©"doubtnut

PHYSICS

BOOKS - SURA PHYSICS (TAMIL

ENGLISH)

OSCILLATIONS

Exercise Questions I Multiple Choice Questions

1. In a simple harmonic oscillation, the acceleration against displacement for one

A. an ellipse

B. a circle
C. a parabola

D. a straight line

Answer: D

2. A particle executing SHM crosses points A and B with the same velocity. Having taken $3 s$ in passing from A to B, it returns to B after another 3 s . The time period is
A. 15 s
B. 6 s
C. 12 s
D. 9 s

Answer: C
3. The length of a second's pendulum on the surface of the Earth is 0.9 m . The length of the
same pendulum on surface of planet X such that the acceleration of the planet X is n time greater than the Earth is
A. $0.9 n$
B. $\frac{0.9}{n} m$
C. $0.9 n^{2} m$
D. $\frac{0.9}{n^{2}}$

Answer: A

D View Text Solution

4. A simple pendulum is suspended from the roof of a school bus which moves in a horizontal direction with an acceleration a , then the time

$$
\begin{aligned}
& \text { A. } T \alpha \frac{1}{g^{2}+a^{2}} \\
& \text { B. } T \alpha \sqrt{\frac{1}{g^{2}+a^{2}}} \\
& \text { C. } T \alpha \sqrt{g^{2}+a^{2}}
\end{aligned}
$$

$$
\text { D. } T \alpha\left(g^{2}+a^{2}\right)
$$

Answer: B

D View Text Solution

5. Two bodies A and B whose masses are in the
ratio 1:2 are suspended from two separate
massless springs of force constants
k_{A} and k_{B} respectively. If the two bodies
oscillate vertically such that their maximum
velocities are in the ratio $1: 2$, the ratio of the amplitude A to that of B is

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{k_{B}}{2 k_{A}}} \\
& \text { B. } \sqrt{\frac{k_{B}}{8 k_{A}}} \\
& \text { C. } \sqrt{\frac{2 k_{B}}{k_{A}}} \\
& \text { D. } \sqrt{\frac{8 k_{B}}{k_{A}}}
\end{aligned}
$$

Answer: B
6. A spring is connected to a mass m
suspended from it and its time period for
vertical oscillation is T. The spring is now cut into two equal halves and the same mass is
suspended from one of the halves. The period of vertical oscillation is

> А. $T^{\prime}=\sqrt{2} T$
> В. $T^{\prime}=\frac{T}{\sqrt{2}}$
> С. $T^{\prime}=\sqrt{2 T}$
> D. $T^{\prime}=\sqrt{\frac{T}{2}}$

Answer: B

D View Text Solution

7. A simple pendulum has a time period T_{1}. when its point of suspension is moved vertically upwards according as $y=k t^{2}$ where y is vertical distance covered and $k=1 \mathrm{~ms}^{-2}$, its time period becomes T_{2}, Then $\frac{T_{1}^{2}}{T_{2}^{2}}$ is $\left(g=10 m s^{-2}\right)$

$$
\text { A. } \frac{5}{6}
$$

B. $\frac{11}{10}$
 C. $\frac{6}{5}$
 D. $\frac{5}{4}$

Answer: C

D View Text Solution

8. An ideal spring of spring constant k, is
suspended from the ceiling of a room and a
block of mass M is fastened to its lower end. If
the block is released when the spring is un-
stretched, then the maximum extension in the
spring is
A. $4 \frac{M g}{k}$
B. $\frac{M g}{k}$
C. $2 \frac{M g}{k}$
D. $\frac{M g}{2 k}$

Answer: C

D View Text Solution
9. A pendulum is hung in a very high building oscillates to and fro motion freely like a simple
harmonic oscillator. If the acceleration of the harmonic oscillator. It the acceleration of the bob is $16 m s^{-2}$ at distance of 4 from the mean position, the the time period is
A. 2 s
B. 1 s
C. $2 \pi s$
D. πs

Answer: D

D View Text Solution

10. A hollow sphere is filled with water. It is
hung by a long thread. As the water flows out of a hole at the bottom , the period of oscillation will
A. first increase and then decrease
B. first decrease and then increase
C. increase continuously

D. decrease continuously

Answer: A

D Watch Video Solution

11. The damping force on an oscillator is directly proportional to the velocity. The units of the constant of proportionality are
A. $k g m s^{-1}$
B. $k g m s^{-2}$

