©"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - SURA PHYSICS (TAMIL

ENGLISH)

NATURE OF PHYSICAL WORLD AND MEASUREMENT

Mcq Type

1. One of the combinations from the
fundamental physical constants is $\frac{h c}{G}$. The unit of this expression is
A. $k g^{2}$
B. m^{3}
C. s^{-1}
D. $\mathrm{m}^{`}$

Answer: A

D Watch Video Solution

2. If the error in the measurement of radius is

2%, then the error in the determination of
volume of the pshere will be

A. 0.08

B. 0.02
C. 0.04
D. 0.06

Answer: D

- Watch Video Solution

3. If the length and tiome period of an oscillating pendulum have errors of 1% and 3% respectgively then the error in measurement of acceleratinon due to gravity is
A. 0.04
B. 0.05
C. 0.06
D. 0.07

Answer: D
4. The length of a body is measured as 3.51 m , if
the acuracy is 0.01 m , then the percentage errof in the measurement is
A. 3.51
B. 0.01
C. $0.28 \mathrm{~S} \%$
D. 0.00035
5. Which of the following has the highest number of significant figures?
A. $0.007 m^{2}$
B. $2.64 \times 10^{24} \mathrm{~kg}$
C. $0.0006032 m^{2}$
D. 6.3200 J

Answer: D

6. If $\pi=3.14$, then the value of π^{2} is

A. 9.8596
B. 9.85
C. 9.86
D. 9.9

Answer: C

D Watch Video Solution
7. Which of the following pairs of physical quantities have same dimension?
A. force and power
B. torque and energy
C. torque and power
D. force and torque

Answer: B

D Watch Video Solution
8. The dimensional formula of Planck's constand h is
A. $\left[M L^{2} T^{-1}\right]$
B. $\left[M L^{2} T^{-3}\right]$
C. $\left[M L T^{-1}\right]$
D. $\left[M L^{3} T^{-3}\right]$

Answer: A
(Watch Video Solution
9. The velocity of a particle v at a instant t is given by $v=a t+b t^{2}$. The dimension of b is
A. $[L]$
B. $\left[L T^{-1}\right]$
C. $\left[L T^{-2}\right]$
D. $\left[L T^{-3}\right]$

Answer: D

- Watch Video Solution

10. The dimensional formual for gravitational constnat G is
A. $\left[M L^{3} T^{-2}\right]$
B. $\left[M^{-1} L^{3} T^{-2}\right]$
C. $\left[M^{-1} L^{-3} T^{-2}\right]$
D. $\left[M L^{-3} T^{2}\right]$

Answer: B

D Watch Video Solution
11. The density of material in CGS system of units is $4 \mathrm{gcm}^{-3}$. In a system of units in which unit of length is 10 cm and unit of mass is 100 gm, then the value of density of material will be
A. 0.04
B. 0.4
C. 40
D. 400

Answer: C
12. If the force is proportional to square of
velocity, the the dimensional of proportionality constant is
A. $\left[M L T^{0}\right]$
B. $\left[M L T^{-1}\right]$
C. $\left[M L^{-2} T\right]$
D. $\left[M L^{-1} T^{0}\right]$
13. The dimension of $\left(\mu(\circ) E_{\circ}\right)^{-\frac{1}{2}}$ is
A. length
B. time
C. velocity
D. force and torque

Answer: C
14. Plank's constant (h), speed of light in vacuum (c) and Newton's gravitational constant (G) are taken as three fundamental constants.

Which of the following combinations of these has the dimensions of length?

$$
\begin{aligned}
& \text { A. } \frac{s q r s t(h G)}{c^{\frac{3}{2}}} \\
& \text { B. } \frac{\sqrt{h G}}{c^{\frac{5}{2}}} \\
& \text { C. } \sqrt{\frac{h c}{G}} \\
& \text { D. } \sqrt{\frac{G c}{h^{\frac{3}{2}}}}
\end{aligned}
$$

Answer: A

D Watch Video Solution

15. A length -scale (I) depends on the permittivity (ε) of a dielectric material, Boltzmann constant $\left(k_{B}\right)$, the absolute temperature (T), the number pr unit volume
(n) of certain charged paticles, and the charge
(q) carried by each of the particles. Which of
the following expression for I is dimensionally correct?

> A. $l=\sqrt{\frac{n q^{2}}{s k_{B} T}}$
> B. $l=\sqrt{\frac{\varepsilon k_{B} T}{n q^{2}}}$
> C. $l=\sqrt{\frac{q^{2}}{\varepsilon n^{\frac{2}{3}} k_{B} T}}$
> D. $l=\sqrt{\frac{q^{2}}{\varepsilon n k_{B} T}}$

Answer: B

D Watch Video Solution

Short Answer Questions

1. Briefly explain the types of physical quantities.

D Watch Video Solution
2. How will measure the diameter of the Moon
using parallax method?

- Watch Video Solution

3. Write the rules for determining significant figures.

D Watch Video Solution
4. What are the limitations of dimensional analysis?
(D) Watch Video Solution
5. Define precision and accuracy. Exp,ain with one example.

D Watch Video Solution

Long Answer Questions

1. (i) Explain the use of screw gauge and vernier caliper in measuring smaller distances.
(ii) Write a note on triangultion method and radar method to measure larger distances.

Watch Video Solution

2. Explain in detail the various types of errors.

- Watch Video Solution

3. What do you mean by propagation of errors? Explain the propagation of errors in addition and multiplication.
4. Write short notes on the following:
a. Unit
b. Rounding -off
c. Dimensionless quantities

D Watch Video Solution

5. Explain the principle of homogeneity of dimensions. What are its uses? Given example.

Numerical Problems

1. In a submarine equipped with sonar, the time delay between the generation of a pulse and its echo after reflection from an eneny submarine is observed to be 80 sec . If the speed of sound in water is $1460 \mathrm{~ms}^{-1}$. What is the distance of enemy submarine?

