© ${ }^{\text {T doubtnut }}$

PHYSICS

BOOKS - SURA PHYSICS (TAMIL

ENGLISH)

WORK, ENERGY AND POWER

Exercise Questions I Multiple Choice Questions

1. A uniform force of $(2 \hat{i}+\hat{j}) \mathrm{N}$ acts on a particle of mass 1 kg . The particle displaces
from position $(3 \hat{j}+\hat{k}) \mathrm{m}$ to $(5 \hat{i}+3 \hat{j}) \mathrm{m}$.
The work done by the force on the particle is
A. 9 J
B. 6 J
C. 10 J
D. 12 J

Answer: C
(Watch Video Solution

2. A ball of mass 1 kg and another of mass 2 kg

are dropped from a tall building whose height
is 80 m . After, a fall of 40 m each towards
Earth, their respective kinetic energies will be
in the ratio of
A. $\sqrt{2}: 1$
B. $1: \sqrt{2}$
C. 2:1
D. 1:2

Answer: D
3. A body of mass 1 kg is thrown upwards with
a velocity $20 \mathrm{~ms}^{-1}$. It momentarily comes to rest after attaining a height of 18 m . How much energy is lost due to air friction ? (Take

$$
\left.g=10 \mathrm{~ms}^{-2}\right)
$$

A. 20 J
B. 30 J
C. 40 J

D. 10 J

Answer: A

D Watch Video Solution

4. An engine water continuously through a
hose. Water leaves the hose with a velocity v and m is the mass per unit length of the kinetic energy is imparted to water ?

$$
\text { A. } \frac{1}{2} m v^{3}
$$

B. $m v^{3}$
C. $\frac{3}{2} m v^{2}$
D. $\frac{5}{2} m v^{2}$

Answer: A

- Watch Video Solution

5. A body of mass 4 m is lying in $x y$ - plane at rest. It suddenly explodes into three pieces.

Two pieces each of mass m move perpendicular to each other with equal speed
v. The total kinetic energy generated due to explosion is
A. $m v^{2}$
B. $\frac{3}{2} m v^{2}$
C. $2 m v^{2}$
D. $4 m v^{2}$

Answer: B
(Watch Video Solution
6. The potential energy of a system increases,
if work is done
A. by the system against a conservative force
B. by the system against a non conservative force
C. upon the system by a conservative force
D. upon the system by a non - conservative
force

- Watch Video Solution

7. What is the minimum velocity with a body of
mass m must enter a vertical loop of radius R
so that it can complete the loop?
A. $\sqrt{2 g R}$
B. $\sqrt{3 g R}$
C. $\sqrt{5 g R}$
D. $\sqrt{g R}$

Answer: C

D Watch Video Solution

8. The work done by the conservative force for a closed path is
A. always negative
B. zero
C. always positive
D. not defined

Answer: B

D Watch Video Solution

9. If the linear momentum of the object is
increased by 0.1%, then the kinetic energy is increased by
A. 0.1%
B. 0.2%
C. 0.4%
D. 0.01%

Answer: B

D View Text Solution

10. If the potential energy of the particle is
$\alpha-\frac{\beta}{2} x^{2}$ then force experienced by the particle is

$$
\begin{aligned}
& \text { A. } F=\frac{\beta}{2} x^{2} \\
& \text { B. } F=\beta x \\
& \text { C. } F=-\beta x \\
& \text { D. } F=-\frac{\beta}{2} x^{2}
\end{aligned}
$$

Answer: B

D View Text Solution

11. A wind - powered generator converts wind energy into electric energy. Assume that the energy intercepted by its blades into electrical energy. For wind speed v, the electrical power output will be proportional to,
A. v
B. v^{2}
C. v^{3}
D. v^{4}

Answer: C

- Watch Video Solution

12. Two equal masses m_{1} and m_{2} are moving
along the same straight line with velocities
$5 m s^{-1}$ and $-9 m s^{-1}$ respectively. If the collision is elastic, then calculate the velocities after the collision of m_{1} and m_{2}, respectively
A. $-4 m s^{-1}$ and $10 m s^{-1}$
B. $10 m s^{-1}$ and $0 m s^{-1}$
C. $-9 m s^{-1}$ and $5 m s^{-1}$
D. $5 m s^{-1}$ and $1 m s^{-1}$

Answer: C

D Watch Video Solution

13. A particle is placed at the origin and a force
$\mathrm{F}=\mathrm{kx}$ is acting on it (where k is a positive constant). If $U(0)=0$, the graph of $U(x)$ versus
x will be (where U is the potential energy

function)

A.
B.
C.
D.

Answer: C
(Watch Video Solution
14. A particle which is constrained to move along x - axis, is subjected to a force in the
same direction which varies with the distance x of the particle from the origin as
$F(x)=k x+a x^{3}$. Here, k and a are positive constants. For $x \geq 0$, the functional form of the potential energy $U(x)$ of the particle is
A.
B.
C.

