©゙doubtnut

PHYSICS

BOOKS - SURA PHYSICS (TAMIL ENGLISH)

KINEMATICS

Exercise Questions Multiple Choice Questions

1. Which one of the following Cartesian coordinate
systems is not follwed in physics?
A.
B.
C.
D.

Answer: D

D Watch Video Solution
2. Identify the unit vector in the following .
A. $\hat{i}+\hat{j}$
B. $\frac{\hat{i}}{\sqrt{2}}$
C. $\hat{k}-\frac{\hat{j}}{\sqrt{2}}$
D. $\frac{\hat{i}+\hat{j}}{\sqrt{2}}$

Answer: D

(D) Watch Video Solution

3. Which one of the following physical quantities cannot be represented by a scalar?
A. Mass
B. length
C. momentum
D. magnitude of acceleration

Answer: C

D Watch Video Solution

4. Two objects of masses m_{1} and m_{2} fall from the heights h_{1} and h_{2} respectively. The ratio of the magntidue of their momenta when they hit the ground is
A. $\sqrt{\frac{h_{1}}{h_{2}}}$
B. $\sqrt{\frac{m_{1} h_{1}}{m_{2} h_{2}}}$
C. $\frac{m_{1}}{m_{2}} \sqrt{\frac{h_{1}}{h_{2}}}$
D. $\frac{m_{1}}{m_{2}}$

Answer: C

D Watch Video Solution

5. If a particle has negative velocity and negative acceleration, its speed
A. increases
B. decreases
C. remains same
D. zero

Answer: A
6. If the velocity is $\vec{v}=2 \hat{i}+t^{2} \hat{j}-9 \hat{k}$ then the magntidue of acceleration at $t=0.5 \mathrm{~s}$ is
A. $1 m s^{-2}$
B. $2 m s^{-2}$
C. zero
D. $-1 m s^{-2}$

Answer: A

D Watch Video Solution
7. If an object is dropped from the top of a building and it reaches the ground at $t=4 \mathrm{~s}$, then the height of the building is (ignoring air resistance) $\left(g=9.8 m s^{-2}\right)$
A. 77.3 m
B. 78.4 m
C. 80.5 m
D. 79.2 m

Answer: B
8. Distinguish between uniform and non uniform acceleration.

D Watch Video Solution

9. If one object is dropped vertically downward and another object is thrown horizontally from the same height, then the ratio of vertical distance covered by both objects at any instant t is
A. 1
B. 2
C. 4
D. 0.5

Answer: A

D Watch Video Solution

10. A particle moves in a straight line with acceleration described by equation given below:
$a=m x-\frac{v_{0}^{2}}{x_{0}}$
The value of constant m is

> A. $\frac{v_{0}^{2}}{x_{0}^{2}}$
> B. $-\frac{v_{0}^{2}}{x_{0}^{2}}$
> C. $2 \frac{v_{0}^{2}}{x_{0}^{2}}$
D. $-2 \frac{v_{0}^{2}}{x_{0}^{2}}$

Answer: A

D Watch Video Solution

11. If a particle executes uniform circular motion in the xy plane in clock wise direction, then the angular velocity is in :
A. $+y$ direction
B. $+z$ direction
C. $-z$ direction
D. $-x$ direction

Answer: C

D Watch Video Solution

12. If a particle executes uniform circular motion, choose the correct statement
A. The velocity and speed are constant
B. The acceleration and speed are constant.
C. The velocity and accleration are constant.
D. The speed and magnitude of accelertion are constant.

Answer: D

D Watch Video Solution

13. If an object is thrown vertically up with initial speed u from the ground, then the time taken by the object to return back to ground is
A. $\frac{u^{2}}{2 g}$
B. $\frac{u^{2}}{g}$
C. $\frac{u}{2 g}$
D. $\frac{2 u}{g}$
14. Two objects are projected at angles 30° and 60° respectively with respect to the horizontal direction.

The range of two objects are denoted as $R_{30^{\circ}}$ and $R_{60^{\circ}}$. Choose the correct relation from the following.
A. $R_{30^{\circ}}=R_{60^{\circ}}$
B. $R_{30^{\circ}}=4 R_{60^{\circ}}$
C. $R_{30^{\circ}}=\frac{R_{60^{\circ}}}{2}$
D. $R_{30^{\circ}}=2 R_{60^{\circ}}$

Answer: A
15. An object is dropped is an unknown planet from height 50 m , it reaches the ground is 2 s . The acceleration due to gravity in this unknwon planet is
A. $g=20 m s^{-2}$
B. $g=25 m s^{-2}$
C. $g=15 m s^{-2}$
D. $g=30 m s^{-2}$

Answer: B

Exercise Questions Short Answer Questions

1. What is meant by Cartesian coordinate system?

D Watch Video Solution

2. Define a vector. Give examples.

- Watch Video Solution

3. Define a scalar. Give examples
4. Write a short note on the scalar product between two vectors.

- Watch Video Solution

5. Write a short note on vector product between two vectors.

D Watch Video Solution

6. How do you deduce that two vectors are perpendicular?
7. Define displacement and distance.

D Watch Video Solution
8. Define velocity and speed.

- Watch Video Solution

9. Define acceleration.

Watch Video Solution
10. What is the difference between velocity and average velocity?

- Watch Video Solution

11. Define a radian.

D Watch Video Solution
12. Define angular displacement and angular velocity.
13. What is non uniform circular motion?

- Watch Video Solution

14. Write down the Kinematic equations for Angular motion.

D Watch Video Solution

15. Write down the expression for angle made by resultant acceleration and radius vector in the non uniform circular motion.

Exercise Questions Long Answer Questions

1. Explain in detail the triangle law of addition.
(D) Watch Video Solution
2. Explain in detail the triangle law of addition.

D Watch Video Solution
3. Discuss the properties of scalar and vector
4. Derive the kinematic equations of motion for constant acceleration.

