm{C}$
44. Helium at $27^{\circ} \mathrm{C}$ has a volume of 8 litres. It is
suddenly compressed to a volume of 1 litre.
The temperature of the gas will be
[Take, $\gamma=5 / 3]$.
A. $108^{\circ} \mathrm{C}$
B. $9327^{\circ} \mathrm{C}$
C. $1200^{\circ} \mathrm{C}$
D. $927^{\circ} \mathrm{C}$

Answer: d

- Watch Video Solution

li Match The Following

1. Temperature determine the of flow of
heat.
A. direction
B. force
C. velocity

D. line

Answer: A

- Watch Video Solution

lii Fill In The Blacnks

1. At normal temperature, one mole of
diatomic gas is compressed adiabatically to
half of its volume. Where, $\gamma=1.41$. The final
temperature of the gas will be
A. 983.02 K
B. 678.4 K
C. 363.1 K
D. 767.4 K

Answer: c

D Watch Video Solution

2. A gas is suddenly compressed to $1 / 4$ th of its original volume. What is the rise in the
temperature, if the original temperature of the gas being at $27^{\circ} \mathrm{C}$ and $\gamma=1.5$?
A. 327 K
B. 300 K
C. 400 K
D. 450 K

Answer: B

D Watch Video Solution
A. ideal

B. normal

C. unique

D. anomalous

Answer: D

4. The amount of heat energy required to increase the object temperature by $1^{\circ} C$ is called _____ •
A. Specific heat capacity
B. Heat capacity
C. Latent heat capacity
D. Molar specific heat capacity

Answer: B

D Watch Video Solution

5. The temperature on Celsius scale is found to

be $400^{\circ} \mathrm{C}$. The corresponding temperature on the Fahrenheit scale is
A. $368^{\circ} \mathrm{F}$
B. $896^{\circ} \mathrm{F}$
C. $752^{\circ} \mathrm{F}$
D. $584{ }^{\circ} \mathrm{F}$

Answer: c

D Watch Video Solution
6. The measurement of the amount of heat energy released or abosrbed by a thermodynamic system during the heating process is called \qquad
A. Heat capacity
B. Enthalpy
C. Entropy
D. Calorimetry

Answer: D

7. ____ is the sum of kinetic and potential
energies of molecules in a thermodynamic
system.
A. Potential energy
B. Elastic energy
C. Internal energy
D. External energy

Answer: C
8. A ____ process is an infinitely slow process
in which the system is always at equilibrium
with the surrounding .
A. thermal
B. quasi- static
C. quasi- dynamic
D. quadratic

- Watch Video Solution

9. ___ converted mechanical energy in to
internal energy of the system.
A. Joule
B. Calorie
C. Kelvin
D. Planck

Answer: A

- Watch Video Solution

10. In an Isochoric process is constant
A. Pressure
B. volume
C. temperature
D. energy

Answer: B

- Watch Video Solution

11. All natural processes are
A. Reversible
B. Ideal
C. Irreversible
D. Not Ideal

Answer: C
(Watch Video Solution
12. CHOOSE THE ODD ONE OUT:
A. heat
B. temperature
C. hotness
D. coldness

Answer: A

- Watch Video Solution

Iv Choose The Odd One Out

1. CHOOSE THE ODD ONE OUT:

A. μ
B. σ
C. $\lambda_{\text {max }}$
D. K

Answer: d

2. CHOOSE THE ODD ONE OUT:

A. Melting point
B. Boiling point
C. Sublimation

D. Oxidation

Answer: d
3. An engine is supposed to operate between two reservoirs at temperature $727^{\circ} \mathrm{C}$ and
$227^{\circ} \mathrm{C}$. The maximum possible efficiency of such an engine is

> A. $\frac{3}{4}$
> B. $\frac{1}{4}$
> C. $\frac{1}{2}$
> D. 1

Answer: c

V Choose The Correct Pair

1. An ideal refrigerator has a freezer at a temperature of $-13^{\circ} \mathrm{C}$. The coefficient of performance of the engine is 5. The temperature of the air to which heat is rejected will be
A. $325^{\circ} \mathrm{C}$
B. $39^{\circ} \mathrm{C}$