Answer: D

D Watch Video Solution

15. A spring of force constant k is cut info two
pieces such that one piece is double the
length of the other. Then, the long plece will have a force constant of

$$
\text { A. } \frac{2}{3} k
$$

B. $\frac{3}{2} k$
C. 3 k
D. 6 k

Answer: B

D Watch Video Solution

Exercise Questions li Short Answer Questions

1. Explain how the definition of work in physics
is different from general perception.
2. Write the various types of potential energy.

Explain the formulae.

- Watch Video Solution

3. Write the differences between conservative and Non - conscrvative force. Give two examples each.

- Watch Video Solution

4. Explain the characteristics of elastic and inelastic collision. (OR) What is the condition for perfect inelastic collision ?

D View Text Solution

5. Define the following.

Coefficient of restitution
6. Define the following.

Power

D Watch Video Solution

7. Define the following.

Law of conservation of energy

D Watch Video Solution

8. Define the following.
loss of kinetic energy in inelastic collision.

Exercise Questions lif Long Answer Questions

1. Explain with graphs the difference between
work done by a constant force and by a
variable force.

Watch Video Solution
2. State and explain work energy principle.

Mention any three examples for it.

D Watch Video Solution

3. Arrive at an expression for power and velocity. Given some examples for the same.

D View Text Solution

4. Arrive at an expression for elastic collision in Dimension and discuss various case.

D Watch Video Solution

5. Derive velocities after the collision in terms of velocities before collision in elastic collision in one dimension case.

D View Text Solution

6. What is inelastic collision ? In which way it is
different from elastic collision. Mention few examples in day to life for inelastic collision.

- Watch Video Solution

Exercise Questions Iv Numerical Problems

1. Calculate the work done by a force of 30 N in
lifting load of 2 g to a height of 10 m
$\left(g=10 m s^{-2}\right)$.
2. A ball with a velocity of $5 \mathrm{~ms}^{-1}$ impinges at angle of 60° with the vertical on a smooth horizontal plane. If the coefficient of restitution is 0.5 , find the velocity and direction after the impact.

D Watch Video Solution

3. A bob of mass m is attached to one end of the rod of negligible mass and length r, the
other end of which is pivoted freely at a fixed
center O as shown in the figure. What initial
speed must be given to the object to reach
the top of the circle ? (Hint : Use law of conservation of energy). Is this speed less or greater than speed obtained in the section 4.2.9?

D View Text Solution

4. Two different unknown masses A and B collide. A is initially at rest when B has a speed
v. After collision B has a speed $\mathrm{v} / 2$ and moves
at right angles to its original direction of motion. Find the direction in which A moves after collision.

D Watch Video Solution

5. A bullet of mass 20 g strikes a pendulum of
mass 5 kg . The centre of mass of pendulum
rises a vertical distance of 10 cm . If the bullet
gets embedded into the pendulum, calculate
its initial speed.

D Watch Video Solution

Exercise Questions V Conceptual Questions

1. A spring which is initially in un-streatched condition, is first stretched by a length x and
again by a further length x . The work done in
the first case W_{1} is one third of the work done in second case W_{2}. True of false?

D Watch Video Solution

2. Which is conserved in inelastic collision ?

Total energy (or) Kinetic energy ?

D Watch Video Solution

3. Is there any net work done by external
forces on a car moving with a constant speed
along a straight road ?

D Watch Video Solution

4. A car starts from rest and moves on a
surface with uniform acceleration. Draw the graph of kinetic energy versus displacement.

What information you can get from that graph
?

D Watch Video Solution

5. A charge particle moves towards another
charged particle. Under what conditions the total momentum and the total energy of the system conserved?