C. $k g s^{-1}$

D. $k g s$

Answer: C

D Watch Video Solution

12. When damped harmonic oscillator completes 100 oscillations, its amplitude is reduced to $\frac{1}{3}$ of its initial value. What will be its amplitude when it completes 200 oscillations?
A. $\frac{1}{5}$
B. $\frac{2}{3}$
C. $\frac{1}{6}$
D. $\frac{1}{9}$

Answer: D

D View Text Solution

13. Which of the following different equations represents a damped harmonic oscillator?

> A. $\frac{d^{2} y}{d t^{2}}+y=0$
> B. $\frac{d^{2} y}{d t^{2}}+\gamma \frac{d y}{d t}+y=0$
> C. $\frac{d^{2} y}{d t^{2}}+k^{2} y=0$
> D. $\frac{d^{2} y}{d t^{2}}+y=0$

Answer: B

D Watch Video Solution

14. If the inertial mass and gravitational mass of the simple pendulum of length 1 are not
equal, then the time period of the simple pendulum is

$$
\begin{aligned}
& \text { A. } T=2 \pi \sqrt{\frac{m_{i} l}{m_{g} g}} \\
& \text { B. } T=2 \pi \sqrt{\frac{m_{g} l}{m_{i} g}} \\
& \text { C. } T=2 \pi \frac{m_{g}}{m_{i}} \sqrt{\frac{l}{g}} \\
& \text { D. } T=2 \pi \frac{m_{i}}{m_{g}} \sqrt{\frac{l}{g}}
\end{aligned}
$$

Answer: A

1. What is meant by periodic and non-periodic motion ? Give any two examples , for each motion ?
(D) Watch Video Solution
2. What is meant by mean by force constant of a spring ?
3. Define time period of simple harmonic motion.

- Watch Video Solution

4. Define frequency of simple harmonic motion.

- Watch Video Solution

5. what is an epoch ?

- Watch Video Solution

6. Write short notes on two springs connected in series.

D View Text Solution

7. Write short notes on two springs connected in parallel.
8. Write down the time period of simple pendulum.

D View Text Solution

9. State the laws of simple pendulum.

D Watch Video Solution

10. Write down the equation of time period for
linear harmonic oscillator.
11. What is meant by free oscillation ?

D Watch Video Solution

12. Explain damped oscillation . Give an example.

- Watch Video Solution

13. Define forced oscillation . Give an example.

D Watch Video Solution

14. What is meant by maintained oscillation ?

Given an example.

D Watch Video Solution

15. Explain resonance. Give an example .

Exercise Questions lii Long Answer Questions

1. What is meant by simple harmonic oscillation ? Give example

- Watch Video Solution

2. Describe Simple Harmonic Motion as a projection of uniform circular motion.
3. What is meant by angular harmonic oscillations? Compute the time period of angular harmonic oscillation.

Time period and frequency of angular SHM:

D Watch Video Solution

4. Write down the difference between simple
harmonic motion and angular simple
harmonic motion.

5. Discuss the simple pendulum in detail.

- Watch Video Solution

6. Explain the horizontal oscillations of a spring.

- Watch Video Solution

7. Describe the vertical oscillations of a spring.
8. Write shorts notes on the oscillations of liquid column in U-tube.

- Watch Video Solution

9. Discuss in detail the energy in simple harmonic motion.
10. Explain in detail the four different types of oscillations.
(Watch Video Solution

Exercise Questions Iv Numerical Problems

1. Consider the Earth as a homogenous sphere of radius R and a straight hole is bored in it through its centre. Show that a particle dropped into the hole will execute a simple
harmonic motion such that its time period is
$T=2 \pi \sqrt{\frac{R}{g}}$

- Watch Video Solution

2. Consider a simple pendulum of length $I=0.9$
m which is properly placed on a trolley rolling down on a inclined plane which is at $0=45^{\circ}$
with the horizontal. Assuming that the
inclined plane is frictionless. Assuming that
the time period of oscillation of the simple pendulum is T. Find the value of T.

- Watch Video Solution

3. A piece of wood of mass m is floating erect in a liquid whose density is ρ. If it is slightly pressed down and released, then executes simple harmonic motion. Show that its time period of oscillation is $T=2 \pi \sqrt{\frac{m}{A \rho g}}$

- Watch Video Solution

4. Consider two simple harmonic motion along
x and y - axis having same frequencies but different amplitudes as $x=A \sin (\omega t+\varphi)$
(along x axis) and $y=B \sin \omega t$ (along y axis).
then show
that
$\frac{x^{2}}{A^{2}}+\frac{y^{2}}{B^{2}}-\frac{2 x y}{A B} \cos \varphi=\sin ^{2} \varphi \quad$ and \quad also discuss the special cases when
$\varphi=\frac{\pi}{2}$ and $A=B$
Note : when a particle is subjected to two simple harmonic motion at right angle to each other the particle may move along different paths.