D Watch Video Solution
5. Derive equations of uniformly acceleration motion by calculus method.
6. Derive the equations of motion for a particle (a) falling vertically (b) projected vertically.

- Watch Video Solution

7. Derive the equations of motion for a particle (a) falling vertically (b) projected vertically.

D Watch Video Solution

8. Derive the equation of motion, range and maximum
height reached by the particle thrown at an oblique angle θ with respect to the horizontal direction.
9. Derive the expression for centripetal acceleration.

- Watch Video Solution

10. Derive the expression for centripetal acceleration.

D Watch Video Solution
11. Derive the expression for total acceleration in the non-uniform circular motion.

Iv Exercise

1. The position vectors particle has length 1 m and makes 30° with the x-axis. What are the lengths of the x and y components of the position vector?

- Watch Video Solution

2. A particle has its position moved from $\overrightarrow{r_{1}}=3 \hat{i}+4 \hat{j} \quad$ to $\quad \overrightarrow{r_{2}}=\hat{i}+2 \hat{j}$. Calculate the displacment vector $(\Delta \vec{r})$ and draw the
$\overrightarrow{r_{1}}, \overrightarrow{r_{2}}$ and $\Delta \vec{r}$ vector in a two dimensional
Cartesian coordinate system.

- Watch Video Solution

3. Calculate the average velocity of the particle whose position vector changes
from
$\overrightarrow{r_{1}}=5 \hat{i}+6 \hat{j}$ to $\overrightarrow{r_{2}}=2 \hat{i}+3 \hat{j}$ in a tine 5 second.

- Watch Video Solution

4. Convert the vector $\vec{r}=3 \hat{i}+2 \hat{j}$ into a unit vector.
5. What are the resultants of the vector product of two given vectors. Given by
$\vec{A}=4 \hat{i}-2 \hat{j}+\hat{k}$ and $\vec{B}=5 \hat{i}+3 \hat{j}-4 \hat{k}$

(D) Watch Video Solution

6. An object at an angle such that the horizontal range is 4 time of the maximum height. What is the angle of projection of the object?

D Watch Video Solution

7. The following graphs represent velocity - time graph. Identify what kind of motion a paraticle undergoes in each graph.

D View Text Solution

8. The following velocity - time graph represents a particle moving in the positive x - direction. Analyse its motion from 0 to 7 s . Calculate the displacement covered and distance travelled by the particle from 0 to 2 s .

(View Text Solution

9. A particle is projected at an angle of θ with respect to the horizontal direction. Match the following for the above motion.
(a) $V_{x} \quad-\quad$ decrease and increases
(b) $V_{y} \quad-\quad$ remains constant
(c) Acceleration - varies
(d) Position vector - remains downward
10. A water fountain on the ground sprinkles water all
around it. If the speed of the water coming out of the
fountain is v . Calculate the total area around the fountain that gets wet.

- Watch Video Solution

11. The following table gives the range of a particle when thrown on different planets. All the particles are thrown at the same angle with the horizontal and with the same initial speed. Arrange the planets is ascending order according to their acceleration due
to gravity, (g value)

- View Text Solution

12. The resultant of two vectors A and B is perpendicular to vector A and its magnitude is equal to half of the magnitude of vector B.

Then the angle between A and B is
A. 30°
B. 45°
C. 150°
D. 120°

Answer: 3

D Watch Video Solution

13. Compare the components for the following vector
equations
(a) $T \hat{j}-m g \hat{j}=m a \hat{j}$
(b) $\vec{T}+\vec{F}=\vec{A}+\vec{B}$
$\vec{T}-\vec{F}=\vec{A}-\vec{B}$ (d) $T \hat{j}+m g \hat{j}=m a \hat{j}$
A. $T \hat{j}-m g \hat{j}=m a \hat{j}$
в. $\vec{T}+\vec{F}=\vec{A}+\vec{B}$
с. $\vec{T}-\vec{F}=\vec{A}-\vec{B}$
D. $T \hat{j}+m g \hat{j}=m a \hat{j}$

Answer:

D Watch Video Solution

14. Calculate the area of the triangle for which two of

$$
\begin{aligned}
& \text { its sides are given by the vectors } \\
& \vec{A}=5 \hat{i}-3 \hat{j}, \vec{B}=4 \hat{i}+6 \hat{j} \text {. }
\end{aligned}
$$

- Watch Video Solution

15. If Earth completes one revolution in 24 hours, what is the angular displacement made by Earth in
one hour? Express your answer in both radian and degree.

- Watch Video Solution

16. An object is thrown with initial speed $5 m s^{-1}$ with an angle of projection 30°. What is the maximum height and range reached by the particle?

D Watch Video Solution

17. A foot - ball player hits the ball with speed $20 \mathrm{~ms}^{-1}$ with angle 30° with respect to horizontal direction as shown in the figure. The goal post is at
distance of 40 m from him. Find out whether ball reaches the goal post ?

D View Text Solution

18. If an object is thrown horizontally with an initial speed $10 \mathrm{~ms}^{-1}$ from the top of a building of height 100 m . What is the horizontal distance covered by the particle.

Watch Video Solution

19. An object is executing uniform circular motion with an angular speed of $\frac{\pi}{12}$ radian per second. At $t=0$, the object starts at an angle $\theta=0$. What is the angular displacement of the particle after 4s?

D Watch Video Solution

20. Consider the x - axis as representing east, the y axis as north and z - axis as vertically upwards. Give the vector representing each of the following points and the direction is of 45°.
a) 5 m north east and 2 m up
b) 4 m south east and 3 m up
c) 2 m north west and 4 m up

- Watch Video Solution

21. The moon is orbiting the Earth approximately in

27 days, what is the angle transversed by the Moon per day?

D Watch Video Solution

22. An object of mass m has angular acceleration
$\alpha=0.2 \mathrm{rad} \mathrm{s}^{-2}$. What is the angular displacement covered by the object after 3 second ? (Assume that
the object started with angle zero with angular velocity).