D Watch Video Solution

2. The radius of the circle is 3.12 m . Calculate the area of the circkle with regard to significant figures.

D Watch Video Solution

3. Assuming that the frequency γ of a vibrating string may depend upon (i) applied force (F) (ii) length (I) (iii) mass per unit lengt
(m), prove that $\gamma \propto \frac{1}{l} \sqrt{\frac{F}{m}} \quad$ using dimensional analysis.
4. Jupiter is at a distance of 824.7 million km
from the Earth. Its angular diameter is measured to be 35.72". Calculate the diameter of Jupiter.

- Watch Video Solution

5. The measurement value of length of a simple pendulum is 20 cm known with 2 mm accuracy. The time for 50 oscillations was
measured to be 40 s within 1 s resolution.

Calculate the percentage accuracy in the determination of acceleration due to gravity g from the above measurement.

- Watch Video Solution

Conceptual Questions

1. Why is it convenient to express the distance of stars in terms of light year (or) parsec rather than in km ?

- Watch Video Solution

2. Show that a screw gauge of pitch I mm and 100 divisions is more precise than a vernier caliper with 20 divisions on the sliding scale.

- Watch Video Solution

3. If humans were to settle on other planets,
which of the fundamental quantities will be in trouble? Why?
4. Having all units in atomic standards in more useful. Expalin.

D Watch Video Solution
5. Why dimensional methods are applicable only up to three quantities?
(Watch Video Solution

1. A substance whose mas is 4.27 g occupies
$1.3 \mathrm{~cm}^{3}$. The number of significant figure in density is
A. 1
B. 2
C. 3
D. 4

2. Triple point of water is :

A. 273.16 k
B. 237.16c
C. 273.16c
D. Ok

Answer: A

3. Mass, temperature, electric current are

A. fundamental quantities
B. scalar quantities
C. vector quantities
D. both a and b

Answer: D

- Watch Video Solution

4. The workd scientia is meaning to
A. exact
B. to know
C. control
D. implement

Answer: B

- Watch Video Solution

5. Astronomical Scale is dealt with
the Physics
A. mesoscopic
B. Microscoic
C. marcrospic

D. None

Answer: C

D Watch Video Solution
6. Microscopic group of Physics dealt with the study of
A. classical physics

B. statistical mechanics

C. fluid mechanics
D. quantum physics

Answer: D

- Watch Video Solution

7. Which deals with the study of materials of an intermediate length scale
A. Mesoscopic physics
B. Macroscopic physics
C. Microscopic phyics
D. All the above

Answer: A

D Watch Video Solution
8. What is the range of astronomical time scales to microscopic scale?
A. $10^{15} s$ to $10^{-15} s$
B. $10^{9} s$ to $10^{-18} s$
C. 10^{18} to $10^{-22} s$
D. $10^{11} s$ to $10^{-16} s$

Answer: C

D Watch Video Solution
9. The law of electricity and magnetism is used
to
A. Wireless communication
B. Nuclear reactor
C. Steam engine

D. Aeroplaned

Answer: A
(D) Watch Video Solution
10. How many gram make `deca gram?

A. 10 g

B. 100 g
C. 1 kg
D. 100kg

Answer: A

D Watch Video Solution
11. 1 nano second is equivalent to
A. $10^{\wedge}(-6) s^{`}$
B. $10^{-3} s$
C. $10^{-15} s$
D. $10^{-9} s$

Answer: D

D Watch Video Solution

12. Which unit is used to measure size of a nucleus?
A. Angstrom
B. Micron
C. nano
D. Fermi

Answer: D

D Watch Video Solution
13. One paralactic second is
A. $3.08 \times 10^{16} m$

B. $1.49 \times 10^{11} \mathrm{~m}$
 C. $9.46 \times 10^{15} \mathrm{~m}$
 D. $1.6 \times 10^{-27} m$

Answer: A

D Watch Video Solution

14. How many light years make 1 parsec?
A. 3.26
B. 6.67
C. 1.5
D. 9.4

Answer: A

D Watch Video Solution

15. How many AU makes one metre?
A. $3.26 \times 10^{11} A U$
B. $1.496 \times 10^{11} A U$
C. $3.08 \times 10^{16} A U$
D. $6.684 \times 10^{-12} A U$

Answer: D

D Watch Video Solution

16. One lunar month is equal to
A. 29 days
B. 27.3 days
C. 365 days
D. 30 days

Answer: B

D Watch Video Solution

17. What is the value of one light year in tera metre?
A. $9.46 \times 10^{6} \mathrm{Tm}$
B. $9.46 \times 10^{9} \mathrm{Tm}$
C. 9.46×10^{2} Tm
D. $9.46 \times 10^{3} \mathrm{Tm}$

Answer: D

D Watch Video Solution

18. The acceleration of $20 \mathrm{~m} / \mathrm{s}^{2}$ in km / h^{2} is
A. $2.59 \times 10^{5} \mathrm{~km} / \mathrm{h}^{2}$
B. $1.29 \times 10^{5} \mathrm{~km} / \mathrm{h}^{2}$
C. $2.0 \times 10^{3} \mathrm{~km} / \mathrm{h}^{2}$
D. $3.5 \times 10^{5} k \frac{m}{h^{2}}$
19. Which devices is used for measuring the mass of atoms/
A. Spectrograph
B. Fermi
C. Telescope
D. Microscope