- Watch Video Solution

5. Show that for a particle executing simple harmonic motion
a. the average value of kinetic energy is equal to the average value of potential energy.
b. average potential energy = average kinetic energy $=\frac{1}{2}$ (total energy) (Hint : average kinetic energy $=<$ kinetic energy >
$=\frac{1}{T} \int_{0}^{T}$ (Kinetic energy) dt and
average Potential energy =
$=\frac{1}{T} \int_{0}^{T}$ (potential energy) dt

- Watch Video Solution

6. Compute the time period for the following system if the block of mass m is slightly displaced vertically down from its equilibrium position and then released. Assume that the pulley is light and smooth strings and springs are light.

V View Text Solution

Additional Questions I Multiple Choice Questions

1. A Particle excites simple harmonic motion between $x=-A \& x=+A$, the time taken for it to go from O to $\frac{A}{2}$ is $T_{1} \&$ to go from $\frac{A}{2}$ to A is T_{2} then
A. $T_{1}<T_{2}$
B. $T_{1}>T_{2}$
C. $T_{1}=T_{2}$

D. $T_{1}=2 T_{2}$

Answer: A

D Watch Video Solution

2. The x - t graph of a particle undergoing
simple harmonic motion is shown. The acceleration of the particle at $t=\frac{4}{3}$ is
A. $\frac{\sqrt{3}}{32} \pi \mathrm{~cm} / \mathrm{s}^{2}$
B. $\frac{-\pi^{2}}{32} \mathrm{~cm} / \mathrm{s}^{2}$
C. $\frac{\pi^{2}}{32} c m / s^{2}$
D. $\frac{\sqrt{3}}{32} \mathrm{~cm} / \mathrm{s}^{2}$

Answer: D

D View Text Solution

3.

The
function
$x=A \sin ^{2} \omega t+B \cos ^{2} \omega t+C \sin \omega t \cos \omega t$
ore presents simple harmonic motion for which of the option?
A. for all values of $\mathrm{A}, \mathrm{B} \& \mathrm{C}(C \neq 0)$
B. $A=B, C=2 B$
C. $C A=-B, C=2 B$
D. all of the above

Answer: D

D View Text Solution

4. The displacement of an object attached to a spring \& executing $S A M$ is given by $x=2 \times 10^{-2}$
A. 0.55μ
B. 0.75 s
C. 0.125 s
D. 0.25 s

Answer: A

D View Text Solution
5. The maximum velocity of a particle , executing simple harmonic motion with an
amplitude 7 mm is $4.4 m s^{-1}$. The period of oscillation is
A. $0.01 s$
B. $0.1 s$
C. 10s
D. 100s

Answer: A
(Watch Video Solution
6. If $x, v \&$ a denote the displacement, the
velocity \& acceleration of a particle executing
simple harmonic motion of time period T , then
which of the following does not change with

time .

$$
\begin{aligned}
& \text { A. } a^{2} T^{2}+4 \pi^{2} v^{2} \\
& \text { B. } a T / x \\
& \text { C. } a T+2 \pi v \\
& \text { D. } a T / v
\end{aligned}
$$

7. A particle executing simple harmonic motion along - y - axis has its motion described by the equation $y=A \sin (\omega t)+B$, the amplitude of the example harmonic motion is
A. A
B. B
C. $A+B$
D. $\sqrt{A+B}$

D Watch Video Solution

8. when the maximum k.E of a simple pendulum is k, then what is its displacement in terms of amplitude a when its K.E. is $k / 2$
A. $a / \sqrt{2}$
B. $a / 2$
C. $a / \sqrt{3}$
D. $a / 3$

D Watch Video Solution

9. A particle is executing SHM at mid point of
mean position \& extremity . What is the potential energy in terms of total energy (E)
A. $\frac{E}{4}$
B. $\frac{E}{16}$
C. $\frac{E}{2}$
D. $\frac{E}{8}$

D Watch Video Solution

10. A spring is cut into 4 equal parts \& 2 parts
are connected in parallel. What is the effective
in parallel. What is the effective spring constant.
A. 4 K
B. 16k
C. 8 k
D. 6 k

Answer: C

D Watch Video Solution

11. If the length of simple pendulum is tripled,
what will its new time period is terms of original period T ?
A. 0.7 T
B. 1.73 T