- Watch Video Solution

Additional Questions Multiple Choice Questions

1. Which of the following physical quantities have
same dimensional formula?
A. Toque and Work done
B. Energy and Angular momentum
C. Force and Torue

D. Angular momentum and Linear momentum

Answer: A

D Watch Video Solution

2. The dimensions of physical quantity X in the
equation Force $=\frac{X}{\text { Density }}$ is given by
A. $M^{1} L^{4} T^{-2}$
B. $M^{2} L^{-2} T^{-1}$
C. $M^{2} L^{-2} T^{-2}$
D. $M^{1} L^{-2} T^{-1}$

Answer: D

D Watch Video Solution

3. A vector \vec{A} points vertically upward and \vec{B} points towards north. The vector product $\vec{A} \times \vec{B}$ is
A. along west
B. along east
C. zero
D. vertivally downward

Answer: A
4. The maximum value of fractional error in division of
two quantities i.e., $x=\frac{A}{B}$ is
A. $\frac{\Delta x}{x}= \pm\left(\frac{\Delta A}{A}-\frac{\Delta B}{B}\right)$
B. $\frac{\Delta x}{x}=\left(-\frac{\Delta A}{A}+\frac{\Delta B}{B}\right)$
C. $\frac{\Delta x}{x}=\left(\frac{\Delta A}{A}+\frac{\Delta B}{B}\right)$
D. $\frac{\Delta x}{x}=\left(\frac{\Delta A}{x}-\frac{\Delta B}{B}\right)$

Answer: C

D Watch Video Solution
5. The unit vector in the direction of $\vec{A}=\hat{i}+\hat{j}+\hat{k}$
is

$$
\begin{aligned}
& \text { А. } \frac{\hat{i}+\hat{j}+\hat{k}}{} \begin{array}{l}
\text { B. } \frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{2}} \\
\text { C. } \frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}} \\
\text { D. } \frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{6}}
\end{array} .
\end{aligned}
$$

Answer: C

- Watch Video Solution

6. Which one of the following statement is true?
A. A scalar quantity is conserved in a process
B. A scalar quantity does not vary from one point to another in space
C. A scalar quantity can never the $-v e$ values
D. A scalar quantity has only magntitude and no

direction.

Answer: D

- Watch Video Solution

7. The angle between $A i+j$ and $B=i-j$ is
A. 45°
B. 90°
C. -45°
D. 180°

Answer: B

D Watch Video Solution

8. The component of position vector \vec{r} along x -axis will maximum value if
A. \vec{r} is along the x -axis
B. \vec{r} makes an angle of 45° with x - axis
C. \vec{r} is along the y -axis
D. \vec{r} is along $-v e \mathrm{y}$-axis

Answer: A

D Watch Video Solution

9. Consider the quantities pressure, power, energy, impulse, change. Out of these, the only vector quantity is
A. pressure
B. power

C. impulse

D. charge

Answer: C

D Watch Video Solution

10. The length of a vector is
A. always a negative quantity
B. always a positive quantity
C. either positive or negative
D. denoted by ' λ '

Answer: B

(D) Watch Video Solution

11. Distance is a scalar quantity and is a vector.
A. Speed
B. Length
C. Time
D. Displacement

Answer: D
12. The horizontal range of a projectile fired at an angle of 15° is 50 m . If it is fired with the same used at angle of 45°, its range will be
A. 125 m
B. 75 m
C. 100 m
D. 150 m

Answer: C
13. Choose the motion in two dimension from the following.
A. Motion of a train along a straight railway track
B. An object falling freely under gravity close to the Earth.
C. A particle moving along a curved path in a plane.
D. Flying of a kite on a windy day.

Answer: C

14. Which one of the following physical quantities cannot be represented by a scalar?
A. Mass
B. Length
C. Momentum
D. Magnitude of acceleration

Answer: C

15. An object is dropped is an unknown planet from height 50 m , it reaches the ground is 2 s . The acceleration due to gravity in this unknwon planet is
A. $g=20 m s^{-2}$
B. $g=25 m s^{-2}$
C. $g=15 m s^{-2}$
D. $g=30 m s^{-2}$

Answer: B
16. The dimensions of physical quantity X in the equation Force $=\frac{X}{\text { Density }}$ is given by
A. $M^{1} L^{4} T^{-2}$
B. $M^{2} L^{-2} T^{-2}$
C. $M^{2} L^{2} T^{-2}$
D. $M^{1} L^{-4} T^{-1}$

Answer: D

17. A vector \vec{A} points vertically upward and \vec{B} points towards north. The vector product $\vec{A} \times \vec{B}$ is
A. along west
B. along east
C. Zero
D. vertically downward

Answer: A

D Watch Video Solution
18. The length of a vector is
A. always a negative quantity
B. always a positive quantity
C. either positive or negative
D. None of these

Answer: B

D Watch Video Solution

19. The horizontal range of a projectile fired at an angle of 15° is 50 m . If it is fired with the same used at angle of 45°, its range will be
B. 75 m
C. 100 m
D. 150 m

Answer: C

- Watch Video Solution

20. Kinematics is the branch of mechanics which delas
with the motion of objects without taking \qquad
into account
A. displacement
B. mass

C. motion

D. force

Answer: D

- Watch Video Solution

21. A mass which has finite value with Zero dimension
is called
A. Point mass
B. Linear mass
C. Rotational mass

D. heavy mass

Answer: A

D View Text Solution

22. ________ is an example for motion in 3 dimension
A. A body falling freely under gravity close to earth
B. An insect crawling in a room, on the wall
C. Movement of clouds
D. Fast moving steam boat
23. Vectors which act along the same line whose angle between them can be 0° or 180° are called
A. Orthogonal vectors
B. Collinear vectors
C. Unit vectors
D. Resultant vectors

