© ${ }^{\text {T doubtnut }}$

PHYSICS

BOOKS - SURA PHYSICS (TAMIL

ENGLISH)

PROPERTIES OF MATTER

Exercise Questions I Multiple Choice Questions

1. Consider two wires X and Y. The radius of
wire X is 3 times the radius of Y. If they are

Y is

A. equal to that on X
B. thrice that on X
C. nine times that on X
D. half that on X

Answer: C

- Watch Video Solution

2. If a wire is stretched to double of its original

length, then the strain in the wire is
A. 1
B. 2
C. 3
D. 4

Answer: A

D Watch Video Solution
3. For a given material, the rigidity modulus is $\left(\frac{1}{3}\right)^{r d}$ of Young's modulus. Its Poisson's ratio is
A. 0
B. 0.25
C. 0.3
D. 0.5

Answer: D

4. A small sphere of radius 2 cm falls from rest in a viscous liquid. Heat is produced due to viscous force. The rate of production of heat when the sphere attains its terminal velocity is proportional to
A. 2^{2}
B. 2^{3}
C. 2^{4}
D. 2^{5}

- Watch Video Solution

5. Two wires are made of the same material and have the same volume. The area of cross sections of the first and the second wires are A and 2 A respectively. If the length of the first wire is increased by Δl on applying a force F, how much force is needed to stretch the second wire by the same amount ?
A. 2
B. 4
C. 8
D. 16

Answer: B

- Watch Video Solution

6. With an increase in temperature, the viscosity of liquid and gas, respectively will
A. increase and increase
B. increase and decrease

C. decrease and increase

D. decrease and decrease

Answer: C

- Watch Video Solution

7. The Young's modulus for a perfect rigid body is
A. 0
B. 1
C. 0.5
D. infinity

Answer: D

- Watch Video Solution

8. Which of the following is not a scalar ?

A. viscosity

B. surface tension

C. pressure
D. stress

Answer: D

D Watch Video Solution

9. If the temperature of the wire is increased,
then the Young's modulus will
A. remain the same
B. decrease
C. increase rapidly

D. increase by very a small amount

Answer: B

D Watch Video Solution

10. Copper of fixed volume V is drawn into a
wire of length I. When this wire is subjected to
a constant force F , the extension produced in
the wire is Δl. If Y represents the Young's modulus, then which of the following graphs is a straight line?
A. Δl versus V
B. Δl versus Y
C. Δl versus F
D. Δl versus $\frac{1}{l}$

Answer: C

D Watch Video Solution
11. A certain number of spherical drops of a liquid of radius R coalesce to form a single
drop of radius R and volume V . If T is the surface tension of the liquid, then

> A. energy $=4 V T\left(\frac{1}{r}-\frac{1}{R}\right)$ is released
> B. energy $=3 V T\left(\frac{1}{r}-\frac{1}{R}\right)$ is absorbed
> C. energy $=3 V T\left(\frac{1}{r}-\frac{1}{R}\right)$ is released
D. energy is neither released nor absorbed

Answer: C

- Watch Video Solution

12. The following four wires are made of the same material. Which of these will have the
largest extension when the same tension is

applied ?

A. length $=200 \mathrm{~cm}$, diameter $=0.5 \mathrm{~mm}$
B. length $=200 \mathrm{~cm}$, diameter $=1 \mathrm{~mm}$
C. length $=200 \mathrm{~cm}$, diameter $=2 \mathrm{~mm}$
D. length $=200 \mathrm{~cm}$, diameter $=3 \mathrm{~mm}$

Answer: A
13. The wettability of a surface by a liquid depends primarily on
A. viscosity
B. surface tension
C. density
D. angle of contact between the surface
and the liquid

Answer: D
14. In a horizontal pipe of non-uniform cross section, water flows with a velocity of $1 \mathrm{~ms}^{-1}$ at a point where the diameter of the pipe is 20 cm . The velocity of water $\left(1.5 \mathrm{~ms}^{-1}\right)$ at a point where the diameter of the pipe is (in cm)
A. 8
B. 16
C. 24
D. 32

Answer: B

- Watch Video Solution

Short Answers

1. Define stress and strain.

D Watch Video Solution

2. State Hooke's law of elasticity.

3. Define Poisson's ratio.

- Watch Video Solution

4. Explain elasticity using intermolecular forces.

- Watch Video Solution

5. Which one of these is more elastic, steel or rubber? Why ?

- Watch Video Solution

6. A spring balance shows wrong readings after using for a long time. Why ?

- Watch Video Solution

7. What is effect of temperature on elasticity ?

- Watch Video Solution

8. Write down the expression for the elastic potential energy of a stretched wire .

- Watch Video Solution

9. State Pascal's lae in fluids.

- Watch Video Solution

10. State Archimedes principle.

D Watch Video Solution

11. What do you mean by upthrust or buoyancy ?

- Watch Video Solution

12. State the law of floatation.
13. Define coefficient of viscosity of a liquid.

D Watch Video Solution
14. Distinguish between streamlined and turbulent flow.
(Watch Video Solution
15. What is Reynold's number ? Give its significance.