Answer: A
20. Which of the following statement is wrong?
A. one fermi $=10^{15} \mathrm{~m}$
B. All non-zero digits are significant
C. $1 \mathrm{AU}=1.496 \mathrm{xx10}{ }^{\wedge}(11) \mathrm{m}^{`}$
D. Speed is a derived unit

Answer: A

D Watch Video Solution
21. Which of the followng statement is wrong?
A. Strain is a dimensionless quantity.
B. Fundamental quantify is also called the
base quantity.
C. Force $=$ mass \times acceleration
D. 1 solar year $=1500$ days

Answer: D

22. Whichof the following statement is true?

A. Velocityi is a fundamental unit.
B. 1 Solar day $=24$ hours
C. 1 Shake $=10^{4} s$
D. mass is a derived unit

Answer: B
23. The number of significant figures in 0.0006012 m is
A. 3
B. 4
C. 7
D. 5

Answer: B

D Watch Video Solution
24. The numebr of significant figures in $2.64 \times 10^{4} \mathrm{~kg}$ is
A. 2
B. 4
C. 5
D. 3

Answer: D

- Watch Video Solution

25. The displacement of a particle moving
along x-axis with respect to times is given by
$x=a t+b t^{2}-c t^{3}$. The dimensions of b are
A. $L^{0} T^{-3}$
B. $L^{0} T^{-3}$
C. $L T^{-2}$
D. $L T^{-3}$

Answer: C

D Watch Video Solution
26. If E and B respectively, represent electric
field and magnetics induction field, then the
ratio E and B has the dimensions of
A. angle
B. acceleration
C. velocity
D. displacement.

Answer: C

D Watch Video Solution
27. If force $|F|$, velocity $|v|$ and time $|T|$ are taken as to fundamental units then the dimensions of mass are
A. $F v^{-1} T$
B. $F v^{-1} T$
C. $F v T^{-1}$
D. $F v T^{-2}$

Answer: B

- Watch Video Solution

28. The dimensiions of K.E. is

A. $M^{2} L^{2} T^{-1}$
B. $M^{1} L^{1} T^{1}$
C. $M^{1} L^{2} T^{-2}$
D. $M^{2} L^{2} T^{-2}$

Answer: C
29. The dimensionis of universal gravitational constant is
A. $M^{-2} L^{3} T^{-2}$
B. $M{ }^{-2} L^{2} T^{-1}$
C. $M^{-1} L^{3} T^{-2}$
D. $M L^{2} T^{-1}$

Answer: C
(Watch Video Solution
30. The density of a cube is measured by measuring its mass and length of its side. If the maximum error in the measurement of mass and length are 5\% and 3\% respectively, the maximum error in the measurement of density is
A. 0.09
B. 0.08
C. 0.14
D. 0.02

D Watch Video Solution

31. The fractional error $\left(\frac{\Delta x}{x}\right)$
A. $\pm\left(\frac{\Delta a}{a}\right.$
B. $\pm n\left(\frac{\Delta a}{a}\right.$
C. $\pm n \log _{e}\left(\frac{\Delta a}{a}\right)$
D. $\left.\pm n \frac{\log _{10}(\Delta a)}{a}\right)$
A. 3.26 LY
B. 6.67 LY
C. 1.5LY
D. 9.4 LY

Answer: A

33. If $\pi=3.14$, then the value of π^{2} is

A. 9.8596
B. 9.86
C. 9.86
D. 9.9

Answer: C

D Watch Video Solution

34. Which of the following parirs of physical quantities have same dimension?
A. force and power
B. Stress amd Presssure
C. Momentum and Moment of force
D. Torque and impulse of force

Answer: B

35. The Dimensional formula for Boltzmann constant is
A. $\left[M L^{2} T^{-1}\right]$
B. $\left[A T \mathrm{~mol}^{-1}\right]$
C. $\left[M L^{2} T^{-2} K^{-1}\right]$
D. None of these

Answer: C

D Watch Video Solution
36. Specific gravity (Relative Density) is an example for
A. Dimensional Variables
B. Dimensionaless Variables
C. Dimensional Constant
D. Dimension less Constant

Answer: B
(Watch Video Solution

37. 8.250 can be Rounded off to

A. 8.3
B. 8.2
C. 8.25
D. 8.26

Answer: B

D Watch Video Solution
38. If E and B respectively represent electric
field and magnetic field of Induction, then the
ratio of E and B has the dimensional formula of
A. $\left[L T^{-2}\right]$
B. $\left[M L T^{-2}\right]$
C. $\left[L T^{-1}\right]$
D. $\left[M L T^{-1}\right]$

Answer: C

39. Which one has more significant figures
A. 600800
B. 5213
C. 2.65×10^{24}
D. 0.0006032

Answer:

40. Angle of 1 Second of arc is
A. $48.5 \times 10^{-6} \mathrm{rad}$
B. $0.485 \times 10^{-5} \mathrm{rad}$
C. $4.85 \times 10^{-6} \mathrm{rad}$
D. $48500 \times 10^{-6} \mathrm{rad}$

Answer: C

- Watch Video Solution
41.1 Yotta =
A. 10^{21}
B. 10^{-24}
C. 10^{-21}
D. 10^{24}

Answer: D

D Watch Video Solution

42. If mass of an electron is 9.11×10^{-31} kg
then how many electrons would weight in 1 mg ?
A. 1.68×10^{18}
B. 1.097×10^{24}
C. 1.45×10^{22}
D. 1.970×10^{23}

Answer: B

D Watch Video Solution
43. An attemp to explain a Macroscopic system in terms of its Microscopic constituents is