Answer: B

24. The unit vector in the direction of $\vec{A}=\hat{i}+\hat{j}+\hat{k}$ is
A. $\hat{i}+\hat{j}+\hat{k}$
B. $\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{2}}$
c. $\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}$
D. $\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{6}}$

Answer: C
25. The acceleration which will not give the value of acceleration at any instant of tine ' t ' is \qquad
A. Instantaneous acceleration
B. Negative acceleration
C. Positive acceleration
D. Average acceleration

Answer: D

26. The relation between linear velocity and angular

 velocity of a body moving in a circle isA. $v=R / \omega$
B. $v=\omega / r$
C. $v=r \omega^{2}$
D. $v=r \omega$

Answer: D

1. The Greek word " Kinema" means

A. Motion
B. Force
C. Velocity
D. Energy

Answer: A

D Watch Video Solution
2. The motion of a top is an example for
A. Centripetal force
B. Rotational motion
C. Torqe
D. Centrifugal force

Answer: B

- View Text Solution

3. Apart from linear, circular, vibratory, and rotational motions, other type oof motion like \qquad and helical
motion are also possible
A. elliptical
B. plane

C. Inclined

D. zig zag

Answer: A

D View Text Solution

4. is a vector which denotes the position of a particle at any instant of time with respect to some frame of reference
A. position vector
B. non vector
C. unit vector

D. coplanar vector

Answer: A

D Watch Video Solution

5. Linear Momentum is a
 \qquad quantity

A. scalar
B. vector
C. net
D. zero
6. A train is travelling from west to east at an average speed of $120 \mathrm{~km} / \mathrm{hr}$. How far does this train travel in 6.0 second?

Watch Video Solution
7. The negative acceleration is also called as

Watch Video Solution

8. The parabolic path followed by a projectile in air is

 called \qquad
- Watch Video Solution

9. Shooting of an arrow from the bow, is an example for
A. projectile motion
B. free fall
C. linear momentum
D. curved motion

Answer: A

- View Text Solution

10. The expression for relation between Linear and angular acceleration is

D Watch Video Solution

Additional Questions Choose The Odd One Out

1. CHOOSE THE ODD ONE OUT:

A. Distance
B. Displacement
C. Velocity
D. Projectile

Answer: A

- Watch Video Solution

2. CHOOSE THE ODD ONE OUT:

A. Spinning of earth
B. Moving of satellite around earth

C. Turbine motion

D. Apple falling down.

Answer: D

D View Text Solution

3. CHOOSE THE ODD ONE OUT:

A. Unit vector
B. Resoluation of a vector
C. Collinear Vector
D. Equal vectors

Answer: B

D View Text Solution

4. CHOOSE THE ODD ONE OUT:

A. $v=-g t$
B. $s=\frac{1}{2} g t^{2}$
C. $s=\frac{(u+v) t}{2}$
D. $v^{2}=-2 g s$

Answer: C

5. CHOOSE THE ODD ONE OUT:

A. $\frac{u^{2} \sin 2 \theta}{g}$
B. $\frac{2 u \sin \theta}{g}$
C. $\sqrt{u^{2}+g^{2} t^{2}}$
D. $\frac{u^{2} \sin ^{2} \theta}{2 g}$

Answer: D

D Watch Video Solution

1. CHOOSE THE INCORRECT PAIR :

A. $a \quad-\quad \propto$
B. $v \quad-\quad \omega$
C. $x \quad-\quad \theta$
D. $p \quad-\quad I$

Answer: D

- View Text Solution

2. CHOOSE THE ODD ONE OUT :

A. Angle
B. Radius
C. Time
D. Mass

Answer: A

D Watch Video Solution

Additional Questions Choose The Correct Pair

1. CHOOSE THE CORRECT PAIR :

A. $\left(\omega_{0}+\propto t\right) \quad-\quad(u+a t)$

$$
\begin{aligned}
& \text { B. } \frac{\pi}{6} \quad-\quad 180^{\circ} \\
& \text { C. } a_{c} \quad-\quad v^{2} r \\
& \text { D. } p \quad-\quad m v
\end{aligned}
$$

Answer: D

2. CHOOSE THE CORRECT PAIR :

A. Equal vectors - Unity
B. Unit vectors - Parallel
C. Collinear vectors - Opposite

D. Orthogonal vectors - Perpendicualr

Answer: D

- View Text Solution

Additional Questions Assertion Reason

1. If $\vec{B}=6 \hat{i}+8 \hat{j}$ then obtain the magnitude and direction of \vec{B}
2. Assertion : Rule is an example for Orthogonal vectors.

Reason : When we stretch first three fingers of our right hand, Magnetic field along fore finger (i.e. X- axis
) current direction along middle finger (i.e. Y-axis)
and motion of the conductor along the thumb direction (i.e. Z axis)
A. Assertion and Reason are correct and Reason is correct explanation of Assertion
B. Assertion and Reason are true but Reason is
the false explanation of the Assertion
C. Assertion is true but Reason is false

D. Assertion is false but Reason is true

Answer: A

D Watch Video Solution

3. If two objects A and B are moving along a straight
line in the same direction with the velocities
V_{A} and V_{B} respectively, then the relative velocity is
A. Assertion and Reason are correct and Reason is correct explanation of Assertion
B. Assertion and Reason are true but Reason is the false explanation of the Assertion

C. Assertion is true but Reason is false

D. Assertion is false but Reason is true

Answer: C

D Watch Video Solution

4. Assertion : Any object thrown at an angle of 90°
with an initial velocity is called projectile

Reason : When any object is thrown at an angle of
45°, it reaches the maximum (horizontal) distance ex
: Javelin throw, shot put throw etc.
A. Assertion and Reason are correct and Reason is correct explanation of Assertion
B. Assertion and Reason are true but Reason is
the false explanation of the Assertion
C. Assertion is true but Reason is false
D. Assertion is false but Reason is true

Answer: D

D Watch Video Solution

5. Assertion : Beating a person with a scale or stick is an example for how momentum is converted into
force.

Reason : If ' m ' is the mass of the scale ' v ' is the velocity of the scale (movement), this 'mv' changes, from the initial point to the final point (i.e. hand or body) with respect to time

As we know $\frac{m v}{t}=m a\left(\frac{V}{t}\right)=m a=F$
This is how momentum is converted into force.
A. Assertion and Reason are correct and Reason is
correct explanation of Assertion
B. Assertion and Reason are true but Reason is
the false explanation of the Assertion
C. Assertion is true but Reason is false

D. Assertion is false but Reason is true

Answer: A

D Watch Video Solution

Additional Questions Choose The Correct Or Incorrect
 Statement

1. (I) Two vecotrs which are perpendicular to each other are called Orthogonal vectors.
(II) To find resultant of two of addition.