C. $T / 2$

D. T

Answer: B

D Watch Video Solution

12. The ratio of frequences of 2 pendulums are
$2: 3$, then their lengths are in ratio,
A. $\sqrt{\frac{2}{3}}$
B. $\sqrt{\frac{3}{2}}$
C. $\frac{4}{9}$
D. $\frac{9}{4}$

Answer: D

D Watch Video Solution

13. What is time period of a pendulum hanged
in a satellite? (T is time period on earth)
A. zero
B. T
C. infinite
D. $\frac{T}{\sqrt{6}}$

Answer: C

D Watch Video Solution

14. If a simple pendulum of length 'L' has
maximum angular displacement alpha'. Then
the maximum kinetic energy of bob mass m is

$$
\text { A. } \frac{1}{2} \frac{M L}{9}
$$

B. $\frac{M g}{2 L}$
C. $\operatorname{mgL}(1-\cos \alpha)$
D. $\mathrm{MgL} \sin \alpha / 2$

Answer: C

- Watch Video Solution

15. Which of the following equations represents a simple harmonic wave?
A. $\sin \square t-\cos \square t$

B. $\sin \square t+\sin 2 \square t$

C. $\sin \square t-\sin 2 \square t$
D. $\sin ^{2} \square t$

Answer: A

D Watch Video Solution

16. The phase difference between the instantaneous velocity \& acceleration of a particle executing simple harmonic motion is
A. 0.5π
B. π
C. 0.707π
D. 0.61π

Answer: A

D Watch Video Solution

17. Which one of the following represents simple harmonic motion?
A. acceleration =kx
B. acceleration $=k_{0} x+k_{1} x^{2}$
C. acceleration $=-k(x+a)$
D. acceleration $=k(x+a)$

Answer: C

D Watch Video Solution

18. Two simple pendulums of time periods 2.0 s
\& 2.1s are made to vibrate simultaneously.

They are in phase initially, after how may

vibrations are there in the same phase?

A. 21
B. 25
C. 30
D. 35

Answer: A

D View Text Solution

19. The magnitude of acceleration of particle executing SHM at the position of maximum displacement is
A. zero
B. minimum
C. maxmium
D. none of these

Answer: C

D Watch Video Solution
20. The SHMs are represent by the equation
$y_{1}=0.1 \sin \left(100 \pi t+\frac{\pi}{3}\right) \& y_{2}=0.1 \cos \pi t$.
The phase difference of the velocity of particle is

$$
\begin{aligned}
& \text { A. }-\frac{\pi}{6} \\
& \text { B. } \frac{\pi}{3} \\
& \text { C. }-\frac{\pi}{3} \\
& \text { D. } \frac{\pi}{6}
\end{aligned}
$$

Answer: A

Additional Questions lii Fill In The Blanks

1. The time period for U - tube Oscillation is
A. $T=\sqrt{\frac{l}{2 g}}$
В. $T=2 \pi \sqrt{\frac{2 g}{l}}$
C. $T=2 \pi \sqrt{\frac{l}{g}}$
D. $T=2 \pi \sqrt{\frac{l}{2 g}}$

Answer: D

D View Text Solution

2. In SHM , kinetic energy is

$$
\begin{aligned}
& \text { A. } \frac{1}{2} m \square^{2} x^{2} \\
& \text { B. } \frac{1}{2} m \square^{2} A^{2} \\
& \text { C. } \frac{1}{2} m \square^{2}\left(A^{2}-x^{2}\right) \\
& \text { D. } \frac{1}{2} m \square^{2}\left(x^{2} A^{2}\right)
\end{aligned}
$$

3.is a special case of forced oscillations.
A. Resonance
B. SHM
C. Angular harmonic motion
D. Torsional motion

Answer: A
4. Force per unit length is called
A. Torsional constant

B. acceleration

C. force constant
D. Surface tension

Answer: D

5. The motion which has single frequency and constant amplitude is called
A. SHM
B. resonance
C. frequency
D. damaping

Answer: D
(Watch Video Solution
6. The maximum displacementof the particle is called
A. SHM
B. resonance
C. Amplitude
D. Altitude

Answer: C

D Watch Video Solution
7. of oscillation is large for resonance.
A. Frequency
B. Time period
C. Amplitude
D. Phase

Answer: C

8. Electromagnetic oscillations in a tank circuit

is an example for
A. free oscillations
B. damped oscillations
C. maintained oscillations
D. forced oscillations

Answer: B

9. For a conservative system in one dimension,
the force field can be derived fork is determined with a sonometer using
A. potential energy
B. total energy
C. kinetic energy
D. surface energy