D Watch Video Solution
16. Define terminal velocity.

D Watch Video Solution

17. The expression for Stoke's formula

D Watch Video Solution
18. State Bernoulli's theorem.

- Watch Video Solution

19. What are the energies possessed by a liquid ? Write down their equations.

- Watch Video Solution

20. Two streamlines cannot cross each other.

Why?

D Watch Video Solution
21. Define surface tension of a liquid. Mention
its S.I. unit and dimension.

- Watch Video Solution

22. How is surface tension related to surface energy?

D Watch Video Solution
23. Define angle of contact for a given pair of solid and liquid.

- Watch Video Solution

24. Distinguish between cohesive and adhesive
forces.

- Watch Video Solution

25. What are the factors affecting the surface tension of a liquid?

D Watch Video Solution
26. What happens to the pressure inside a soap bubble when air is blown into it ?

D Watch Video Solution

27. What do you mean by capillarity or capillary action ?

D Watch Video Solution
28. A drop of oil placed on the surface of water spreads out. But a drop of water place on oil contracts to a spherical shape. Why ?

- Watch Video Solution

29. State the principle and usage of

Venturimeter.

- Watch Video Solution

1. State Hooke's law and verify it with the help of an experiment.

- Watch Video Solution

2. Explain the different types of modulus of elasticity.
3. Derive an expression for the elastic energy stored per unit volume of a wire.

D Watch Video Solution
4. Derive an equation for the total pressure at a depth ' h ' below the liquid surface.

D Watch Video Solution

5. State and prove Pascal's law in fluids.

D Watch Video Solution

6. State and prove Archimedes principle.

- Watch Video Solution

7. Derive the expression for the terminal
velocity of a sphere moving in a high viscous
fluid using stokes force.

- Watch Video Solution

8. Derive Poiseuille's formula for the volume of a liquid flowing per second through a pipe under streamlined flow.

- Watch Video Solution

9. Obtain an expression for the excess of pressure inside a (i) liquid drop (ii) liquid bubble (iii) air bubble.
10. What is capillarity? Obtain an expression for the surface tension of a liquid by capillary rise method.

D Watch Video Solution

11. Obtain an equation of continuity for a flow of fluid on the basis of conservation of mass.
12. State and prove Bernoulli's theorem for a flow of incompressible, non-viscous, and streamlined flow or fluid.

D Watch Video Solution

13. Describe the construction and working of
venturimeter and obtain an equation for the
volume of liquid flowing per second through a wider entry of the tube.

Iv Numercial Problems

1. A cappilary of diameter d mm is dipped in water such that the water rises to a height of

30 mm . If the radius of the capillary is made $\left(\frac{2}{3}\right)$ of its previous value, then compute the height up to which water will rise in the new capillary?
2. A cylinder of length 1.5 m and diameter 4 cm
is fixed at one end. A tangential force of
$4 \times 10^{5} \mathrm{~N}$ is applied at the other end. If the rigidity modulus of the cylinder is $6 \times 10^{10} \mathrm{Nm}^{-2}$ then, calculate the twist produce in the cylinder.

- Watch Video Solution

3. A spherical soap bubble A of radius 2 cm is
formed inside another bubble B of radius 4
cm . Show that the radius of a single soap bubble which maintance the same pressure difference as inside the smaller and outside the larger soap bubble is lesser than radius of both soap bubbles A and B.

D Watch Video Solution

4. A block of Ag of mass x kg hanging from a string is immersed in a liquid of relative density 0.72 . If the relative density of Ag is 10
and tension in the string is 37.12 N then compute the mass of Ag block.

D Watch Video Solution

5. The reading of pressure meter attached with a closed pipe is $5 \times 10^{5} \mathrm{Nm}^{-2}$. On opening the valve of the pipe, the reading of the pressure meter is $4.5 \times 10^{5} \mathrm{Nm}^{-2}$. Calculate the speed of the water flowing in the pipe.

D Watch Video Solution

V Conceptual Questions

1. Why coffee runs up into a sugar lump (a small cube of sugar) when one corner of the sugar lump is held in the liquid?

- Watch Video Solution

2. Why two holes are made to empty an oil tin $?$
3. We can cut vegetables easily with a sharp knife as compared to a blunt knife. Why ?

- Watch Video Solution

4. Why the passengers are advised to remove
the ink from their pens while going up to in an aeroplane ?

- Watch Video Solution

5. We use straw to suck soft drinks, why ?

D Watch Video Solution

Additional Questions I Multiple Choice Questions

1. Define the term sphere of influence.
A. $1 \AA$
B. $10 \AA$
C. $100 \AA$

D. $0.1 \AA$

Answer: B

D Watch Video Solution

2. If a spherical ball contract in volume by 1%
under a normal uniform pressure of 200 atmophere, then the compressibility of the material of the ball is
(1 atmosphere $=10^{5} \mathrm{Nm}^{-2}$)

$$
\text { A. } 20 \times 10^{-10} N^{-1} m^{2}
$$

B. $5 \times 10^{-10} N^{-1} m^{2}$
C. $10^{-10} N^{-1} m^{2}$
D. $2 \times 10^{-10} N^{-1} m^{2}$

Answer: B

D Watch Video Solution

3. An air bubble of diameter 4 mm rises steadily through a solution of density $1500 \mathrm{kgm}^{-3}$ at the rate of $30 \mathrm{~cm}^{-1}$ the coefficient of viscosity of the solution is
A. 3.3×10^{-3} poise
B. 2.2×10^{-3} poise
C. 3.3×10^{-3} poise
D. 4.4×10^{-3} poise