Which statement is is correct?
A. I only
B. I only
C. Both are correct
D. None

Answer: C

- Watch Video Solution

2. (I) $\hat{i} . \hat{i}=\hat{j} . \hat{j}=\hat{k} . \hat{k}=0$
(II) $\hat{i} \times \hat{i}=\hat{j} \times \hat{j}=\hat{k} \times \hat{k}=0$

Which statement is is correct?
A. I only
B. II only

C. Both are correct

D. None

Answer: B

D Watch Video Solution

3. (I) Area of a Parallelogram in vectors is $|\vec{A} \times \vec{B}|=|\vec{A}||\vec{B}| \sin \theta$
(II) Area of a Triangle in vectors is $1 / 2(\vec{A} \times \vec{B})$

Which statement is in correct?
A. I only
B. II only

C. Both are correct

D. None

Answer: B

D View Text Solution

4. (I) $\vec{L}=\vec{r} \cdot \vec{p}$ where P is the Linear momentum
(II) $\vec{v}=r \cdot \vec{\omega}$ where ω is the angular velocity

Which statement is is correct?
A. I only
B. II only
C. Both are correct
D. None

Answer: A

D Watch Video Solution

5. (I) From equations of Linear motion $S=\frac{(u-v) t}{2}$
(II) From equations of rotational (Angular) motion
$\omega^{2}=\omega_{0}^{2}+2 \propto \theta$
Which statement is in correct?
A. I only
B. II only
C. Both are correct

D. None

Answer: B

D View Text Solution

6. (I) If the speed of the object in a circular motion is not constant, it is called a non - uniform circular motion.
(II) Acceleration which is acting away from the centre of the circle is called Centripetal Acceleration.

Which statement is in correct?
A. I only

B. II only

C. Both are correct
D. None

Answer: B

- View Text Solution

Very Short Answer Questions

1. A particle moves in a circle of radius 10 m . Its linear speed is given by $v=3 t$ where t is the lime in second
and v is in $m s^{-1}$.Compute the centripetal and tangential acceleration at time $t=2 s$.

- Watch Video Solution

2. Define position vector.

- Watch Video Solution

3. What is the angle of projection to have a maximum range in 'Kitti pull'? If one strikes kitti pull with the speed of $98 \mathrm{~ms}^{-1}$. What is the maximum range achieved?
4. What is Kinematics?

Watch Video Solution
5. What is meant by Frame of reference?

D Watch Video Solution
6. What is meant by right-handed Cartesian coordinate system ?

7. The formula for Maximum range is

\qquad

D Watch Video Solution
8. Define the term modulus (or) magnitude of vector .

D Watch Video Solution

9. Find the magnitude of vector $3 \hat{i}-2 \hat{j}+\sqrt{3} \hat{k}$?
10. How will you find the sum (resultant) of two vectors, which are inclined to each other?

- Watch Video Solution

11. State the vector product of two vectors . Also prove that whether it is commutative or not commutative.

D Watch Video Solution
12. What is meant by resolution of vector?
13. Give some examples of physical quantities which can be expressed as the vector product of two vectors .

- Watch Video Solution

14. Write the required Equations of motion in a straight line.

D Watch Video Solution
15. Define displacement and distance.
16. A car covers the first half of the distance between two places at $40 \mathrm{~km} / \mathrm{hr}$ and another half at $60 \mathrm{~km} / \mathrm{hr}$.

The average speed of the car is
A. $40 \mathrm{~km} / \mathrm{hr}$
B. $48 \mathrm{~km} / \mathrm{hr}$
C. $50 \mathrm{~km} / \mathrm{hr}$
D. $60 \mathrm{~km} / \mathrm{hr}$

Answer: 2

17. What is Calculus? What are the types of Calculus?

D Watch Video Solution

18. Define Average speed ?

- Watch Video Solution

19. Distinguish between Path length and

Displacement.
20. What is the SI unit of Average speed and Average velocity?

- Watch Video Solution

21. Write the component form of the momentum.

D Watch Video Solution
22. Define relative velocity.
23. What is retardation?

D Watch Video Solution

24. Define Average acceleration .

D Watch Video Solution
25. Define Average velocity.

D Watch Video Solution
26. What is projectile ? Give it's examplees.
27. Two objects are projected with same velocity at different angles with the horizontal range and is same for both of them. If t_{1} and t_{2} are their time of flights, then $t_{1} t_{2}=$
A. 2 Rg
B. $\frac{R}{g}$
C. $\frac{2 R}{g}$
D. $\frac{R}{2 g}$

Answer: 3
28. Write the combined effect of two velocities of a projectile.

D Watch Video Solution

29. What are the assumptions made in the projectile motion ?

D Watch Video Solution
30. Define Air resistance ?
31. What are the factors the horizontal range directly and inversely depends ?

Watch Video Solution
32. Write the condition for the maximum horizontal range.
(D) Watch Video Solution
33. What is degree ? Express 1 radian in degree.

Watch Video Solution

34. Define Tensor and it's examples.

- Watch Video Solution

35. Define Tangential velocity.

D Watch Video Solution

36. What are the two quantities which have maximum
values when the maximum height attained by the projectile is to the largest .
37. Compare scalars and vectors.