Answer: A

10. Frequency of a given turning fork is determined with a sonometer using
A. maintained oscillation
B. resonance
C. forced oscillation

D. damped oscillation

Answer: B

- Watch Video Solution

Out

1. CHOOSE THE ODD ONE OUT

A. $-\square^{2} r$
B. ma
C. $-k r$
D. $\sqrt{\frac{K}{I}}$

Answer: D

D Watch Video Solution

2. CHOOSE THE ODD ONE OUT

A. Oscillation

B. Vibration
C. Rotation
D. SHM

Answer: D

- Watch Video Solution

3. CHOOSE THE ODD ONE OUT

A. Driver

B. Driven

C. Resonance
D. Force constant

Answer: D

1. CHOOSE THE CORRECT PAIR :

A. Scalar potential energy $-\left(-\frac{d U}{d x}\right)$
B. Potential energy $-\frac{1}{2} m \omega^{2} A^{2}$
C. Kinetic energy $-\frac{1}{2} m \omega^{2} x^{2}$
D. $\frac{1}{2} m \omega^{2} A^{2} x^{2}$

Answer: A

2. CHOOSE THE CORRECT PAIR :

A. Angular SHM $\sqrt{\frac{K}{I}}$
B. Linear SHM - $\sqrt{\frac{2 k}{m}}$
C. U-tude $-2 \pi \sqrt{\frac{2 l}{2 g}}$
D. Simple pendulum - $2 \pi \sqrt{\frac{l}{2 g}}$

Answer: A

- Watch Video Solution

Additional Questions Vi Choose The Incorrect

 Pair
1. CHOOSE THE INCORRECT PAIR:

A. Amplitude - Displacement
B. resonance - forced oscillation
C. Free- oscillation -tuning fork vibration
D. Maintained oscillation- swing movement

Answer: A

D Watch Video Solution

2. CHOOSE THE INCORRECT PAIR:

$$
\begin{aligned}
& \text { A. K.E. }-\frac{3}{4} \text { T.E. } \\
& \text { B. P.E- } \frac{1}{4} \text { T.E } \\
& \text { C. T.E. }-(\text { K.E. }+ \text { P.E.) } \\
& \text { D. T.E }-\frac{1}{2} m \square^{2} x^{2}
\end{aligned}
$$

Answer: D
(Watch Video Solution

1. Assertion : The projection of uniform circular motion on a diameter is SHM.

Reason : A motion which has single frequency
and constant amplitude is called SHM.
A. Assertion and Reason are correct and

Reason is correct explanation of

Assertion
B. Assertion and Reason are true but

Reason is the false explanation of the

Assertion

C. Assertion is true but Reason is false
D. Assertion is false but Reason is true

Answer: A

D Watch Video Solution

2. if moon move in an elliptical orbit around the earth. The mass of the moon is very small compared to the mass of the earth because

Additional Questions Viii Choose The Correct Or

 Incorrect Statements1. (I) If the frequency of driver (external periodic force) is equal to the frequency of driven (natural frequency) then resonance occurs.
(II) A singer maintaining a note at a frequency
of a glass and cause it ti shatter pieces is an example of resonance.

Which one is correct statement ?
A. I only
B. II only
C. Both are correct
D. None

Answer: C

D Watch Video Solution

2. (I) Air blown gently across the mouth of a bottle is an example for forced vibrations.
(II) Oscillations of a coil in a galvanometer is
an example for free oscillation of a coil in a galvanometer is an example for free oscillation.
which one is correct statement ?
A. I only
B. II only
C. Both are correct
D. None

Answer: D

3. (I) S.I. unit of frequency is hertz (Hz).
(II) S.I. unit of force constant isNm.
which one is correct statement ?
A. I only
B. II only
C. Both are correct
D. None

Answer:

D Watch Video Solution
4. (I) Combination of springs connected in series $K_{s}=K_{1}+K_{2}$
(II) Frequency of oscillation in a u - tude is n
$n=\frac{1}{2 \pi} \sqrt{\frac{2 g}{l}}$
Which one is incorrect statement ?
A. I only
B. II only
C. Both are correct
D. None

Answer:

- Watch Video Solution

Very Short Answer Questions

1. What is Oscillatory motion?

- Watch Video Solution

2. What is phase of SHM?

3. What is Oscillatory motion?

- Watch Video Solution

4. What are periodic motion? Give any two examples.
(Watch Video Solution

5. Define simple harmonic motion (S.H.M)

D Watch Video Solution

6. Why the amplitude of the vibranting pendulum should be small?

D View Text Solution

7. when a pendulum clock gains time, what adjustments should be made ?