C. $330^{\circ} \mathrm{C}$

D. $320^{\circ} \mathrm{C}$

Answer: b

D Watch Video Solution

V I Choose The Incorrect Pair

1. For which combination of working temperatures the efficiency of Carnot's engine
is highest.
A. $80 \mathrm{~K}, 60 \mathrm{~K}$
B. $100 \mathrm{~K}, 80 \mathrm{~K}$
C. $60 \mathrm{~K}, 40 \mathrm{~K}$
D. $40 \mathrm{~K}, 20 \mathrm{~K}$

Answer: d

D Watch Video Solution
2. Choose the incorrect pair :
A. Isobaric process - Cooking
B. Adiabatic process - water droplets
forming cloud
C. Open thermodynamic

System - Erthern pot system

D. Isothermal process -T \neq constant

Answer: D

- View Text Solution

3. Assertion :When camphor is burnt it
vapourises during heating that is solid is
converted into gas in this case. This is called sublimation.

Reason.calorimetry means the meansurement of the amount of heat released or absorbed by
thhermodynamic system during the heating process : It can be expressed as $Q_{\text {gain }}=Q_{\text {loss }}$
A. Assertion and Reason are correct and

Reason is correct explanation of
B. Assertion and Reason are true but Reason is the false explanation of the

assertion

C. Assertionis true gut reason is false
D. Assertion is false but Reason is true .

Answer: B

D View Text Solution

V li Assertion Reason

1. Assertion : The process in which heat transfer is by actual movement of molecules in
fluids such as liquids and gases is called conduction .

Reason : Newton's law of cooling states that rate of loss of heat of a body is directly propositional to the difference in the temperature between that body and its surrounding .
i.e. $\frac{d \theta}{d t} \propto^{-}\left(T-T_{s}\right)$
2. (i) Heat transfers in three different modes:
(ii) The ideal gas law is $\mathrm{PV}=\mathrm{RT}$
which one is correct statement ?
A. 1 only
B. II only
C. both are correct
D. None

Answer: A

1. (I) Tendency of an object ot change its shape
area and volume is called thermal expansion
(ii) All natural process are reversible
which one is incorrect statement ?
A. 1 only
B. II only
C. both are correct
D. None

Answer: B

D Watch Video Solution

2. (I) A Refrigerator is a reverse of carnot engine.
(ii) Carnot engine has the lowest efficiency

Which one is correct statement ?
A. 1 only
B. II only
C. bot

Answer: A

D View Text Solution

3. (I) In a cyclie process change in internal energyy is zero
(ii) $C_{V}>C_{p}$
which one is incorrect statement?
A. 1 only

B. II only

C. both are correct
D. None

Answer: B

D View Text Solution
4. What is Thermodynamic ?

- Watch Video Solution

Very Short Answer Question

1. What is meant by heating ?

D Watch Video Solution
2. What is heat?
(D) Watch Video Solution
3. What is meaning of temperature?
4. Define the avogadro's number :

- Watch Video Solution

5. Define heat capacity .

- Watch Video Solution

6. What is Latent heat of fusion ?

7. What is meant by latent heat of vaporization

- Watch Video Solution

8. What is latent heat of sublimation?

- Watch Video Solution

9. A Carnot engine takes 3×10^{6} cal of heat
from a reservoir at $627^{\circ} \mathrm{C}$, and gives to a sink at $27^{\circ} \mathrm{C}$. The work done by the engine is
A. $4.2 \times 10^{6} \mathrm{~J}$
B. 16.8×10^{6} J
C. 8.4×10^{6} J
D. zero

Answer: c

D Watch Video Solution
10. What is steady state?

D Watch Video Solution

11. state prevost theory of heat exchnage .

D Watch Video Solution
12. Define Emissivity.

13. What is Thermodynamics?

D Watch Video Solution

14. Write the property of temperature .

D Watch Video Solution
15. Define specific heat capacity at constant prossure .
16. Define specific heat capacity at constant volume.

- Watch Video Solution

17. Define molar specific heat capacities.

- Watch Video Solution

18. What is relegation?

D Watch Video Solution

19. What is subblimation ?

D Watch Video Solution

20. Is it possible that there is change in temperature of a body without giving / taking heat to from it ?

D Watch Video Solution

21. What is principle of calorimetry ?

D Watch Video Solution

22. Can water be boiled without heating ?

D Watch Video Solution

23. As air is a bad conductor of heat why do we not feel warm without clothes?
24. Why is hotter at the same distance over the top of a fire than in front of it ?