A. unification

B. Reductionism
C. Microphysics
D. Macrophysics

Answer: B

D Watch Video Solution

44. The range of masses from heavelny bodies
to electro is
A. $10^{52} \mathrm{~kg}$ to $10^{-28} \mathrm{~kg}$
B. $10^{55} \mathrm{~kg}$ to $10^{+28} \mathrm{~kg}$
C. $10^{55} \mathrm{kt}$ to $10^{-31} \mathrm{~kg}$
D. $10^{-55} \mathrm{~kg}$ to $10^{31} \mathrm{~kg}$

Answer: C

D Watch Video Solution
45. The CGS, MKS and SI system of units are system of units.
A. metric

B. cubic

C. periodic
D. atomic

Answer: A

- Watch Video Solution

46. The temperature at which Saturated vapur, pure and melting ice are all in equilibrium is
A. sublimation
B. melting point
C. Triple point of water
D. heat capacity

Answer: C

D Watch Video Solution
47. The expression for Solid Angle is
A. rod/s
B. surface area/(radius) ${ }^{2}$
C. $(\text { radius })^{2}$
D. surface area/radius

Answer: B

D Watch Video Solution
48. $J K g^{-1} K^{-1}$ is the unit for
A. Heat capacity
B. Latent heat

C. Specific heat

D. Energy

Answer: C

D Watch Video Solution

49. 1 degree $=$ _____rad
A. 1.754×10^{-2}
B. 1.745×10^{2}
C. 1.745×10^{-2}
D. 1.547×10^{-2}

Answer: C

D Watch Video Solution

50. means a large world in
whilch both objects and distances are large sized.
A. Macrocosm
B. Micorcosm

C. Astronomy

D. Universe

Answer: A

- Watch Video Solution

51. The largest practical unit of mass is
A. CSL
B. Par sec
C. Ly
D. AU

Answer: A

D Watch Video Solution

52. The error caused due to the shear carelessness of an observer is called
A. Absolute Error
B. Gross Error

C. Instrumental Error

D. Zero Error

Answer: B

- Watch Video Solution

53. Quantities which have constant vaues and also have no dimensions are called
A. Dimensionless Constants

B. Dimensionale variables

C. Dimensionaless constants
D. Derived quantities

Answer: A

- Watch Video Solution

54. Dimensional formula for Magnetic Induction is \qquad .
A. $M T^{2} A^{-1}$

B. $M T^{2}-A$
 C. $M T^{-2} A^{-1}$
 D. $M A^{-1}$

Answer: C

- Watch Video Solution

55. Formula (or) expression for surface energy
is \qquad
A. work/length
B. force/length
C. work/time

D. work/area

Answer: D

D Watch Video Solution

56. Relative error is also called as
A. Gross error
B. Percentage Error

C. Absolute Error

D. Fractional Error

Answer: D

- Watch Video Solution

57. The name Physics was introduced by in 350 B.C
A. Thalus
B. Ptolemy

C. Aristotle

D. Copernicus

Answer: C

D Watch Video Solution

58. CHOOSE THE ODD ONE OUT:

A. Specific gravity
B. Strain
C. refractive index

D. Planck's constant

Answer: D

D Watch Video Solution

59. CHOOSE THE ODD ONE OUT:

A. Absolute Error
B. Relative Error
C. Percentage Error
D. Gross Error

Answer: D

- Watch Video Solution

60. CHOOSE THE ODD ONE OUT:
A. Solar clock
B. Electronic Oscillators
C. Radio active dating

D. Electronic balance

61. CHOOSE THE ODD ONE OUT:

A. Energy

B. Weork

C. Torque
D. Force

Answer: D

62. CHOOSE THE ODD ONE OUT:

A. length
B. Mass
C. Time
D. Volume

Answer: D

D Watch Video Solution

63. CHOOSE THE ODD ONE OUT:

A. f.p.s

B. c.g.s
C. m.k.s
D. r.m.s

Answer: D

64. CHOOSE THE ODD ONE OUT:

A. Optics
B. Acoustics
C. Astrophysics

D. Nuclear Physics

Answer: D

65. CHOOSE THE ODD ONE OUT:

A. Force constant

B. Planck's constant

C. Boltzmann constant

D. Refractive Index

Answer: D

66. CHOOSE THE INCORRECT PAIR:
A. Work-Energy
B. Stress-Pressure
C. Force-Tension
D. Surface Tension-Force

Answer: D

67. CHOOSE THE INCORRECT PAIR:

A. Velocity -Angular velocity
B. Force-Torque
C. Mass-Moemnt of Inertia
D. Frequency-Wavelength

Answer: D

68. CHOOSE THE INCORRECT PAIR:

A. Density-Relative Density
B. Strain-refractive Index
C. $\pi-e$

D. Planck's constant-Stefan's constant

Answer: D

69. CHOOSE THE INCORRECT PAIR:

A. Heat-Energy
B. Mass-Inertia
C. Charge-Current

D. Moment of force-Torque

Answer: C

70. CHOOSE THE CORRECT PAIR:

A. 30.00-2009
B. 0.00345-2.6
C. $0.040500-20100 \mathrm{~m}$
D. 153-3072

Answer: A

71. CHOOSE THE CORRECT PAIR:

A. Telescope-Microscope
B. Screw gauge-Radar Method
C. Parallax Method -Vernier Caliper
D. Spring balance -Common balance

Answer: D

- Watch Video Solution

72. CHOOSE THE CORRECT PAIR:

A. Torque-Nm
B. Planck's constnat-J/s
C. Specific heat $-J k g k^{-1}$
D. Momentum of Inertia $-\mathrm{kg} / \mathrm{m}^{2}$

Answer: A
73. Assertion: Attempting to explain diverse physical phenomena with a few concepts and laws is unification.