Answer: D

D Watch Video Solution

4. Water rises in a capillary tube to a certain height such that the upward force due to the durface tension is balanced by $62.84 \times 10^{-5} N$
force due to the weight of the liquid column. If
the surface tension of water is $70 \times 10^{-3} \mathrm{Nm}$ the radius of the capillary tube is

> A. $1.43 \times 10^{-3} \mathrm{~m}$
> B. $2.835 \times 10^{-3} \mathrm{~m}$
> C. $1.43 \times 10^{-2} \mathrm{~m}$
> D. $2.83 \times 10^{-3} \mathrm{~m}$

Answer: A

D Watch Video Solution
5. The work done against surface tension in blowing a soap bubble from a radius of 5 cm to 15 cm is (surface tension of soap solution is $30 \times 10^{-3} \mathrm{Nm}^{-1}$)
A. $2.4 \pi m J$
B. $4.8 \pi \mathrm{~mJ}$
C. $2.4 \pi J$
D. $4.8 \pi J$

Answer: A

D Watch Video Solution
6. A wooden blocks is taken to the bottom of a deep column lake of watre and then released it rises up with a
A. constant acceleration
B. decreasing acceleration
C. constant velocity
D. decreasing velocity

Answer: A

7. If there were no gravity, which of the following will not be there for a fluid?
A. viscosity
B. surface tension
C. pressure
D. archimedes upwards thrust

Answer: D
8. The rate of low of liquids in a tube of radius

V length I, whose ends are maintained at a pressure difference p is $V=\frac{\pi Q p r^{4}}{\eta l}$, where η is coefficient of viscosity \& Q is
A. 8
B. $\frac{1}{8}$
C. 16
D. $\frac{1}{16}$

- Watch Video Solution

9. Critical velocity of the liquid
A. decreases when radius decreases
B. increases when radius increases
C. decreases when density increases
D. increases when density increases

Answer: C

10. Select the correct statement of the following statements for the following situation.

When a steel ball is dropped in oil,..............
A. the ball attains constant velocity after
some time
B. the ball slopes
C. the speed of ball will escape on
increasing
D. none of the above

D Watch Video Solution

11. An aeroplane gets its upward lift due to
phenomenon described by the
A. archimedes principle
B. bernouli's principle
C. buoyancy
D. pascal law

Answer: B

- Watch Video Solution

12. The rate of low of liquid through an orifice of a tank does not depend upon
A. the size of orifice
B. density of liquid
C. height of fluid column
D. acceleration due to gravity

Answer: D

- Watch Video Solution

13. A rectangular vessel when full of water,
takes 10 min to be emptied through an orifice
in its bottom. How much time will it take to be emptied when half filled with water?
A. 9 min
B. 7 min
C. 5 min
D. 3 min

Answer: B

D Watch Video Solution

14. One large soap bubble of diameter D
breakes into 27 bubbles having surface tension T , the change in surface energy is
A. $2 \pi T D^{2}$
B. $4 \pi T D^{2}$
C. $\pi T D^{2}$
D. $8 \pi T D^{2}$

Answer: B

D Watch Video Solution

15. Two drops of equal radius coalesce to form
a bigger drop. What is ratio of surface energy
of bigger drop to smaller one?
A. $2^{1 / 2}: 1$
B. 1:1
C. $2^{2 / 3}: 1$
D. none of these

Answer: D

D Watch Video Solution

16. If a mercury drop is divided into 8 equal parts, its total energy
A. remains same
B. becomes twice
C. becomes half
D. becomes 4 times

Answer: B

D Watch Video Solution

17. If a liquid does not wet glass, its angle of contact is
A. zero
B. acute
C. obtuse
D. right angle

Answer: B

D Watch Video Solution

18. In a capillary tube experiment, a vertical, 30
cm long capillary tube is dipped in water, the
water rises upto a height of 10 cm due to
capillary action if this experiment is conducted
in a freely falling elevator, the length of the water exists
A. 10 cm
B. 20 cm
C. 30 cm
D. zero

Answer: C
(Watch Video Solution

19. Two capillaries of lengths $L 2 L$ and of radii R

and $2 R$ are connected in series the net rate of
flow of fluid through them will (rate of the flow
through singe capillary, $x=\pi R^{4} / 8 \eta L$) be
A. $\frac{8}{9} \alpha$
B. $\frac{9}{8} \alpha$
C. $\frac{5}{7} \alpha$
D. $\frac{7}{5} \alpha$