D Watch Video Solution

Additional Questions I Multiple Choice Questions

1. A body is whirled in a horizontal circle of
radius vector \vec{r}. It has an angular velocity of
$\vec{\omega}$. The velocity at any point on circular path is

$$
\begin{aligned}
& \text { A. } V=r \omega \\
& \text { B. } V=\frac{\omega}{r} \\
& \text { C. } V=\frac{r}{\omega} \\
& \text { D. } V=m
\end{aligned}
$$

Answer: A
2. What is the work done by the gravity when
an object of mass m is taken from ground to
some height h with constant velocity ?
A. $W=m g h$
B. $W=-m g h$
C. $W=0$
D. $\mathrm{W}=2 \mathrm{mgh}$

Answer: B

D Watch Video Solution
3. If the work done is independent of path, then the force is
A. Non - conservative force
B. conservative force
C. Newton's force
D. Centrifugal force

Answer: B
(Watch Video Solution

4. One horse power is

A. 707 W
B. 786 W
C. 746 W
D. 647 W

Answer: C

- Watch Video Solution
5.1 kWh is equal to
A. $3.6 \times 10^{4} \mathrm{~J}$
B. $3.6 \times 10^{5} \mathrm{~J}$
C. $3.6 \times 10^{+6} J$
D. $36 \times 10^{6} \mathrm{~J}$

Answer: C

D Watch Video Solution
6. The coefficient of restitution (e) for a material is as follows
A. $e=0$
B. $e=1$
C. $0<e<1$
D. $0>e>-1$

Answer: C

D Watch Video Solution
7. The work done on an object does not depend upon the
A. displacement
B. force applied
C. angle between force and displacement
D. initial velocity of the object

Answer: D

D Watch Video Solution

8. In case of negative work, the angle between
the force and displacement is
A. 0°
B. 90°
C. 45°
D. 180°

Answer: D

D Watch Video Solution

9. The force on a particle as the function of displacement x is given by $F=9+0.3 x$. The
work done corresponding to displacement of

particle from $x=0$ to $x=2$ unit is

A. 18.6 J
B. 21 J
C. 25 J
D. 9.6 J

Answer: A
(Watch Video Solution
10. A body carrying a box on his head is
walking on a level load from one place to
another on a straight is doing no work. This
statement is
A. correct
B. incorrect
C. partly correct
D. insufficient information

Answer: A
11. A ball moves on a frictionless inclined table
without slipping. The work done by the table
surface on the ball is
A. positive
B. negative
C. zero
D. none

Answer: C
12. A force $\vec{F}=3 \hat{i}+c \hat{j}+2 \hat{k}$ acting on a particle causes a displacement
$\vec{S}=(2 \hat{i}-3 \hat{j}+4 \hat{k})$ in its own direction. If the work done is 8 J , then the value of c is
A. 0
B. 6
C. 2
D. 1

D Watch Video Solution

13. A body is falling from a height h. After it
has fallen a height $\frac{h}{2}$ it will possess
A. only Potential Energy
B. only Kinetic Energy
C. half potential and half kinetic energy
D. more kinetic and less potential energy

Answer: C

- Watch Video Solution

14. Water stored in a dam possesses
A. no energy
B. electrical energy
C. kinetic energy
D. potential energy
15. Which one of the following is not the unit of energy ?
A. joule
B. Nm
C. kW
D. kWh

Answer: C
16. A car is accelerated on a levelled road and
attains a velocity 3 times of its initial velocity.
In this process the potential energy of the car
A. does not change
B. becomes twice to that of initial
C. becomes 4 times to initial
D. becomes 16 times to that of initial
17. When a body falls freely towards the earth, then its T.E.
A. increases
B. decreases
C. remains constant
D. first increases and then decreases

Answer: C
18. An iron sphere of mass 8 kg has the same
diameter as a copper sphere of mass 4 kg . Both
spheres are dropped simultaneously from a
tower. When they are 10 m above the ground,
they have the same
A. acceleration
B. momenta
C. Potential Energy
D. Kinetic Energy

D Watch Video Solution

19. A boy is carrying a school bag of 5 kg mass
on his back and moves 100 m on a levelled
road. The work done against the gravitational
force is $\left(g=10 m s^{-1}\right)$
A. 5 J
B. 500 J
C. 0.5 J
D. zero

Answer: D

D Watch Video Solution

20. How are joule (J) and erg related
A. $1 J=10^{7} \mathrm{erg}$
B. $1 e r g=10^{-7} J$
C. $1 J=10^{-7} \mathrm{erg}$
D. none

Answer: B

- Watch Video Solution

21. A simple pendulum hanging freelyand at rest vertical because in the position
A. Kinetic Energy is zero
B. Kinetic Energy is minimum
C. Potential Energy is Zero
D. Potential Energy is minimum

Answer: D

- Watch Video Solution

22. A bullet is fired and gets embedded in a block kept on table. If table is frictionless, then
A. Kinetic Energy gets conserved
B. Potential Energy gets conserved
C. Momentum conserved
D. both (a) and (c)

Answer: C

D Watch Video Solution

23. A ball whose Kinetic Energy is E is projected at an angle of 45° to the horizontal.

The kinetic energy of the ball at the highest point of its flight will be
A. E
B. $\frac{E}{\sqrt{2}}$
C. $\frac{E}{2}$
D. zero