- Watch Video Solution

8. The displacement of harmonic oscillator is given by $x=\alpha \sin w t+\beta \cos w t$. What is the amplitude of the oscillation.

D View Text Solution

Short Answer Questions

1. State five characteristics of SHM.

Watch Video Solution

2. Tabulate, the displacement, velocity and acceleration is SHM.

- View Text Solution

3. Who among the following first gave the experimental velocity of G ?
A. Cavendish
B. Copernicus

C. Brook Taylor

D. NONE of these

Answer: a

D Watch Video Solution

4. The bob of vibrating simple pendulum is made of ice. How will the period of swing will change when the ice starts melting ?
5. Discuss strings stretched between fixed points.

D View Text Solution

6. At what displacement, (i) the P.E of a simple harmonic oscillator is maximum , (ii) the k. e is maximum ?

- Watch Video Solution

Long Answer Questions

1. Write a short note on simple Harmonic motion.

D View Text Solution

2. Show that the projection of uniform circular motion on a diameter is SHM.

- View Text Solution

3. what would be the duration of the year if
the distance between the earth and the sun gets doubled?
A. 1032
B. 625
C. 365
D. 129

Answer: a

- Watch Video Solution

4. If a body of mass m is taken out from a point below the surface of earth equal to half the radius of earth, R, to a height R above the earths surface, then work done on it will be____mgr
A. 5/6
B. $6 / 7$
C. $7 / 8$
D. $8 / 9$
5. What would be the duration of the year if the A artificial satellite moving in a circular orbit around the earth has a total (kinetic + potential) energy EO. Its potential energy is
A. 2E0
B. EO
C. 1.5EO
D. -EO

Answer: A

- Watch Video Solution

6. A body is projected vertically from the surface of the earth of radius R with velocity equal to half of the escape velocity. The maximum height reached by the body is
A. R
B. $\mathrm{R} / 2$
C. $R / 3$

D. $R / 4$

Answer: C

D Watch Video Solution

7. One end of a U-tube containing mercury is connected to a suction pump and the other end to atmosphere. A small pressure difference is maintained between the two columns. Show that, when the suction pump is
removed, the column of mercury in the U-tube executes simple harmonic motion.

D Watch Video Solution

8. Consider a simple pendulum, having a bob attached to a string, that oscillates under the action of the force of gravity. Suppose that the period of oscillation of the simple. Pendulum depends on its length (I), mass of the bob (m
), and acceleration due to gravity (g). Derive
the expression for is time period using method of dimension .
(D) Watch Video Solution

Numerical Problems 1 Mark

1. Find the period of a simple pendulum 1.20 m
long.
A. 1.4 s
B. 3.2 s
C. 4.1 s
D. 2.2 s

Answer: D

D Watch Video Solution

2. Find the length of a simple pendulum whose

 period is 2.00 s .A. $2 m$
B. 0.4 m
C. 1 m
D. 3 m

Answer: C

D Watch Video Solution

3. A pendulum is 1.20 m long is observer to
have 1 m Long is observed to have a period of
2.00s at certain location then the acceleration due to gravity is ,
A. $9.71 m / s^{2}$
B. $9.85 \mathrm{~m} / \mathrm{s}^{2}$
C. $9.79 \mathrm{~m} / \mathrm{s}^{2}$
D. $10.1 \mathrm{~m} / \mathrm{s}^{2}$

Answer: B

D Watch Video Solution

4. The three springs with force constant $k_{1}=7.5 \frac{\mathrm{~N}}{\mathrm{~m}}, k_{2}=10.0 \frac{\mathrm{~N}}{\mathrm{~m}}, k_{3}=12.5 \frac{\mathrm{~N}}{\mathrm{~m}} \quad$ are connected in parallel to a mass of 0.500 kg .

The mass is then pulled to the right and released. Then the period of the motion is.
A. 0.6 s
B. 0.8 s
C. 0.5 s
D. 0.4 s

Answer: B
(Watch Video Solution
5. The three springs with force constant
$k_{1}=8 \frac{\mathrm{~N}}{\mathrm{~m}}, k_{2}=10 \frac{\mathrm{~N}}{\mathrm{~m}}, k_{3}=12 \frac{\mathrm{~N}}{\mathrm{~m}} \quad$ are
connected in series to a mass of 0.5 kg . The mass is then pulled to the right and released .