Answer: A
20. The rate of flow of water in a capillary tube
of length I \& radius r is V the rate of flow in
another capillary tube of length 21 radius 2 V
for same pressure difference would be
A. 16 V
B. 9 V
C. 8 V
D. 2 V

Answer: C

- Watch Video Solution

21. The water from a tap of diameter 1.25 cm with a rate of $5 \times 10^{-5} \mathrm{~m}^{3} \mathrm{~s}^{-1}$ the density \& coefficient of viscosity of water are $10^{3} \mathrm{kgm}^{-3}$ \& 10^{-3} pascal the flow of water is
A. steady with Reynold's number 5100
B. turbulent with Reynold's number 5100
C. steady with Reynold's number 3900

D. turbulent with Reynold's number 3900

Answer: B

D Watch Video Solution

22. The SI unit of stress is \qquad
A. N / m^{2}
B. $N-m^{2}$
C. J/K
D. J-K

Answer: A

- Watch Video Solution

23. The CGS unit of stress is \qquad
A. N / m^{2}
B. J / m^{2}
C. dynl $/ \mathrm{cm}^{2}$
D. N / cm^{2}

Answer: C
24. Which of the following is dynamic viscosity.

$$
\begin{aligned}
& \text { A. }\left[M^{1} L^{1} T^{-1}\right] \\
& \text { B. }\left[M^{1} L^{-1} T^{-1}\right] \\
& \text { C. }\left[M^{1} L^{-2} T^{-2}\right] \\
& \text { D. }\left[M^{1} L^{-2} T^{-2}\right]
\end{aligned}
$$

Answer: A

25. The viscous force the relative motion between the adjacent layers of a fluid in motion which one of the following is absolutely fit ?
A. opposes
B. never affects
C. facilitates
D. may effect under certain conditions

26. The viscosity of a fluid in motion is 1 poise.

What will be it's viscosity (in poise) When the
fluid is at rest?
A. 0
B. 0.5
C. 1
D. 2

27. Tensile strain is equal to

A. Force per unit area
B. Force per unit Volume
C. Extension per unit length
D. Force per unit length

Answer: C

28. Substances that elongate considerably and
undergo plastic deformation before they
break are known as
A. brittle - substances
B. breakable substances
C. ductile substances
D. elastic substance

Answer: C

D Watch Video Solution

29. What is an ideal fluid?

A. A fluid which has no viscosity
B. A fluid which is incompressible
C. A fluid which has no surface tension
D. All the above

Answer: D

D Watch Video Solution
30. A liquid can easily change its shpae but a solid can not because
A. the density of a liquid is smaller than
that of a solid
B. the forces between the molecules is
stronger in solid than in liquids
C. the atoms combine to form bigger
molecules in a solid
D.the average separation between the
molecules is larger in solids.

Answer: B

D Watch Video Solution

31. A baker contacting a liquid is kept inside a big closed jar if the air inside the far is continuously pumped out, the pressure in the liquid near the bottom will
A. increase
B. decrease
C. remain constant

D. first decrease and then increase

Answer: B

D Watch Video Solution

32. Bernoulli theorem is based on

 conservation ofA. momentum
B. mass
C. energy

D. angular momentum

Answer: C

D Watch Video Solution

33. Water is flowing through a long horizontal tube. Let $P_{A} \& P_{B}$ be the pressure at two points $A \& B$ of the tube
A. P_{A} must be equal to P_{B}
B. P_{A} must be greater than P_{B}

C. P_{A} must be smaller than P_{B}

D. $P_{A}=P_{B}$ only of the cross-sectional

area at $A \& B$ are equal.

Answer: D

D Watch Video Solution

34. A solid floats in a liquid in a partially dipped position.
A. The solid exerts a force equal to its
weight on the liquid
B. The liquid exerts a force of buoyancy on
the solid which is equal to the weight of
the solid
C. The weight of the displaced liquid equals
the weight of the solid
D. All of above

Answer: D
35. A solid is completely immersed in a liquid the force exerted by the liquid on the solid will
A. increase if it is P used deeper inside the
liquid
B. change if its orientation is changed
C. increase if it is taken partially out of

liquid

D. be in the vertically upward direction

Answer: D

D Watch Video Solution

36. In a streamline flow
A. the speed of a partice always remain
same
B. the velocity of a particle always remains
same
C. the kinetic energies of all the particles

arriving at a given point at the same

D. the moments of the particles arriving at

 a given point are different
Answer: C

D Watch Video Solution

37. Water flows throw 2 identical tubes A \& B,

A volume V_{0} of water posses throw the tube A
\& $2 V_{0}$ throw B in a given time. Which of the following may be correct ?
A. Flow in both the tubes are steady
B. Flow in both the tubes are turbulent
C. Flow is steady in A but turbulent in B
D. All the above

Answer: D

- Watch Video Solution

38. Water is flowing in streamline motion
throw a tube with its axis horizontal consider two point $A \& B$ in the tube at the same horizontal levels
A. the pressure at $A \& B$ are equal for any
shape of the tube
B. the pressure are never equal
C. the pressure are equal of the tube has a