Reason: Attempting to explain a macroscopic system in terms of terms its micorscopic constituents is reductionism.
A. Assertion and reason are correct and Reason is correct explanation of Assertion.
B. Assertion and Reason are true but Reason is the false explanation of the

Assertion
C. Assertion is true but Reason is false
D. Assertion is false but Reason is true

Answer: B

D Watch Video Solution

74. Assertion: Study of light is called optics

Reason: Properties of light is studied in optics.
They are Reflection, Refraction etc.
A. Assertion and Reason are correct and

Reason is correct explanation of

Assertion.
B. Assertion and Reason are true but

Reason is the false explanation of

Assertion.
C. Assertion is true but Reason is false.

D. Assertion is false but Reason is true.

Answer: A

D Watch Video Solution

75. Assertion: Quantities that can be expressed in terms of fundamental quantities are derived quantities.

Reason: Examples are Mass, Length, Time etc.

D
 Watch Video Solution

76. Assertion: In centimeter the spelling meter is internationally accepted.

Reason: Metre is internationally used unit whereas meter is used by Americans.

D Watch Video Solution

77. Assertion: Mass due to rotational motion is moment of Inertia.

Reason: Rotational mass explains about radius of Gyration.
78. Assertion: Very large distances such as distance of a planet or star can be measured by parallax method.

Reason: For measuring small masses of atomic/ sub-atomic particles, mass spectrograph is used.

D Watch Video Solution

79. Assertion: The least value that can be measured using screw gauges, vernier calipers is called least count.

Reason:The magnitude of difference between
the true value and the measured value is called relative error or fractional error.

D Watch Video Solution

80. Assertion: The rounding off of 27.653 upto

3 digits is 27.7

Reason: 10200 has three significant figures
A. Assertion and Reason are correct and

Reason is correct explanation of

Assertion.
B. Assertion and Reason are True but

Reason is the False explanation of the

Assertion.
C. Assertion is true but Reason is false.
D. Assertion is false but Reason is true.

- Watch Video Solution

81. Assertion: Dimensional analysis method is
used to convert a physical quantity from one system of units to another.

Reason: $\frac{1}{2} m v^{2}=m g h$
A. Assertion is true but Reason is false.
B. Assertion is false but Reason is true.
C. Assertion and Reason are correct and

Reason is correct explanation of

Assertion.
D. Assertion and Reason are true but

Reason is the false explanation of

Assertion.

Answer: d

D Watch Video Solution
82. (I) RADAR method is used for measurement of length in the case of long distances
(II) The uncertainty in a measurement is called

error:

Which statement is correct?

A. I only
B. II only
C. Both are correct

D. None

Answer: C
(Watch Video Solution
83. (I) $G_{C G S}=6.6 \times 10^{-8}$ dyne $C m^{2} g^{-2}$
(II) $T=2 \pi \sqrt{\frac{g}{l}}$

Which statement is correct?
A. I only
B. II only
C. Both are correct

D. Non

Answer: A
84. (I) Expression for charge is current/time
(II) Expression for Faraday constant is

Avagadro constant \times elementary charge
Which statement is correct?
A. I only
B. II only
C. Both are correct
D. None

Answer: B
85. (I)Force constant and Faraday constant are examples for Dimensional constant
(II) Radius of gyration does not depend on moment of Inertia.

Which statement is incorrect?
A. I only
B. II only
C. Both are correct
D. None

Answer: B

D Watch Video Solution

86. (I) The ratio of mean absolute error to the mean value is called fractional error
(II) Due to the wrong observations Recording,

Random errors occur.

Which statement is correct?
A. I only
B. II only

C. Both are correct

D. None

Answer: A

D Watch Video Solution

87. (I)Distance of moon from earth is $10^{11} \mathrm{~m}$
(II) Mass of a cell is $10^{-10} \mathrm{~kg}$

Which statement is incorrect?
A. I only

B. II only

C. Both are correct
D. None

Answer: A

D Watch Video Solution
88. (I) Least count of screw gauge is 0.01 mm
(II) Least count of vernier calliper is 0.1 mm

Which one is correct?
A. I only
B. II only
C. Both are correct
D. None

Answer: C

D Watch Video Solution

89.

(I)Parallax
angle
$\theta=\frac{\text { Unknown distance }(x)}{\operatorname{base}(b)}$
(II) Distance of the planet
$d=$ Velocity of radio wave $\left(V^{e}\right) \times$ time taken (t)

Which statement is incorrect?
A. I only
B. II only
C. Both are correct
D. None

Answer: A

90. (I)Frequency and angular velocity has same

 dimensional formula(II) Torque is also called as rotational force

Which one is correct?
A. I only
B. II only
C. Both are correct
D. None

- Watch Video Solution

91. Check the dimensional correctness for the given equation.
(a) $v=u+a t$
(b) $s=u t+\frac{1}{2} a t^{2}$

D Watch Video Solution

92. Roudn off to required significant figures.
a. $3.1+1.780+2.046$ b. $12.637-2.42$
c. 1.21×36.72 d. $36.72:-1.2$

93. What are random errors? How to minimise

it?
(D) Watch Video Solution
94. Write down the number of significant figures in the following (i) 0.007 (ii) 400

D Watch Video Solution

95. What are the advantages of SI system?

D Watch Video Solution

96. What is the fractional error?

- Watch Video Solution

97. What is science?

98. What are the steps involved in scientific
method? (or) What are the general features of
scientific method?

D Watch Video Solution

99. What is the Physics?

(Watch Video Solution

100. What is mechanics?
101. Write a note on scope of physics.

D Watch Video Solution

102. What is MKS system?

- Watch Video Solution

103. What is the aim of our Science Education?
104. Name three practical units to measure mass.
(D) Watch Video Solution
105. Define Solar Year.