- Watch Video Solution

38. State Triangle law of vector addition of two vectors.

D Watch Video Solution

39. Mention the properties of Addition of vectors.
40. Mention the properties of dot product of two vectors.

D Watch Video Solution
41. Mention the properties of cross product of two vectors .

D Watch Video Solution
42. Write down the formula for Maximum height.
43. Mention some of the salient points about angular projection of projectiles.

D Watch Video Solution
44. What is uniform motion ?

D Watch Video Solution
45. What is non - uniform accelerated motion ?
46. What is free fall of a body?

- Watch Video Solution

47. What is centripetal acceleration or radial acceleration or normal acceleration ?

- Watch Video Solution

48. Define one dimensional motion. Give examples .
49. Define two dimensional motion. Give examples .

D Watch Video Solution
50. Define three dimensional motion . Give examples .

D Watch Video Solution

51. What is the condition for two vectors are orthogonal ?
52. Define Coinitial vector and Collinear vector .

D Watch Video Solution

53. Give the importance of displacement - time graph .

D Watch Video Solution
54. Give the importance of velocity - time graph .

D Watch Video Solution
55. Write down the Formulas for projectile motion.

(Watch Video Solution

56. If the magnitude of sum of two vectors is equal to the magnitude of difference of the two vectors, the angle between these vectors is
A. 45°
B. 180°
C. 0°
D. 90°

Answer: 4

Short Answer Questions

1. Displacement of a particle is given by the expression $x=3 t^{2}+7 t-9$, where x is in meter and t is in seconds. What is acceleration ?
A. $10 \mathrm{~m} / \mathrm{s}^{2}$
B. $15 \mathrm{~m} / \mathrm{s}^{2}$
C. $8 \mathrm{~m} / \mathrm{s}^{2}$
D. $6 \mathrm{~m} / \mathrm{s}^{2}$

Answer: 4
2. The velocitities of three particles A, B and C are $\overrightarrow{v_{A}}=(3 \hat{i}-5 \hat{j}+2 \hat{k}) m s^{-1}, \overrightarrow{v_{B}}=(\hat{i}+2 \hat{j}+3 \hat{k}) m s^{-1}$ and $\overrightarrow{v_{C}}=(5 \hat{i}+3 \hat{j}+4 \hat{k}) m s^{-1}$, respectively. Which particle travels at neither greatest nor lowest speed?

- Watch Video Solution

3. Derive expression for maximum height, time of flight and range of a projectile.
4. Is zero relative velocity possible ? Explain ?

D Watch Video Solution

5. A railway train 400 m long is going from Chennai

Central railway station to Madurai. Can we consider railway train as a point object ?

- Watch Video Solution

6. State any four characteristics of Displacement.
7. Under what condition the distance and displacement of a moving object will have the same magnitude ?

D Watch Video Solution

8. What is meant by point mass and give suitable example?

D Watch Video Solution
9. What do you mean by motion in one, two and three dimensions?
10. What causes variation in velocity of a particle ?

D Watch Video Solution
11. What is meant by Collinear vector ? Explain them .

D Watch Video Solution
12. Define unit vector .
13. Define Orthogonal unit vectors.

D Watch Video Solution

14. Deepak went on his bike from Chennai to

Thiruvallur at a speed of $60 \mathrm{~km} / \mathrm{hr}$ and came back at a speed of $40 \mathrm{~km} / \mathrm{hr}$. What is his average speed for entire journey.
A. $40 \mathrm{~km} / \mathrm{hr}$
B. $45 \mathrm{~km} / \mathrm{hr}$
C. $48 \mathrm{~km} / \mathrm{hr}$
D. $52 \mathrm{~km} / \mathrm{hr}$

Answer: 3

D Watch Video Solution

15. How are two vectors expressed in a Cartesian system ? Explain the addition \& subtraction using components.

- Watch Video Solution

16. How is the direction of vector product determined
17. A car moving along a straight highway with a speed of 126 kilometre per hour is brought to a stop within a distance of 200 m . What is the retardation of the car (assumed uniform) and how long does it taken for the car to stop?

D Watch Video Solution

18. Write the expression for time of flight in projectile motion.
19. Distinguish between Distance and Displacement.

- Watch Video Solution

20. How does an object supposed to be at rest and in motion are considered to be relative ?

D Watch Video Solution
21. Define instantaneous speed.
22. Write an expression for component of Instantancous velocity or velocity and also define it.

- Watch Video Solution

23. What does the slope of 'position - time' graph represent? Which physical quantity is obtained from it?

- Watch Video Solution

24. Write down the different methods for obtaining
addition of vectors.

- Watch Video Solution

25. Write an expression for the two objects, moving with uniform velocities along the same striaght tracks but opposite in direction.

D Watch Video Solution

26. List out the conditions of Magnitude and Direction for the following vectors:
(i) Equal vectors.
(ii) Parallel vectors.
(iii) Opposite vectors.
(iv) Anti-parallel vectors.
(v) Aparallel vectors.