D. the pressure are equal even in the tube

 has a non-uniform cross section
Answer: C

D Watch Video Solution

39. There is a small hole near the bottom of an open tank filled with a liquid the speed of water ejected does not depend on
A. area of the hole
B. density of liquid
C. acceleration due to gravity
D. both $a \& b$

Answer: D

D Watch Video Solution

40. When a metal wire is stretched by a load
the fractional change in its volume W / V is proportional to
A. $\frac{\Delta l}{l}$
B. $\left(\frac{\Delta l}{l}\right)^{2}$
C. $\sqrt{\frac{\Delta l}{l}}^{2}$
D. none of these

Answer: A

D Watch Video Solution

41. When water droplets merge to form a
bigger drop
A. energy is liberated
B. energy is absorbed
C. energy is neither liberated nor absorbed
D. energy may eigther be liberated or absorbed depending on the nature of the liquid.

Answer: A

D Watch Video Solution

42. Air is pushed into a soap bubble of radius r to double its radius, of the surface tension of
the soap solution is S, the work done in process is
A. $8 \pi r^{2} S$
B. $12 \pi r^{2} S$
C. $16 \pi r^{2} S$
D. $24 \pi r^{2} S$

Answer: D

43. If more air is pushed in a soap bubble, the pressure in it will
A. decreases
B. increases
C. remains same
D. become zero

Answer: A

D Watch Video Solution
44. If two soap bubbles of different radii are connected by a tube, then
A. air flows from bigger to the smaller
bubble till the sizes becomes equal
B. air flows bigger bubble to the smaller
bubble till the size are interchanged
C. air flows from the smaller bubble to the
bigger
D. there is number flow of air

Answer: C

- Watch Video Solution

45. The excess pressure inside a soap bubble is
twice the excess pressure inside a second soap
bubble, the volume of the first bubble is n
times the volume of the second where n is
A. 4
B. 2
C. 1

D. 0.125

Answer: D

D Watch Video Solution

46. Water rises in a vertical capillary tube upto
a length of 10 cm if the tube is inclined at 45°,
the length of water risen will be
A. 10 cm
B. $10 \sqrt{2} \mathrm{~cm}$

C. $\frac{10}{\sqrt{2 c m}}$
 D. none of these

Answer: B

D Watch Video Solution

47. Viscosity is a property of
A. liquids only
B. solid only
C. solids \& liquids only

D. liquids \& gases only

Answer: D

D Watch Video Solution

48. The force of viscosity is
A. electro magnetic
B. gravitational
C. nuclear
D. weak

Answer: A

- Watch Video Solution

49. The viscous force acting between 2 layers
of a liquid is given by $\frac{F}{A}=\eta \frac{d v}{d z}=$ This F/A may be called
A. pressure
B. longitudinal stress
C. tangential stress
D. volume stress

- Watch Video Solution

50. A raindrop falls near the surface of the earth with almost uniform velocity because
A. its weight is negligible
B. the force of surface tension balances its
weight
C. the force of viscosity of air balances its
weight
D. the drops are changed and atmospheric electric feld balances its weight

Answer: C

D Watch Video Solution

51. A piece of wood is taken deep inside a long column of water \& released it will move up.
A. with a constant upward acceleration
B. with decreasing upward acceleration
C. with a deceleration
D. there will be uniform velocity

Answer: B

D Watch Video Solution
52. The rise of a liquid in a capillary tube depends on
A. the material
B. the length
C. the inner radius of the tube
D. All the above

Answer: A

D Watch Video Solution
53. The contact angle between a solid \& a
liquid is a property of
A. the material of solid \& liquid
B. material of container
C. shape of solid
D. mass of solid

Answer: A

- Watch Video Solution

54. The properties of a surface are different from those of the bulk liquid because the surfce molecules are
A. are smaller than other molecules
B. acquire charge due to collision from air molecules
C. find different type of molecules in their
range of influence.

D. feel a net force in different direction

Answer: C

D Watch Video Solution

55. When a capillary tube is dipped into a
liquid the liquid neither rises nor falls in the capillary
A. the surface tension of liquid must be zero
B. contact angle must be 90°
C. surface tension may be one
D. contact angle may br 90° (or) zero

Answer: D
56. A liquid is contained in a vertical tube a semicircular cross section the contact angle is
zero. The force of surface tension on the curved part \& on the flat part are in ratio
A. $1: 1$
B. 1:2
C. $\pi: 2$
D. $2: \pi$

Answer: C

D Watch Video Solution

Additional Questions lii Fill In The Blanks

1. A steel ball is dropped in oil then the ball attains after some time.
A. constant force
B. constant velocity
C. varying force

D. varying velocity

Answer: B

D Watch Video Solution

2. The CGS unit of stress is

\qquad
A. N / m^{2}
B. $N / C m^{2}$
C. dyne $/ m^{2}$
D. dyne $/ \mathrm{cm}^{2}$

