©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - SURA PHYSICS (TAMIL ENGLISH)

QUARTERLY COMMON EXAMINATION -
 2019

Part I

1. The significant figure of the number 0.003401 is:
A. 6
B. 3
C. 5
D. 4

Answer: D

D Watch Video Solution

2. If the force is proportional to square of velocity,
the the dimensional of proportionality constant is
A. $\left[M L T^{0}\right]$
B. $\left[M L T^{-1}\right]$
C. $\left[M L^{-2} T\right]$
D. $\left[M L^{-1} T^{0}\right]$

Answer: D

- Watch Video Solution

3. If a particle has negative velocity and negative acceleration, its speed
A. increases
B. decreases
C. remains same
D. zero

Answer: A

- Watch Video Solution

4. A physical quantity is given by $X=\frac{a^{2} \sqrt{b}}{c^{3}}$. If the percentage errors of measurement in a, b and c are $3 \%, 2 \%$ and 1% respectively, then the percentage error in X is
A. 5%
B. 10%
C. 8%
D. 6%

Answer: B

D Watch Video Solution

5. If the object dropped vertically from the top of the building takes 2 second to reach the ground then the height of the building is $\left(g=10 \mathrm{~ms}^{-2}\right)$
A. 10 m
B. 16 m
C. 20 m
D. 25 m

Answer: C

- Watch Video Solution

6. Consider a circular leveled road of radius 10 m
having coefficient of static friction 0.81 . Three cars
(A, B and C) are travelling with speed 7 $m s^{-1}, 8 m s^{-1}$ and $10 m s^{-1}$ respectively, which car will skid when it moves in the circular level road?
$\left(g=10 m s^{-2}\right):$
A. A
B. B
C. C
D. Both B and C

Answer: C

- Watch Video Solution

7. The centrifugal force appears to exist
A. only in any inertial frames
B. only in rotation frames
C. in any accelerated frames
D. both in inertial and non inertial frames

Answer: B

D Watch Video Solution

8. A ball of mass 1 kg and another of mass 2 kg are dropped from a tall building whose height is 80 m .

After, a fall of 40 m each towards Earth, their respective kinetic energies will be in the ratio of
A. $\sqrt{2}: 1$
B. $1: \sqrt{2}$
C. 2:1
D. 1:2

Answer: D

- Watch Video Solution

9. If the linear momentum of the object is increased by 0.3% then the kinetic energy is increased by :
A. 0.1%
B. 0.2%
C. 0.4%
D. 0.6%

Answer: D

- Watch Video Solution

10. What is the minimum velocity with a body of mass m must enter a vertical loop of radius R so that it can complete the loop ?
A. $\sqrt{2 g R}$
B. $\sqrt{3 g R}$
C. $\sqrt{5 g R}$
D. $\sqrt{g R}$

Answer: C

- Watch Video Solution

11. A closed cylindrical container is partially filled with water. As the container rotates in a horizontal
plane about a perpendicular bisector, its moment of inertia.
A. increases
B. decreases
C. remains constant
D. depends on direction of rotation

Answer: A

D Watch Video Solution

12. A rigid body rotates with an angular momentums
L. If its kinetic energy is reduced to one fourth (1/4)
their angular momentum becomes:
A. L
B. L/2
C. 2 L

Answer: B

- Watch Video Solution

13. The speed of the centre of a wheel rolling on a horizontal horizontal surface is v_{0}. A point on the rim in level with the centre will be moving at a speed of speed of:
A. 0
B. V_{0}
C. $\sqrt{2} V_{0}$
D. $2 V_{0}$

Answer: C

D Watch Video Solution

14. Which of the following is scalar quantity?
A. momentum
B. work
C. force
D. Displacement

Part li

1. The radius of the circle is 3.12 m . Calculate the area

 of the circkle with regard to significant figures.
- Watch Video Solution

2. Define projectile. Give two examples.

- Watch Video Solution

3. What is the point mass? Give the examples.

D Watch Video Solution

4. Under what condion will a car skid on a leveled circular road?

D Watch Video Solution

5. A car takes a turn with velocity $50 m s^{-1}$ on the circular road of radius of curvature 10 m . Calculate
the centrifugal force experienced by a person of mass 60 kg inside the car?
6. State the principle of moments .

- Watch Video Solution

7. Compare conservative forces and non conservative forces.

- Watch Video Solution

8. Distinguish between centre of mass and centre of gravity.

- Watch Video Solution

9. Water in a bucket tied with rope whirled around in a vertical circle of radius 0.5 m . Calculate the minimum velocity at the lowest point so that the water does not spill from it in the course of motion.

$$
\left(g=10 m s^{-1}\right)
$$

1. How will you measure the diameter of the Moon using parallax method?

- Watch Video Solution

2. Define Scalar product of two vector. Give any four properties of scalar product.

D
 Watch Video Solution

3. Suppose an object is thrown with initial speed of
$10 \mathrm{~ms}^{-1}$ at an angle $\pi / 4$ with the horizontal, what
is the range-covered? Suppose the same object is
thrown similarly in the moon, will there be any
change in the range? If yes, what is the change? (The acceleration due to gravity in the moon

$$
\left.g_{\mathrm{moon}}=1 / 6 g\right)
$$

D Watch Video Solution

4. Compare static friction and kinetic friction.
5. Using free body diagram show that it is easy to pull an object than to push it

- Watch Video Solution

6. Derive the relation between momentum and kinetic energy.

- Watch Video Solution

7. A vehicle of mass 1250 kg is driven with an acceleration $0.25 \mathrm{~ms}^{-2}$ along a straight level road
against an external resistive force 500 N . Calculate
the power delivered by the vehicle's engine if the velocity of the vehicle is $30 \mathrm{~ms}^{-1}$.

- Watch Video Solution

8. Define torque and mention it's unit. Give any two examples of torque in day-to-day life.

- Watch Video Solution

9. The position vectors of two point masses 10 kg

$$
(-3 \vec{i}+2 \vec{j}+4 \vec{k}) m \text { and }(3 \vec{i}+6 \vec{j}+5 \vec{k}) m
$$ respectively. Locate the position of centre of mass.

- Watch Video Solution

Part Iv

1. Obtain in expression for the time period T of a
simple pendulun. The time period depend upon
mass ' m ' of the bob (ii) length 'l' of the pendulum and (iii) acceieration due to gravity g at the place where the pendulum is suspended. (Constant $\mathrm{k}=2 \pi$
) i.e.
2. Explain in detail the triangle law of addition.

- Watch Video Solution

3. Explain in detail about systematic errors and its classification.

- Watch Video Solution

4. (a) Explain perfect inelastic collision and derive an expression for loss of kinetic energy in perfect
inelastic collision.

- Watch Video Solution

5. Derive the kinematic equations of motion for constant acceleration.

- Watch Video Solution

6. Derive the expression for final speed of a particle moving in an inclined plane.

7. Principle of conservation of linear momentum:

- Watch Video Solution

8. Derive the expression for moment of inerita of a uniform disc about an axis passing through the centre and perpendicular to the plane.

- Watch Video Solution

9. Derive the expression for gravitational potential energy.
10. Derive the expression of Kinetic energy in rotation.

- Watch Video Solution