- Watch Video Solution

25. A gas expands 0.5 L against a constant pressure at 1 atm. Calculate the work done in
joule and calorie.
26. An ideal gas heat engine is operating between $227^{\circ} \mathrm{C}$ and $127^{\circ} \mathrm{C}$. It absorbs $10^{4} \mathrm{~J}$ of heat at the higher temperature. The amount of heat converted into work is \qquad
A. 2000
B. 4000
C. 5600
D. 8000

Answer: a

- Watch Video Solution

2. Efficiency of a Carnot engine is 50%, when temperature of outlet is 500 K . In order to increase efficiency upto 60\% keeping temperature of intake the same, what is temperature of outlet ?
A. 200 K
B. 400 K

C. 600 K

D. 800 K

Answer: b

- Watch Video Solution

3. An ideal heat engine working between temperature T_{1} and T_{2} has an efficiency η. The new efficiency if both the source and sink temperature are doubled, will be
A. η
B. 2η
C. 3η
D. $\frac{\eta}{2}$

Answer: a

- Watch Video Solution

4. A Carnot engine converts one-sixth of the heat into work. When the temperature of the sink is reduced by $62^{\circ} \mathrm{C}$, the efficiency of the
engine is doubled. The temperature of the source and sink are
A. $80^{\circ} \mathrm{C}, 37^{\circ} \mathrm{C}$
B. $95^{\circ} \mathrm{C}, 28^{\circ} \mathrm{C}$
C. $90^{\circ} \mathrm{C}, 37^{\circ} \mathrm{C}$
D. $99^{\circ} \mathrm{C}, 37^{\circ} \mathrm{C}$

Answer: d
(Watch Video Solution

5. What is a cyclic process ?

D Watch Video Solution

6. Write the conditions for reversible process

D Watch Video Solution
7. What is the value of sink temperature, when
efficiency of engine is 100\%.
A. 300 K
B. 273 K
C. 0 K
D. 400 K

Answer: c

D Watch Video Solution
8. A metal tube \& a rod of same distance same material \& same outer diameter are given
same amount of heat. Which will show less expansion \& why ?

D Watch Video Solution
9. How is skating possible on snow?

D Watch Video Solution

10. State that the coefficient of cubical ecpansion of an ideal gas at constant pressure
is equal to the reciprocal of its absolute temperature .

D Watch Video Solution

11. How does the density of a solid or a liquid vary with temperature ? State that its variation with temperature is given by $P=P(1-a \Delta T)$
where γ is coefficient of cubical expansion .

D View Text Solution

12. Write the important properties of thermal radiations.

- Watch Video Solution

13. State the factors on which the conduction of heat through a substance depends.

- Watch Video Solution

14. Write any 3 phenomena which are based on thermal convertion.

D Watch Video Solution

15. A Carnot engine having an efficiency of
$\eta=\left(\frac{1}{10}\right)$ as a heat engine is used as a
refrigerators. If the work done on the system
is 10 J , what is the amount of energy absorbed
from the reservoir at lowest temperature?
A. 1 J
B. 90 J
C. 99 J
D. 100 J

Answer: b

D Watch Video Solution
16. Describle an analytical method for a dtermining th work done during the expansion of gas.
17. The temperature of sink of Carnot engine is
$27^{\circ} \mathrm{C}$. Efficiency of engine is 25%. Then find the temperature of source.
A. $227^{\circ} \mathrm{C}$
B. $327^{\circ} \mathrm{C}$
C. $27^{\circ} \mathrm{C}$
D. $127^{\circ} \mathrm{C}$

Answer: d
18. The efficiency of Carnot's engine operating
between reservoirs, maintained at
temperature $27^{\circ} \mathrm{C}$ and $-123^{\circ} \mathrm{C}$ is
A. 0.5
B. 0.4
C. 0.6
D. 0.25

- Watch Video Solution

19. Derive an expressionfor the work done during the isothermal expansion of an ideal gas.

D View Text Solution

20. If a heat engine absorbs 50 KJ heat from a
heat source and has an efficiency of 40%, then
the heat released by it in heat sink is
A. 40 KJ
B. 30 KJ
C. 20 KJ
D. 20 J

Answer: b

D Watch Video Solution

21. The efficiency of heat engine is 30%. If it gives $30 K J$ heat to the heat sink, then it

source.