- Watch Video Solution

106. What is Leap year?

- Watch Video Solution

107. Name three practical units to measure Area.

D Watch Video Solution

108. What is the importance of physical quantity? What are its types?

- Watch Video Solution

109. Define unit of a physial quantity.

- Watch Video Solution

110. What are the things needed to express
the measurement of a physical quantity?

- Watch Video Solution

111. Name the prefixes for powers of ten with
its symbol.

- Watch Video Solution

112. Name four units to measure extremely small distances.

- Watch Video Solution

113. Name three units to measure extremely large distances.

D Watch Video Solution
114. What is an error? Name the three Errors in

Measurement.

- Watch Video Solution

115. What is Absolute Error.

- Watch Video Solution

116. What is Mean Absolute error?

- Watch Video Solution

117. What is Relative error?
(Watch Video Solution
118. What is Percentage error?

- Watch Video Solution

119. What is significant figures?

- Watch Video Solution

120. What is menat by the dimensions of a physical quantity?

- Watch Video Solution

121. What are Dimensional variables? Give example.

D Watch Video Solution
122. What is menat by Dimensionless variables? Give example.

D Watch Video Solution
123. Define Dimensional Constant. Give example.

D Watch Video Solution
124. What is menat by Scientific method?

D Watch Video Solution

125. What do you mean by unification and reductionism?

- Watch Video Solution

126. What is Classical mechanics?

- Watch Video Solution

127. What is Thermodynamics?

- Watch Video Solution

128. What si the meaning of Acoustics?

- Watch Video Solution

129. What is Astrophysics?

- Watch Video Solution

130. What is meant by Quantum mechanics?

- Watch Video Solution

131. Which brances of physics deal at the level of atom \& nucleus?

- Watch Video Solution

132. What are types of discoveries in physics?

- Watch Video Solution

133. What is menat by Range of time scales?

134. What is meant by Range of masses?

D Watch Video Solution
135. How physics is related to technology and define technology with respect to Physics.

- Watch Video Solution

136. In what ways physics is in relation to astronomy?

D Watch Video Solution
137. Define the SI unit of length.

D Watch Video Solution
138. Define the SI unit of mass (or) What is one
kilogram in SI system of units?

- Watch Video Solution

139. Define the SI unit of time. (or) What is one second in SI system of units?

D Watch Video Solution

140. Define th SI unit of electric current. (or)

What is one second in SI system of units? (or)

Define one ampere (S.I standard for current)

141. What is the SI unit of temperature and define it? What is one kelvin in SI system of units?

D Watch Video Solution

142. What is the SI unit of amount of substance?
(or) What is one mole in SI system of units?
(or) Define one mole (S.I standard for amount of substance)
143. What meant by one candela? And Which base quantity is measured by this unit? (or) Define one candela (S.I standard for Luminous intensity)

- Watch Video Solution

144. What is meant by the triple point of water?

Watch Video Solution

145. What is meant by Parallax?

- Watch Video Solution

146. What is 1 Light year?

- Watch Video Solution

147. Define a Astronomical Unit.

Watch Video Solution

148. What is parsec? (or) Define one parsec (parallactic second)

D Watch Video Solution

149. Why is the cylinder used in defining kilogram made up of platimum-iridium alloy?
150. Write the largest and the smallest practical unit of mass and time respectively. (or) define Chandrasekar Limit (CSL)

D Watch Video Solution

151. Define mass

D Watch Video Solution

152. Write the masses of tiny as well as huge matter?

- Watch Video Solution

153. Write the methods to determine the masses of objects?

- Watch Video Solution

154. What is clock? Write the principle and its
types.

D Watch Video Solution
155. Which units are used to measure laerge distance i.e. distance of planets and stars?

Which method is used for measurement?

D Watch Video Solution

156. Is it possible to have length and velocity
both as fundamental quantities? Why?

D Watch Video Solution

157. Which of these unit is lasrgest: AU, light
year and parsec. Express the average distance of earth from the sun in (i) light year (ii) per sec.

- Watch Video Solution

158. The radius of gold nucleus is 41.3 Fermi.

Express its volume in m^{3}
159. Describe the relation of Physics with mathematics

- Watch Video Solution

160. What is the difference between Accuracy and Precision?

- Watch Video Solution

161. Describe the Personal errors.
162. Describe the errors due to external causes.

D Watch Video Solution

163. What is dimensiional equation? Given an example.
164. Define FPS system of units.

D Watch Video Solution
165. Define CGS system of units.
(D) Watch Video Solution
166. Define MKS system of units.

- Watch Video Solution

167. Define one radian (S.I standard for plane angle)

D Watch Video Solution

168. Define one steraedian(S.I standard for solid angle)

D Watch Video Solution

169. Write a note on radar method to measure
larger distances.
170. The voltage across a wire is $(100 \pm 5) v$ and the current passing through it is $(10 \pm 0.2) A$.

- Watch Video Solution

171. Check the correctness of the equation $E=m c^{2}$ using dimensional analysis method.
172. Two resistances
$R_{1}(100 \pm 3) \Omega$ and $R_{2}=(150 \pm 2) \Omega \quad$ are
connected inseries. What is their equivalent resistance?

D Watch Video Solution
173. Find the dimensional formula of hC / G.
174. Given any application of physcis in our society.

D Watch Video Solution

175. What are fundamental quantities and drived quantities?

- Watch Video Solution

176. What are fundamental units and derived units?
177. Define th SI unit of electric current. (or)

What is one second in SI system of units? (or)
Define one ampere (S.I standard for current)

- Watch Video Solution

178. What meant by one candela? And Which
base quantity is measured by this unit? (or)

Define one candela (S.I standard for Luminous intensity)

D Watch Video Solution

179. Give the values for the following units with prefixes
(i) 1 Mega ohm (ii) 1 milliampere
(iii) 1 deca ram (iv) 1 nano second
(v) 1 micro volt (vi) 1 centimetre.
180. What are the advantages of SI system?