Answer: D

D Watch Video Solution

3. The Dimensional formula for dynamic viscosity is

$$
\begin{aligned}
& \text { A. } M T^{-1} L T^{-1} \\
& \text { B. } M L T^{-1} \\
& \text { C. } M L^{-1} T^{-1} \\
& \text { D. } M L^{2} T^{-1}
\end{aligned}
$$

Answer: C

D Watch Video Solution

4. The SI unit of stress is
A. $N m^{2}$
B. N / m^{2}
C. J/kg
D. J/K
5. Energy due to which molecules held at a
fixed position vibrate is know as \qquad .
A. External Energy
B. Internal Energy
C. Pressure Energy
D. Chemical Energy

Answer: B

6. The boiling point of Mercury is

A. $157^{\circ} \mathrm{C}$
B. $167^{\circ} C$
C. $735^{\circ} \mathrm{C}$
D. $357^{\circ} C$

Answer: D
(Watch Video Solution

7. The expression for Stoke's formula

A. $8 a \eta v$
B. $\frac{6 \pi a}{\eta v}$
C. $6 \pi a \eta v$
D. $\frac{6 \pi a \eta}{v}$

Answer: C

D Watch Video Solution
8. Tensile strain is equal to
A. Force/Unit Area
B. Force / Unit Volume
C. Extension /Unit Length
D. Force/ Unit Length

Answer: C

9. Bernoulli theorem is based on conservation

of

A. Momentum
B. Mass
C. Energy

D. Angular Momentum

Answer: C
(Watch Video Solution
10. When watr droplets merge to form a bigger drop energy is \qquad
A. liberated
B. absorbed
C. either liberated or absorbed
D. neither liberated nor absorbed

Answer: A

D Watch Video Solution

1. energy supplied to convert unit mass of substance from solid to liquid state at its melting point is called
A. Latent heat of fusion
B. Evaporation
C. Bunsen Burner
D. Acrofoil lift

- Watch Video Solution

2. Choose the odd one out .

A. Absorption of ink
B. Cotton dress
C. Rise of oil through wick
D. straw
3. Choose the odd one out.
A. Pressure Energy
B. Kinetic Energy
C. Potential Energy
D. Elastic Potential Energy

Answer: D

Additional Questions V Choose The Correct Pair

1. Choose the correct pair
A. Stocke's lae - floation of clouds
B. Hooke's law - Laminar flow
C. Reynold's number - stress-strain relation

- ship
D. Terminal velocity - changing velocity

2. Choose the correct pair
A. Buoyant force - Volume of liquid
displaced
B. Sinking of submarine - negative
buoyancys
C. Pascal's law - applied for solids to
D. Pressure - gh

Answer: B

- Watch Video Solution

Additional Questions Vi Choose The Incorrect Pair

1. Choose the incorrect pair :
A. Pressure $-\frac{2 T}{R}$
B. Surface Tension $-\frac{E}{A}$
C. Equation of continuity $-\frac{a}{v}$

D. Pressure Energy - PV

Answer: C

D Watch Video Solution

2. Choose the incorrect pair
A. Viscous force- force between layers of
liquid
B. Adhesive force - sticking force
C. Cohesive force - Water on lotus leaf
D. Surface energy - Tension

Answer: D

D Watch Video Solution

Additional Questions Vii Assertion Reason

1. Latent heat of ice is
A. Less than external latent heat of fusion
B. Equal to external latent heat of fusion

C. More then external latent heat of fusion

D. Twice the external latent heat of fusion

Answer: C

D Watch Video Solution

2. At a certain temperature, hydrogen molecules have r.m.s. velocity of $3 \mathrm{~km} / \mathrm{s}$. what is the r.m.s velocity of the oxygen molecules at the same temperature? km/s
A. 0.25
B. 0.5
C. 0.75
D. 6

Answer: c
(D) Watch Video Solution

Additional Questions Viii Choose The Correct Or

 Incorrec T Statements1. (I) Possion's Ratio tells us about the ratio of relative contraction to relative expansion.
(II) Strain has no unit.

Which one is correct statement ?
A. I only

B. II only

C. Both are correct

D. None

Answer: C

2. (I) If a body does not regain its original shake and size after removing the deforming
force is called plasticity.
(II) Example for plasticity is wood.

Which one is correct statement ?
A. I only
B. II only
C. Both are correct
D. None

D Watch Video Solution

3. (I) Example for Elasticity is Metals.
(II) Liquids have Elastic Property.

Which one is incorrect statement ?
A. I only
B. II only
C. Both are correct
D. None

Answer: B

- Watch Video Solution

4. (I) For Turbulent flow $R_{c}<2000$.
(II) Some Insects float on water because of
surface tension.
Which one is incorrect statement?
A. I only
B. II only
C. Both are correct

D. None

Answer: A

D Watch Video Solution

Very Short Answer

1. Define compressibility.

D Watch Video Solution

2. Define Relative density or specific gravity.

D Watch Video Solution

3. Incase of emergency, a vacuum brake is used to stop the train. How does this brake works?

D Watch Video Solution

4. On a hot way, a car is left in sunlight with all
windows closed. Explain why it is considerably
warner than outside, after sometime.