A. 42.8
B. 39
C. 29
D. 9

Answer: a
(Watch Video Solution
22. What is meant by coefficient of linear expansion superficial \& cubical expansion ?

D View Text Solution

Long Answer Question

1. If a heat engine absorbs $2 K J$ heat from a heat source and release $1.5 K J$ heat into cold reservoir, then it's efficiency is

$$
\text { A. } 0.5 \%
$$

B. 75%
C. 25%
D. 50%

Answer: c

- Watch Video Solution

2. A difference of temperature of $25^{\circ} \mathrm{C}$ is equivalent to a difference of
A. $72^{\circ} F$
B. $45^{\circ} F$
C. $32^{\circ} \mathrm{F}$
D. $25^{\circ} \mathrm{F}$

Answer: b

- Watch Video Solution

3. What is the value of absolute temperature

 on the Celsius scale ?$$
\text { A. }-273.15^{\circ} C
$$

B. $100^{\circ} \mathrm{C}$
C. $-32^{\circ} \mathrm{C}$
D. $0^{\circ} \mathrm{C}$

Answer: a

D Watch Video Solution

4. What is latent heat ? Give is units with the
help of a suitable graph, explain the terms
latent heat of fusion latent heat of
vaporisation.
A.
B.
C.
D.

Answer:

D View Text Solution

5. It I is the moment of inertia of a distance about an axis passing through its centre the find the change in moment of inertia due to
small change in its temperature $\Delta t \alpha$ is the

Coefficient of linear expeansion of distance .

- Watch Video Solution

Numerical Problems

1. Why burns from steam are more serious
than those from boiling water?

- Watch Video Solution

2. What is specific heat of a gas in an isothermal process ?

- Watch Video Solution

3. What is the specific heat of a gas in an adiabatic process ?

- Watch Video Solution

4. From an equilibrium state A to another equilibrium state A to another equilibrium state B an amount of work equal to 30 J is done on the system if the gas is taken from state A to B iva a process in which the net heat observe by system is 10 cal, how much is the net work done by the system in the later case.
[Take 1 cal = 4.2 J$]$

D Watch Video Solution

5. A cylinder with a movable piston contains 3 moles of hydrogen at constant temperature and pressrue. The walls of a cylinder are made up of a heat insulator and the piston is insulated by having a pile of sand on it By what factor does the pressure of a gas increases if the gas is compressed to half its original volume?

Watch Video Solution

6. $\frac{1}{2}$ mole of helium is contained in a container at STP . How much heat energy is needed to double the pressure of the gas keeping the volume contant ? Heat capacity of gas is $3 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}$

D Watch Video Solution

7. An electric heater supplies heat to a system at a rate or 100 W . If the system performs work
at a rate of 75 joules per second at what rate is the internal energy increasing ?

D Watch Video Solution

8. What is the co- efficient of performance (β) or a carnot refrigerator working between 40° and $0^{\circ} C$?

D Watch Video Solution
9. A body which absorbs heat of $23,400 J$ with
a temperature change of $14.2^{\circ} \mathrm{C}$. The specific
heat capacity of the body is $2.46 \mathrm{~J} / g^{\circ} \mathrm{C}$. What is the required mass of the body in grams?
A. $6.70 \times 10^{2} g$
B. $6.50 \times 10^{2} g$
C. $6.20 \times 10^{2} g$
D. $5.80 \times 10^{2} g$

Answer: a
10. what amount of heat must be supplied to
$2.0 \times 10^{-2} \mathrm{~kg}$ of nitrogen (at room
temperature) to raise its temperature by
$45^{\circ} \mathrm{C}$ at constant pressure (Molecular mass of
$\left.N_{2}=28, R=8.3 \mathrm{Jmol}^{-1} \mathrm{k}^{-1}\right)$

D Watch Video Solution

11. Refrigerator is to maintain eatables kept inside at $9^{\circ} C$. If room temperature is $36^{\circ} C$

Calculate the co- efficient of performance.