- Watch Video Solution

181. Distinguish between fundamental and derived units.

- Watch Video Solution

182. Given any three practical units of time.

D Watch Video Solution
183. What is Gross Error \& How can it be minimised?

D Watch Video Solution
184. Explain Random errors.

- Watch Video Solution

185. Explain unificatinon with example.

Watch Video Solution

186. Explain reductionism with example.

- Watch Video Solution

187. How are theoretical predictions useful?

- Watch Video Solution

188. In what way physics is exciting us?

Watch Video Solution

189. Write the role of Physics in Technology.

D Watch Video Solution

190. In what way Physics is in relation to

Chemistry.

D Watch Video Solution

191. What is the relation of Physics to Biology?

D Watch Video Solution

192. How is physics useful in geology and oceanogrpahy? (or) Describe the relation of Physics with geology.

- Watch Video Solution

193. How can the systematic errors be minimised?

D Watch Video Solution
194. What are systematic errors? (or) What are the Classifications of Systematic errors?
195. Describe the relation of Physics with Psychology.

D Watch Video Solution
196. Describe Instrumental errors. How is it minimised?

- Watch Video Solution

197. Write a note on parallax method.

- Watch Video Solution

198. The force F acting on a body moving in a circular path depends on mass of the body (m)
velocity(v) and radius (r) of the circular path.
Obtain the expression for the force by dimensional analysis method $(k=1)$

- Watch Video Solution

199. Obtain an expression for the time period T of a simple pendulum. [The time period T depend upon (i) mass I of the bob (ii) length m of the pendulum and (iii) acceleration due to gravity g at the place where pendulum is suspended.

Assume the constant $k=2 \pi$]

D Watch Video Solution

200. In a series of successive measurements in
an experiment, the readings of the period of oscillation of a simple pendulum were found to be $2.63 \mathrm{~s}, 2.56 \mathrm{~s}, 2.42,2.71 \mathrm{~s}$ and 2.80 s .

Calculate
(i) the mean value of the period of oscillation
(ii) the absolute error in eah measurement
(iii) The men absolute error (iv) the relative error (v) the percentage error. Expresss the results in proper form.
201. Give some examples for different branches of modern science.

D Watch Video Solution
202. Disscuss the relation of physics with other branches of science.

D Watch Video Solution
203. Explain propagation of errors in the diffedence of two quantities and also in the divison of two quantities.

D Watch Video Solution

204. Write to causes of errors in
measurement.

D Watch Video Solution
205. Write the rules of "Rounding off" with example.

D Watch Video Solution
206. Write the rules for determining significant figures.

- Watch Video Solution

207. Find the value of one $A U$ in 1000 km
A. $1.5 \times 10^{5} \mathrm{~m}$
B. $2.5 \times 10^{6} \mathrm{~m}$
C. $1.5 \times 10^{11} \mathrm{~m}$
D. $2.5 \times 10^{10} \mathrm{~m}$

Answer: A

D Watch Video Solution

208. How many AU present in one light year?
A. $6.30 \times 10^{4} m$
B. $9.46 \times 10^{15} \mathrm{~m}$
C. $6.2 \times 10^{2} m$
D. $9.4 \times 10^{16} \mathrm{~m}$

Answer: A

D Watch Video Solution
209. How many μm present in one metre?
A. $10^{-6} \mu m$
B. $10^{6} \mu \mathrm{~m}$
C. $10^{-3} \mu m$
D. $10^{-2} \mu m$

Answer: B

- Watch Video Solution

210. Express the derived unit of pressure
(Watch Video Solution
211. What is the formula representation of mean Absolute error?

D Watch Video Solution
212. The speed of an object $v=40 \mathrm{~ms}^{-1}$. The
same quantity of speed in $k m h^{-1}$ is
A. 60
B. 160
C. 40
D. 144

Answer: D

D Watch Video Solution

213. The speed of an object $v=90 k \frac{m}{h}$. The same quantity of speed in m / s is
A. 90
B. 25
C. 45

D. 180

Answer: B

D Watch Video Solution

214. 3.5 kg mass of a metal plate has the
volume of $1.5 \mathrm{~m}^{3}$. Find the density of metal plate.
A. $1.5 \mathrm{kgm} / \mathrm{s}^{-3}$
B. $2.3 \mathrm{~kg} / \mathrm{m}^{3}$
C. $3.4 \mathrm{~kg} / \mathrm{m}^{3}$
D. $4.8 \mathrm{~kg} / \mathrm{m}^{3}$

Answer: B

D Watch Video Solution

215. The value of 1° is
A. $1.745 \times 10^{-2} \mathrm{rad}$
B. $1.946 \times 10^{-11} \mathrm{rad}$
C. 3.6 rad

D. 3600 rad

Answer: A

D Watch Video Solution

216. How many parsec are there in one kilometer?
A. 3.084×10^{-16}
B. 3008×10^{8}
C. 3.24×10^{-14}

Answer: C

D Watch Video Solution

217. The angle of an object is 18.2°. What is
the angular diameter of the object in radians?
A. 36.4 rad
B. $3.64 \times 10^{-2} \mathrm{rad}$
C. $31.74 \times 10^{-2} \mathrm{rad}$