Then the period of the motion is.
A. 2 s
B. $2.2 s$
C. 2.5 s
D. 3.1 s
6. A particle executing a SHM has maximum acceleration at a distance of 0.5 cm from its mean position is $2 \mathrm{~cm} / \mathrm{s}^{2}$. What will be its velocity when it is at a distance of 1 cm from its mean position.
A. $4 \mathrm{~cm} / \mathrm{s}$
B. $2 \sqrt{3} \mathrm{~cm} / \mathrm{s}$
C. $11.2 \mathrm{~cm} / \mathrm{s}$

D. $4 \sqrt{7} \mathrm{~cm} / \mathrm{s}$

Answer: B

D Watch Video Solution

7. A body of mass 1 kg is executing SHM given
by $x=4 \cos \left(100 t+\frac{\pi}{2}\right) \mathrm{cm}$ what is the velocity?

$$
\begin{aligned}
& \text { A. } 200 \sin \left(100 t+\frac{\pi}{2}\right) \\
& \text { B. }-200 \sin \left(100 t+\frac{\pi}{2}\right)
\end{aligned}
$$

C. $400 \sin \left(100 t+\frac{\pi}{2}\right)$
D. $-400 \sin \left(100 t+\frac{\pi}{2}\right)$

Answer: D

D Watch Video Solution

8. The piston in the cylinder head of a locomotive has a stroke (twice the amplitude) of 1.0 m if the piston moves with $\mathrm{S} . \mathrm{H} . \mathrm{M}$ with an angular frequency of $200 \mathrm{rad} \mathrm{min}^{-1}$. Then the maximum speed will be,
A. $50 \mathrm{~m} / \mathrm{min}$
B. $100 \mathrm{~m} / \mathrm{min}$
C. $150 \mathrm{~m} / \mathrm{min}$
D. $200 \mathrm{~m} / \mathrm{min}$

Answer: B

D Watch Video Solution

9. A spring balance has a scale that reads from

0 to 50 kg the length of the scale is 20 cm . A
body suspended from this balance, when
displaced and released, oscillates with a period of 0.6 s . Then the weight of the body will be
A. 200 N
B. 208 N
C. $219.3 N$
D. $272.1 N$

Answer: C

D Watch Video Solution
10. A small body of mass 100 g is undergoing SHM of amplitude 100 cm and period 0.2 s .

What is the maximum value of the force acting
on the body?
A. 86.4 N
B. 102.1 N
C. 98.5 N
D. 71.2 N

Answer: B

D Watch Video Solution

Numerical Problems 2 Marks

1. A mass M attached to a spring oscillates
with a period of 2 sec . If the mass is increased
by 2 kg , the period increase by the second.
Find the initial mass m assuming that Hook's
law is obeyed.

- Watch Video Solution

2. A spring stretches by 0.020 m when a 1.5 kg object is suspended from its end. How much mass should be attached to the spring so that its frequency of vibration is $f=3.1 H z$?

D Watch Video Solution

3. An oscillating block- spring system has a mechanical energy of 1.00 J , an amplitude of 10.0 cm and a maximum speeding of $1.20 \mathrm{~m} / \mathrm{s}$
. Find the spring constant, the mass of the block, and the frequency of oscillation

D Watch Video Solution

4. The acceleration dula to gravity on the surface of moon is $1.7 \mathrm{~ms}^{-2}$. What is the time period of a simple pendulum on the surface of moon if its time period on the surface of earth is 3.5 s ?
5. A 0.950 kg mass hangs vertically from a spring that he a spring constant of $8.50 \mathrm{~N} / \mathrm{m}$.

The mass is set into vertical oscillations and after 600 s , you find tht the amplitude of the oscillation is $\frac{1}{10}$ That of initial amplitude.

What is the damping constant associated with this motion?

- Watch Video Solution

Numerical Problems 3 Marks

1. A uniform disk of radius $r=0.6 \mathrm{~m}$ and mass M
$=2.5 \mathrm{~kg}$ is freely suspended from a horizontal
pivot located a radial distance $\mathrm{d}=0.30 \mathrm{~m}$ from
its centre. Find the angular frequency of small
amplitude oscillations of the disk.

D View Text Solution
2. A body oscillates with SHM along with x axis.

Its displacement varies with time according to
the equation $\quad x=(4.00 m) \cos \left(\pi_{t}^{+} \frac{\pi}{4}\right)$
calculate at $\mathrm{t}=1.00 \mathrm{~s}$: (a) displacement (b)
velocity (c) acceleration (d) Also calculate the maximum speed and maximum acceleration and (e) phase at $t=2.00 \mathrm{~s}$.