D Watch Video Solution

12. The temperature - entropy diagram of a reversible cycle is given in figure. Calculate its efficient.

D View Text Solution
13. An deal gas is expanded such that $p T^{2}=a$ constant find the coefficient of volume expansion of the gas

D View Text Solution

14. A body with mass 2 kg absorbs heat of 100
J, when it's temperature raises from $20^{\circ} \mathrm{C}$ to
$70^{\circ} \mathrm{C}$. What is the specific heat of the body?
A. $10^{3} \mathrm{~J} / g^{\circ} \mathrm{C}$
B. $10^{2} \mathrm{~J} / g^{\circ} \mathrm{C}$
C. $10^{-3} \mathrm{~J} / g^{\circ} C$
D. $10^{-2} \mathrm{~J} / g^{\circ} C$

Answer: C

D Watch Video Solution

15. Two rods of equal length and diameter
have thermal conductivities $3 \& 4$ units .it they
joined in series. Find the thermal conductivity of the combination.
16. The specific heat of water is $4180 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{C}$.

How much the heat capacity of 2 kg water ?
A. $8360 \mathrm{~J} /{ }^{\circ} \mathrm{C}$
B. $8000 \mathrm{~J} /{ }^{\circ} \mathrm{C}$
C. $8200 \mathrm{~J} /{ }^{\circ} \mathrm{C}$
D. $7800 \mathrm{~J} /{ }^{\circ} \mathrm{C}$

Answer: a

Creative Questions Hots

1. The specific heat of aluminium is $900 \mathrm{~J} /$
$k g^{\circ} C$. How much the heat capacity of 2 gram aluminium ?
A. $2.8 \mathrm{~J} /{ }^{\circ} \mathrm{C}$
B. $3.8 \mathrm{~J} /{ }^{\circ} \mathrm{C}$
C. $1.8 \mathrm{~J} /{ }^{\circ} \mathrm{C}$
D. $4.8 \mathrm{~J} /{ }^{\circ} \mathrm{C}$

- Watch Video Solution

2. Calorimeters are made of metals not glass.

Why?

- Watch Video Solution

3. A body which absorbs heat of $2,55,000 J$
with a mass of $10,000 \mathrm{~g}$. The specific heat capacity of the body is $4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$. What is the change in temperature of the body ?
A. $5.24^{\circ} C$
B. $4.75^{\circ} \mathrm{C}$
C. $6.10^{\circ} \mathrm{C}$
D. $8.35^{\circ} \mathrm{C}$

Answer: C

D Watch Video Solution

4. When 0.45 kg of ice of $0^{\circ} \mathrm{C}$ mixed with 0.9 kg of water at $55^{\circ} C$ in a container the
resulting temperature is $10^{\circ} \mathrm{C}$. Calculate the heat of fusion of ice .

D Watch Video Solution

5. 2 kg of ice at -20° is mixed with 5 kg of water at $20^{\circ} \mathrm{C}$ in an insulating vessel having a negligible heat capacity. Calculate the final mass of water remaining in the container .
6. Two rods one of aluminium and the other made of steel having initial length l_{1} and l_{2} are connected together to form a single rod of length $l_{1}+l_{2}$. The co - efficient of linear expansion for aluminium steel are a_{a} and α_{a} respectively . If the length of each rod increases by ghe same amount when their temeperature are raised by $+{ }^{\circ} C$ then find the ratio $\frac{l_{1}}{l_{1}+l_{2}}$

- Watch Video Solution

7. A body of mass of $10^{6} g$ having a specific heat capacity of $4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$ with a temperature change of $6.5^{\circ} \mathrm{C}$. Find out the required heat absorbed by the body ?

A. $3.58 \times 10^{4} \mathrm{~kJ}$
B. $9.78 \times 10^{4} \mathrm{~kJ}$
C. $7.79 \times 10^{4} \mathrm{~kJ}$
D. $2.7 \times 10^{4} \mathrm{~kJ}$

Answer: d

Value Based Question

1. Sudeep and Karthideyan were room mates.

Sudeep was boiling water in a vessel for bathing purpose. Karthikeyan said Sudeep
you know when you touch the middle part of the vessel containing water you can feel less heat than what you can feel at the top. Sudeep
was shocked to hear. Karthikeyan took a thermometer and kept it at the top surface of water. The temepature was rising .Again he
inserted it deep into the vessel containing water, now the temperature has fallen down than in the previous condition .What is teh truth behind it ?
(i) It is good to keep our hand deep into the vessel to check this while the liquid is boiling ?
(ii)What are convection current ?

D View Text Solution