D. 3.17 rad

Answer: C

D Watch Video Solution

218. If a circle with 10 m radius and angle 60°

at centre, thenwhat will be the length of arc?
A. 5.24 m
B. 6.21 m
C. 7.1 mm

D. 10.46 m

Answer: D

D Watch Video Solution

219. The mass of an iron sheet is 0.250 kg and
volume of the sheet is $1.5 m^{3}$. Then what is the density of the iron sheet? Expres the result in SI unit system.
A. $0.267 \mathrm{kgm}^{-3}$
B. $0.167 \mathrm{kgm}^{-3}$
C. $0.255 \mathrm{kgm}^{-3}$
D. $0.285 \mathrm{kgm}^{-3}$

Answer: B

- Watch Video Solution

220. What is the SI unit of linear momentum?

A. $m s^{-1}$
B. $m s^{-2}$
C. $k g m s^{-1}$
D. $k g m^{2} s^{-1}$

Answer: C

D Watch Video Solution

221. What is the SI unit of Area?

A. m
B. m^{2}
C. $N m^{-1}$

D. cm^{-1}

Answer: B

D Watch Video Solution

222. SI unit of the universal constant of gravitation
A. $k g^{-2} m^{-2}$
B. $k g m s^{-1}$
C. $N m^{2} k g^{-2}$

D. $N m^{-1}$

Answer: C

D Watch Video Solution

223. Using a screw gauge the thickness of a
wire was measured as 5 mm . Calculate (i) the
fractional error (ii) the percentage error.

Given data:

Thickness of wire (t) $=5 \mathrm{~mm}$

Accuracy $\Delta t=0.01 m m$

Watch Video Solution

224. If a mass of a proton is $1.67 \times 10^{-27} \mathrm{~kg}$,
how many protons will be present in 1 kg ?
Given data:
Mass of a proton $=1.67 \times 10^{-27} \mathrm{~kg}$
$1.67 \times 10^{-27} \mathrm{~kg}$ is mass of 1 proton.

- Watch Video Solution

225. Calculate angle of 1 second of arc.
226. The radius of a nucleus is $1.5 \times 10^{-15} \mathrm{~m}$ of the order fermi. Find the volume of the nucleus.

- Watch Video Solution

227. A beam of metal has length, breadth and height as $4 \mathrm{~m}, 3 \mathrm{~m}$ and 5 m respectively. Then what will be the volume of the metal beam?

Express the result in SI unit system.

- Watch Video Solution

228. Find the SI unit of moment of inertia. 5.64
kg mass of a object is moving uniformly. The radius of gyration is measured as 30 cm of an object. Then what is the moment of Inertia?

- Watch Video Solution

229. The ratio of strees and strain of a wire is

3:2. Find the co-efficient of elasticity. Express
the result in SI unit system.

- Watch Video Solution

230. In the following physical units, how many units are there in 1 metre?
(i) 1 Astronomical unit ($\mathrm{AU}=1.496 \times 10^{11} \mathrm{~m}$
(ii) 1 light year $=9.467 \times 10^{15} \mathrm{~m}$
(iii) 1 micron $(\mu)=10^{-6} m$
(iv) 1 parallacti second (parsec)

$$
=3.08 \times 10^{16} m
$$

Given data:

$$
1 A u=1.496 \times 10^{11} m
$$

$$
11 y=9.467 \times 10^{15} m
$$

$1 m m=10^{-6} m$
1 parsec $=3.08 \times 10^{16} m$

D Watch Video Solution

231. How many parallactic second are there inone Astronomical unit?

1 parallactic second $=3.08 \times 10^{16} m$
1 Astronomical unit $=1.496 \times 10^{11} \mathrm{~m}$

D Watch Video Solution
232. If mass of an electron is $9.11 \times x 10^{-31}$ kg , how many electrons would weigh in 1 mg ?

Given data:
Mass of an electron $=9.11 \times 10^{-31} \mathrm{~kg}$
$=9.11 \times 10^{-31} \mathrm{~kg}$ is the mass of 1 electron

- Watch Video Solution

233. The unit of length convenient on the atomic scale is known as angstrom and is denoted be \AA. The size o a helium atom is
about 30 pico meter. What is the total atomic volume in metre ${ }^{3}$ of one mole of helium atom?

D Watch Video Solution

234. The radius of the platinum atom in a nucleus is 60.2 fermi. Find the volume of the nucleus.

Why fermii is used to measure size of a nucleus?

- Watch Video Solution

235. Monica was watching the night sky. She saw a star , moving towards her, with increase
in brightness. After some few minutes when she watched closely, she found it was the light from a flight in the sky. Whe was surprised, but initially the flight looked stationary, after soem
time it was glowing brightly miving towards
her. So she went and asked her father. Why this effect occured?

- Watch Video Solution

236. Is RADAR used in lauching a missile from
the ground to hit the target (i.e. fight air craft)?

D Watch Video Solution

237. Why has second been defined is terms of periods of radiations from cesium -133?

D Watch Video Solution
238. How many Astronomical units are there in one light year?

Given Data:
1 Astronomical unit $=1.496 \times 10^{11} m$
1 light year $=9.46 \times 10^{15} \mathrm{~m}$

- Watch Video Solution

239. When the planet Jupiter is at a distance of 824.7 million kilometers from the earth, its
angular diameter is measured to be 35.72 of arc. Calculate the diameter of Jupier.

D Watch Video Solution

240. In a submarine fitted with a SONAR the time delay between generation of a signal and reception of its echo from an enemy ship is
110.3 seconds. If speed of sound in water is $1450 \mathrm{~ms}^{-1}$ then caculate the distance of the enemy ship from the submarine.
241. In in ocean surveillance system of ship fitted with a (RADAR) the time dely between generation of a radio waves reflected from an enemy ship is observed to be 5.6 s . Calculate the distance of the enemy ship from the surveillance ship.