- Watch Video Solution

27. What is meant by accelerated motion ?

D Watch Video Solution

28. Define Instantaneous acceleration.
29. Write an expression for an acceleration of rectangular components.

- Watch Video Solution

30. How can the depth of well is measured and also estimate the \% of real error .

D View Text Solution

31. Derive the expression for a body projected horizontally.
32. If $\vec{A}=12 \hat{i}+14 \hat{j}$ and $\vec{B}=10 \hat{i}+8 \hat{j}$. Then find $|\vec{A}-\vec{B}|$

- Watch Video Solution

33. Find the expressions tangential acceleration.

- Watch Video Solution

34. Define uniform circular motion . Give some examples.
35. What is meant by point mass and give suitable example?

D Watch Video Solution

36. Define three dimensional motion . Give examples .

D Watch Video Solution

Long Answer Questions

1. A particle has an initial velocity $3 \hat{i}+4 \hat{j}$ and an acceleration of $0.4 \hat{i}+0.3 \hat{j}$. It's speed after 10 s is
A. 7 units
B. 8.5 units
C. 10 units
D. $7 \sqrt{2}$ units

Answer: D

- Watch Video Solution

2. The speed of a projectile at it's maximum height is half of it's initial speed. The angle of projection is
A. 60°
B. 15°
C. 30°
D. 45°

Answer: A

- Watch Video Solution

3. A projectile is fired at an angle of 45° with the horizontal. Elevation angle of the projectile at its highest point as seen from the point of projection is
A. 45°
B. 60°
C. $\tan ^{-1}\left(\frac{1}{2}\right)$
D. $\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)$

Answer: C

4. Define the term motion and explain the different types of motion.

- Watch Video Solution

5. What is meant by subtraction of vectors?

D Watch Video Solution

6. A boat which has a speed of $5 \mathrm{~km} / \mathrm{hr}$ in still water
crosses a river of width 1 km along the shortest
possible path in 15 minutes. The velocity of the river water in $\mathrm{km} / \mathrm{hr}$ is

A. $1 \mathrm{~km} / \mathrm{hr}$

B. $3 \mathrm{~km} / \mathrm{hr}$

C. $4 \mathrm{~km} / \mathrm{hr}$
D. $5 \mathrm{~km} / \mathrm{hr}$

Answer: B

D Watch Video Solution
7. Define time of flight.
8. If $\vec{A}=4 \hat{i}-3 \hat{j}, \vec{B}=6 \hat{i}+8 \hat{j}$ then obtain the magnitude and direction of $\vec{A}+\vec{B}$

(D) Watch Video Solution

9. Write the important properties of vector (cross) product.
10. The positiion vectors of two point masses 10 kg and 5 kg are $(3 \hat{i}+2 \hat{j}+4 \hat{k}) m$ and $(3 \hat{i}+6 \hat{j}+5 \hat{k}) m$ respectively. Locate the position of center of mass.

- Watch Video Solution

2. A car moving with a speed of $40 \mathrm{~km} / \mathrm{hr}$ comes to rest at a distance of 2 m after applying brakes. If the
same car is moving with a speed of $80 \mathrm{~km} / \mathrm{hr}$, what is the minimum stopping distance?

Watch Video Solution

3. The displacement of particle moving along x-axis is given by $x=6 t+12 t^{2}$, calculate the instantaneous velocity at $t=0$ and $t=2 s$.

D Watch Video Solution

4. The displacement x of a particle varies with time ' t '
as, $x=3 t^{2}-4 t+30$. Find the position, velocity and acceleration of the particle at $t=0$.

D Watch Video Solution

5. A particle is moving in a straight line its displacement at any instant t is given by $x=5 t^{2}+20 t^{3}$. Find the average acceleration in the interval $\mathrm{t}=0$ to $\mathrm{t}=3$ seconds.

D Watch Video Solution

6. Spring is pulled down by 2 cm . What is amplitude of motion?
A. 0 cm
B. 2 cm
C. 7 cm
D. 4 cm

Answer: B

D Watch Video Solution

7. A body starting from rest has an acceleration of $25 m s^{-2}$. Find the distance travelled by it in $20^{\text {th }}$ second.

D Watch Video Solution

8. A car moving uniform motion with speed
$120 \mathrm{kmh}^{-1}$ is brought to a stop within a distance of

200 m . How long does it take for the car to stop?

D Watch Video Solution

9. The velocity - time graph of an object moving along a straight line is as shown.

Calculate distance covered by object between $t=0$ to $\mathrm{t}=3$ and $\mathrm{t}=3$ to $\mathrm{t}=6$.

D View Text Solution

10. Find the angle between two vectors.

$$
A=\hat{i}+2 \hat{j}-\hat{k} \text { and } B=-4 \hat{i}+\hat{j}-2 \hat{k}
$$

11. Two bodies of mass 3 g and 6 g have position vectors $2 \hat{i}+\hat{j}+3 \hat{k}$ and $\hat{i}+3 \hat{j}+2 \hat{k}$ respectively.

Find the position vectors of center of mass.

- Watch Video Solution

12. Express cross and dot product of two vectors in

Cartesian coordinate.
13. Find the magnitude and directions of the vecots,
$\hat{i}+\hat{j}$ and $\hat{i}-\hat{j}$

- Watch Video Solution

14. Find the vector sum of three vectors \vec{A}, \vec{B} and \vec{C}, using analytical method.

- Watch Video Solution

15. Calculate the vector which has to be added to the resultant
$\vec{A}=2 \hat{i}-3 \hat{j}-4 \hat{k}$ and $\vec{B}=6 \hat{i}-4 \hat{j}-4 \hat{k} \quad$ gives unit vector along x -direction.

- Watch Video Solution

16. Chennai is a distance of 500 km from Coimbatore.
(A) sets out from Coimbatore at a speed of $50 \mathrm{kmh}^{-1}$
and (B) sets out at the same time from Chennai at a speed of $40 \mathrm{kmh}^{-1}$. When will they meet each other?

D Watch Video Solution

17. If $\vec{A}+2 \hat{i}-\hat{j}$ and $\vec{B}=4 \hat{i}-3 \hat{j}$ then, obtain the
scalar magnitude and direction from x - axis of,

D Watch Video Solution

18. If $\vec{A}+2 \hat{i}-\hat{j}$ and $\vec{B}=4 \hat{i}+3 \hat{j}$ then, obtain the
scalar magnitude and direction from x - axis of,
\vec{B}

- Watch Video Solution

19. If $\vec{A}+2 \hat{i}-\hat{j}$ and $\vec{B}=4 \hat{i}+3 \hat{j}$ then, obtain the
scalar magnitude and direction from x - axis of,
$\vec{A}+\vec{B}$
20. If $\vec{A}+2 \hat{i}-\hat{j}$ and $\vec{B}=4 \hat{i}-3 \hat{j}$ then, obtain the scalar magnitude and direction from x - axis of, $\vec{A}-\vec{B}$

- Watch Video Solution

21. The position of a particle is given by $r=2.00 t \hat{i}-1.00 t^{2} \hat{j}+3.00 \hat{k}$ where t is in seconds and the coefficients have the proper unit for r to be in metres. Find the velocity and acceleration of a particle then what is the magnitude and direction of velocity of the particle at $\mathrm{t}=2 \mathrm{~s}$?