D Watch Video Solution

3. A particular executes $S H M$ with a time period of 16 s . At time $t=2 s$, the particle crosses the mean position while at $t=4$, its
velocity is $4 m s^{-1}$ Find its a amplitude of

motion.

D Watch Video Solution

4. A particular moving in a straight line has
velocity v give by $v^{2}=\alpha-\beta y^{2}$ where α and β are constant and y is its distance
from a fixed point in the line. Show that the motion of the particle is SHM. Find its time period and amplitude.
5. A spring compressed by 10 cm develops a restoring force of 10 N.A body of mass 9 kg is placed on it. What is the force constant of the spring ? What is the depression in the spring under the weight of the body? What is the period of oscillation if the body is disturbed from its equilibrium position?

D Watch Video Solution

Creative Questions Hots

1. Can a motion be oscillatory, but not simple
harmonic. If your answer is yes, give an explanation and if not explain why?

- Watch Video Solution

2. Every simple harmonic motion is periodic motion but me every periodic motion need not be simple harmonic motion. Do you agree?

Give example.
3. What is the basic condition for the motion of a particle to be S.H.M ?

- Watch Video Solution

4. The maximum acceleration of a simple
harmonic oscillator is a_{0} and the maximum
velocity is V_{0}. What is the displacement amplitude ?
5. A girl is swinging on a swing in the sitting position. How will the period of swing be affected if she stands up?

D Watch Video Solution

6. Will a pendulum clock lose or gain time when taken to the top of a mountain ?

D Watch Video Solution
7. How would the time period of a spring mass
system change, when it is made to oscillate horizontally and then vertically?

D Watch Video Solution

8. Alcohol in a U tube executes S.H.M. of time
period T. Now, alcohol is replaced by water
upto the same height in the U-tube What will be the effect on the time period?
9. Whet is the ratio between the potential energy the total energy of a particle executing S.H.M, when it's displacement is half of its amplitude?

- Watch Video Solution

10. Why are army troops not allowed to march in steps while crossing the bridge?
11. How can earthquakes cause disaster sometimes?

- Watch Video Solution

12. Sometimes a wire glass is broken by the powerful voice of a celebrated singer why?

D Watch Video Solution

13. Glass window may be broken by a far away explosion. Explain why?

D Watch Video Solution
14. The body of a bus begins to rattle something, when the bus picks up a certain speed, why?

- Watch Video Solution

15. What will be the change in time period of a loaded spring. When to moon ?

D Watch Video Solution

16. In forced oscillations of a particle, the amplitude is maximum for a frequency ω_{1} of
the force, while the energy is maximum for a frequency ω_{2} of the force. Then.
17. The maximum velocity of a particle , executing simple harmonic motion with an amplitude 7 mm is $4.4 \mathrm{~ms}^{-1}$. The period of oscillation is

D Watch Video Solution

18. A hollow sphere is filled with water. It is
hung by a long thread. As the water flows out of a hole at the bottom , the period of oscillation will
19. Two simple harmonic are represented by the equation
$y_{1}=0.1 \sin \left(100 \pi+\frac{\pi}{3}\right)$ and $y_{2}=0.1 \cos \pi t$

The phase difference of the velocity of particle 1 with respect to the velocity of particle 2 is.

- Watch Video Solution

20. A simple pendulum has time period (T_1).

The point of suspension is now moved upward
according to the relation
$y=K t^{2},\left(K=1 m / s^{2}\right)$ where (y) is the vertical displacement. The time period now becomes ($T_{-} 2$). The ratio of $\frac{T_{1}^{2}}{T_{2}^{2}}$ is $\left(g=10 m / s^{2}\right)$.

- Watch Video Solution

21. The bob of simple pendulum executes
S.H.M in water with the a period t, while the period of oscillation of the bob is t_{0} in the air, neglecting frictional force of water and given
that the density of the bob is $\frac{4000}{3} \mathrm{kgm}^{-3}$,
Find the relationship between t and t_{0} ?

D Watch Video Solution

Value Based Questions

1. Student in a class were asked by their science teacher about different types of motion, with Examples. But few students were confused with explanation ,for example

Periodic motion. SHM , Oscillatory motion ,

Rotational motion. SHM , Oscillatory motion .

Periodic motion, etc. How would have the teacher explained , so the students understood easily?
(i) What are path difference \& phase difference?
(ii) For the waves, given below find out the
phase \& path differences.

D View Text Solution
2. There is no atmosphere on the moon because

D Watch Video Solution