- Watch Video Solution

5. What is an ductile materials ?

D Watch Video Solution
6. Is stress a vector quantity ?

- Watch Video Solution

7. The shear modulus for ideal liquid is zero.

Why?

- Watch Video Solution

8. What is Bulk modulus for a perfectly rigid body?

- Watch Video Solution

9. Why does the velocity increase when liquid flowing in a wider tube enters a narrow tube ?
10. Name the three types of thermal expansion.

(Watch Video Solution

Short Answer Questions

1. How do you differentiate solid, liquid and gas ?

- Watch Video Solution

2. Write any three applications of viscosity.

- Watch Video Solution

3. Which one of these is more elastic, steel or rubber? Why?

- Watch Video Solution

4. A capillary tube is dipped first in cold water and then in hot water. Comment on the capillary rise in the second case.

- Watch Video Solution

5. Stress-Strain curve for two wires of material
A and B are as shown in figure.

Which material in more ductile ?

- View Text Solution

6. Stress-Strain curve for two wires of material
A and B are as shown in figure.

Which material has greater value of young's modulus?

D View Text Solution
7. Stress-Strain curve for two wires of material
A and B are as shown in figure.

Which of the two is stronger material ?

- View Text Solution

8. Stress-Strain curve for two wires of material
A and B are as shown in figure.

Which material is more brittle ?

D View Text Solution
9. Explain why:
a body with large reflectivity is a poor emitter.

D Watch Video Solution

10. Explain why :
a brass tumbler feels much colder thn wooden
tray on a chilly day.

D Watch Video Solution

Long Answer Questions

1. Write the Applications of elasticity.

- Watch Video Solution

2. List few applications of surface tension.

D Watch Video Solution

3. Write any two applications of Bernoulli's

Theorem.
4. the temperature at which the r.m.s. velocity
of H^{2} becomes escape velocity from the earth
is,
A. $10059^{\circ} \mathrm{C}$
B. 10059 K
C. $10332^{\circ} \mathrm{C}$
D. 10332 K

- Watch Video Solution

Numerical Problems

1. The poisson ratio of a material is 0.5 if a
force is applied to a wire of this material, there is a decrease in the cross sectional area by 4% what is the percentage increases in the length.

D Watch Video Solution

2. For a given material, the youngs modulus is
2.4 times that of rigidity modulus. What is its poisson's ratio ?

D Watch Video Solution

3. The upper end of a wire of radius 4 mm \&
length 100 cm is clamped and its other rend is
twisted through an angle of 30° the angle of shear is.
4. A wire of length L and cross section A is made of material of young's modulus y . It is stretched by an amount x . What is the work done?

- Watch Video Solution

5. The average depth of indian ocean is about 3000 m . What is the fractional compression,
$\Delta V / V$ of water at the bottom of ocean ?
(bulk modulus of water $=2.2 \times 10^{9} \mathrm{Nm}^{-2}$ \& $g=10 m s^{-2}$)

- Watch Video Solution

6. A piece of solid weight 120 g in air, 80 g in water \& 60 g in liquid find the relative density of solid \& liquid.

- Watch Video Solution

7. A body floats in water with 40% of its
volume outside water. When the same body
floats in oil 60% of its volume remains outside oil. What is the relative density of the oil ?

D Watch Video Solution

8. A soap bubble in vacuum has a radius of
$3 \mathrm{~cm} \&$ another soap bubble in vacuum has a radius of 4 cm if the 2 bubbles coalesce under
isothermal conditions then what is radius of the new bubble?

D Watch Video Solution

9. An air bubble of radius r in water is at a depth h below the water surface at some instant if P is atmospheric pressure and $d \& T$ are the density and surface tension of water, what is the pressure inside the bubble?

D Watch Video Solution

10. If a ball of steel (density $p=7.8 \mathrm{gcm}^{-3}$) attains a terminal velocity of $10 \mathrm{cms}^{-1}$ when
falling in a tank of water (coefficient of viscosity) water $=8.5 \times 10^{-4}$ pa s. What will
the terminal velocity in glycerine
$\left(P=1.2 \mathrm{gcm}^{-3}, \eta=13.2 \rho a . s\right)$ be ?

D Watch Video Solution

11. $0.1 \mathrm{~m}^{3}$ of water at $80^{\circ} \mathrm{C}$ is mixed with
$0.3 \mathrm{~m}^{3}$ of water at $60^{\circ} \mathrm{C}$. What is the final temperature of the mixture?

- Watch Video Solution

12. The terminal velocity of a tiny droplet is V .

N number of such identical droplets combine together forming a bigger drop. Find the terminal velocity of the bigger drop.

- Watch Video Solution

13. Two spherical soap bubble coalese. If V be the change in volume of the contained air, A is
the change in total surface area then show that $3 P V+4 A T=0$ Where T is the surface tension and P is atmospheric pressure.

D Watch Video Solution

Creative Questions Hots

1. A wire elongates by 1 mm when a load w is
hanged from it if the wire goes over a pulley and 2 weights w each are hung at the 2 ends.

What will be the elongation of wire in mm ?