- Watch Video Solution

22. If position of a particle at instant t is given by
$x=3 t^{2}$, find the velocity and acceleration of the particle.

- Watch Video Solution

23. Determine that vector which when added to the resultant of
$A=2 \hat{i}-4 \hat{j}+6 \hat{k}$ and $B=\hat{i}+3 \hat{j}-3 \hat{k}$ gives unit vector along z - direction.

Value Based Questions

1. Balu went to kuttraalam with his grandpa, when he saw the waterfalls falling down from the top of a mountain he could not believe his eyes. He loved admiring it. He adked grandpa how this is possible.

Grandpa said even now the answer to this question
from where the water is coming from the top of a mountain is a puzzle, but we got some scientific truths behind this flow.
(ii) Give the formula for time of flight of the waterfall.
2. Balu went to kuttraalam with his grandpa, when he saw the waterfalls falling down from the top of a mountain he could not believe his eyes. He loved admiring it. He adked grandpa how this is possible.

Grandpa said even now the answer to this question
from where the water is coming from the top of a mountain is a puzzle, but we got some scientific truths behind this flow.
(ii) Give the formula for time of flight of the waterfall.
3. Balu went to kuttraalam with his grandpa, when he saw the waterfalls falling down from the top of a mountain he could not believe his eyes. He loved admiring it. He adked grandpa how this is possible.

Grandpa said even now the answer to this question
from where the water is coming from the top of a mountain is a puzzle, but we got some scientific truths behind this flow.
(ii) Give the formula for time of flight of the waterfall.
4. Lord Rama and Arjuna were skilled in archery. As we apply more action (tension) to the string, the faster an arrow flies. After reading about Rama and Arjuna, Raju asked his friend Bhaskar is there any scientific facts behind Archery. He also asked Bhaskar about how to find force of the arrow.
(i) Is there any physics concept behind this archery?

D View Text Solution

5. A car accelerates from rest at a constant rate α for
sometime after which it decelerates at a constant
rate β to come to rest. If the total time lapse is t
seconds, evaluate:
(i) Maximum velocity reached and
(ii) The total distance travelled.

D Watch Video Solution

6. A particle is moving eastwards with a velocity of 5 m / s. In 10 s the velocity changes to $5 \mathrm{~m} / \mathrm{s}$ northwards.

The average acceleration in this time is
A. $\frac{1}{\sqrt{2}} \frac{m}{s^{2}}$ towards north-west
B. $\frac{1}{\sqrt{2}} \frac{m}{s^{2}}$ towards north-east
C. $\frac{1}{2} \frac{m}{s^{2}}$ towards north-west
D. $\frac{1}{2} \frac{m}{s^{2}}$ towards north

D Watch Video Solution

7. Displacement (y) of the particle is given by:
$y=2 t+t^{2}-2 t^{3}$. Then, the velocity of the particle when acceleration is zero is
A. $\frac{5}{2}$
B. $\frac{9}{4}$
C. $\frac{13}{6}$
D. $\frac{17}{8}$

- Watch Video Solution

Creative Question Hots

1. Find the speed of the projectile when it hits the ground.

D Watch Video Solution

2. Find the position and velocity of x at time, $t=2$
seconds
A. $(19 \mathrm{~m}, 19 \mathrm{~m} / \mathrm{s})$
B. $(19.6 \mathrm{~m}, 19.6 \mathrm{~m} / \mathrm{s})$
C. $(10 \mathrm{~m}, 10 \mathrm{~m} / \mathrm{s})$
D. $(11 \mathrm{~m}, 12 \mathrm{~m} / \mathrm{s})$

Answer: B

- Watch Video Solution

3. If the velocity of projectile is $20 \mathrm{~ms}^{-1}$ at what angle to the horizontal should be projected as that it covers maximum horizontal distance of 10 m
4. A man moving in rain holds his umbrella inclined to the vertical even though the rain drops are falling vertically downwards. Why?

- Watch Video Solution

5. A train 20 m long is moving with a speed of 40
km / h. In what time shall it cross a bridge of 500 m
long?

D Watch Video Solution
6. The position of an particle is given by $x=6 t+2 t^{3}$.

Find out whether is motion is uniform or non uniform.

D Watch Video Solution

7. A bus starting from rest moves with a uniform acceleration of $0.2 m s^{-2}$ for 3 minutes. Find the speed and distance travelled.

D Watch Video Solution

8. At train moving with a speed of $100 \mathrm{~km} / \mathrm{h}$ can be stopped by brakes after atleast 15 m . What will be the minimum stopping distance, if the same train is moving at a speed of $120 \mathrm{~km} / \mathrm{h}$?

- Watch Video Solution

9. A person travels along a straight road for the first
half distance 4 m with a velocity $1 m s^{-1}$ and the second half distance 3 m with a velocity $0.7 \mathrm{~ms}^{-1}$. What is the mean velocity of the person?
10. If three cars A, B and C move with velocities along
directions on that road side, what is the vector hidden in this case.

- Watch Video Solution

11. Name the quantity which remains unchanged during the flight of an oblique projectile.

D Watch Video Solution

12. If the velocity of projectile is $20 \mathrm{~ms}^{-1}$ at what angle to the horizontal should be projected as that it
covers maximum horizontal distance of 10 m

Watch Video Solution