- Watch Video Solution

2. A metallic wire is stretched by suspending weight from it if α is the longitudinal strain \& y is the young's modulus, show that elastic potential energy per unit volume is given by $\frac{1}{2} y \alpha^{2}$.

- Watch Video Solution

3. The graph shows the extension (Δl) of a wire of length 1 m suspended from the top of a
roof at one end with a load W connected to other end if the cross sectional area of wire is $10^{-6} m^{2}$, calculate the young's modulus of the material of the wire.

- Watch Video Solution

4. A light rod of length $2 m$ is suspended horizontally by means of 2 vertical wires of equal lengths tied to its ends. One of the wire is made of steel \& is of cross section $A_{1}=0.1 \mathrm{~cm}^{2} \&$ other of brass $\&$ is of cross
section $A_{2}=0.2 \mathrm{~cm}^{2}$, find out the position along the rod at which a weight must be suspended to produce (i) equal stresses in both wires, (ii) equal strains in both wires for steel, $y=20 \times 10^{10} \mathrm{Nm}^{-2}$ \& for brass $y=10 \times 10^{10} \mathrm{Nm}^{-2}$.

D Watch Video Solution

5. A thin rod of negligible mass and area of cross sectional $4 \times 10^{-6} m^{2}$, suspended
vertically from one end has a length of 0.5 at
$100^{\circ} C$ the rod is cooled at $0^{\circ} C$, but prevented from contracting by attaching a mass at lower end. Find (i) mass (ii) the energy stored in rod. Given for rod, $y=10^{11} \mathrm{Nm}^{-2}$, coefficient of linear expansion $=10^{-5} k^{-1} \&$ $g=10 m s^{-2}$.

- Watch Video Solution

6. What is the nature of intermolecular forces
?

- Watch Video Solution

7. What is the origin of intermolecular force?

(Watch Video Solution
8. What is the origin of intermolecular force?

D Watch Video Solution

9. Are the intermolecular force involved the
formation of liquid \& solids different in nature
? It yes how?

D Watch Video Solution

10. What is a perfectly elastic body ? Give exmaple?

- Watch Video Solution

11. What does slope of stress versus strain graph give ?

D Watch Video Solution
12. How does youngs modulus change with the rise of temperature ?

D Watch Video Solution

13. Why are springs made of steel \& not of copper ?

- Watch Video Solution

14. State the 2 factors on which modulus of elastic depends.

D Watch Video Solution
15. Possible to double the length of metallic wire by apply in a force over it ?

- Watch Video Solution

16. A wire fixed at the upper \& stretches by
length I by applying a force F. What is the work done by stretching the wire?
A. 2 Fl
B. Fl
C. F/2l
D. $\mathrm{Fl} / 2$

Answer:

D Watch Video Solution
17. A wire suspended vertically from one of its
end is stretched by attaching a weight of 200

N to the lower end. The weight stretches the wire by 1 mm . Find the elastic energy in the wire.

D Watch Video Solution

Value Based Questions

1. the r.m.s. velocity of the molecules of a certain diatomic gas is found to be $1.6 \mathrm{Km} / \mathrm{sec}$. the gas is
A. H^{2}
B. F^{2}
C. O^{2}
D. Cl^{2}

Answer: a

D Watch Video Solution
2. Real gases show mark able deviation from
that of ideal gas behavior at
A. High temperature and low pressure
B. Low temperature and high pressure
C. High temperature and high pressure
D. Low temperature and low pressure

Answer: b

D Watch Video Solution
3. The cube of the radius of the orbit of a geostationary satellite will be
A. $r^{2} g / w$
B. $R^{2} w^{2} / g$
C. $R G w^{2}$
D. $R^{2} g / w^{2}$

Answer: d

- Watch Video Solution

4. A king ordered his Goldsmith to make a crown which should be of pure gold. SO the goldsmith to made a crown of pure gold \& brought it to king. but the king was not contended with the crown as he suspected whether it is made of pure gold or not. So he called for Archimedes and asked him to check whether it is a pure gold crown. Archimedes
was serious about this and went his home
thinking how to solve this issue. He wanted to
take bath, all of a sudden the jumped on to
the bath typ. Water inside the tub had
splashed out of it. An idea striked him
suddenly he went running naked straight from
his bathroom to the king's pace shouting

Eureka Eureka on the road side. From this what do we infer?

How Archimeded would have solved this problem?

D Watch Video Solution

5. A king ordered his Goldsmith to make a crown which should be of pure gold. SO the
goldsmith to made a crown of pure gold \& brought it to king. but the king was not contended with the crown as he suspected whether it is made of pure gold or not. So he called for Archimedes and asked him to check whether it is a pure gold crowm. Archimedes was serious about this and went his home thinking how to solve this issue. He wanted to take bath, all of a sudden the jumped on to
the bath tub. Water inside the tub had splashed out of it. An idea striked him
suddenly he went running naked straight from
his bathroom to the king's pace shouting

Eureka Eureka on the road side. From this what do we infer?

State Archimedes principle.

D Watch Video Solution