Answer: C

D Watch Video Solution

24. A particle is projected at an angle of 60° to
the horizontal with a kinetic energy E . The kinetic energy at the highest point is
A. E
B. $\frac{E}{2}$
C. $\frac{E}{4}$
D. zero

Answer: C

- Watch Video Solution

25. A gun of mass M fires a bullet of mass m
with maximum speed v. G.T. $m<M$. The kinetic energy of the gun will be

$$
\text { A. } \frac{1}{2} m v^{2}
$$

B. $\frac{1}{2} M v^{2}$
C. more than $\frac{1}{2} m v^{2}$
D. less than $\frac{1}{2} m v^{2}$

Answer: D

D Watch Video Solution

26. A particle of mass m_{1} is moving with a velocity v , and another of mass m_{2} is moving with velocity v_{2}. Both of them have the some
momentum but their kinetic energies are E_{1}
and E_{2} respectively. If $m_{1}>m_{2}$ then
A. $E_{1}<E_{2}$
B. $\frac{E_{1}}{E_{2}}=\frac{m_{1}}{m_{2}}$
C. $E_{1}>E_{2}$
D. $E_{1}=E_{2}$

Answer: A
(Watch Video Solution
27. Two bodies of masses m and 4 m are moving with equal kinetic energies. The ratio of their linear momenta is
A. $1: 2$
B. 1: 4
C. $4: 1$
D. 1:1

Answer: A

D Watch Video Solution
28. The potential energy of a system increases,
if work is done
A. upon the system by a non - conservative
force
B. upon the system by a conservative force
C. By a system against conservative force
D. By a system against non conservative force

Answer: C
29. A shell, in fight explodes into four unequal parts. Which is conserved ?
A. potential energy
B. momentum
C. kinetic energy
D. both a and c

Answer: B
30. A bullet hits and gets embedded in a solid block resting on a frictionless surface. In this process which is correct ?
A. only momentum is conserved
B. both momentum and energy are
conserved
C. only kinetic energy is conserved
D. neight momentum nor energy are

D Watch Video Solution

31. Power can be expressed as
A. $\vec{F} \cdot \vec{v}$
B. $\frac{1}{2} \vec{F} \cdot v^{2}$
C. $\vec{F} \cdot t$
D. $\vec{F} \overrightarrow{\mathrm{v}}$
A. both momentum and kinetic energy are
conserved
B. only kinetic energy is conserved
C. both momentum and kinetic energy are
not conserved
D. only momentum is conserved

- Watch Video Solution

33. In an elastic collision

A. kinetic energy
B. momentum
C. both (a) and (b)
D. neither (a) nor (b)

- Watch Video Solution

34. A particle of mass ' m ' moving with velocity
'v' collides with a mass m_{2} at rest, then they get embedded. At the instant of collision, velocity of the system
A. increases
B. decreases
C. remains constant
D. becomes zero

- Watch Video Solution

35. When a particle is moving in vertical circle
A. its radial and tangential acceleration
both are constant
B.its radial and tangential acceleration
both are varying
C.its radial is constant but tangential acceleration is varying

D.its radial and is varying but tangential

acceleration is constant.

Answer: B

D Watch Video Solution

36. A particle of mass m is being rotated on a vertial circle of radius r. If the speed of particle at the highest point be v, then

> A. $m g=\frac{m v^{2}}{r}$
> B. $m g>\frac{m v^{2}}{r}$
> C. $m g<\frac{m v^{2}}{r}$
> D. $m g \leq \frac{m v^{2}}{r}$

Answer: C

D Watch Video Solution
37. The coefficient of restitution e for a perfectly elastic collision is
A. 1
B. 0
C. α
D. -1

Answer: A

- Watch Video Solution

Additional Questions lif Fill In The Blanks

1. The work done by the variable force is defined by
A. $\int_{f}^{i} F \times \vec{d} v$
B. $\int_{i}^{f} \vec{F} \times \overrightarrow{d r}$
C. $\int_{i}^{f} \vec{F} \cdot \overrightarrow{d r}$
D. $\int_{i}^{f} \vec{d} r \times \vec{F}$

Answer: C
(Watch Video Solution
2. The kinetic energy can also be defined in terms of momentum which is given by
A. $P / 2 m$
B. $\frac{1}{2} K x^{2}$
C. $P^{2} / 2 m$
D. $P^{2} 2 m$

Answer: C

3. The work done by the conservative force for a closed path is
A. zero
B. positive
C. negative
D. constant

Answer: A
(Watch Video Solution
4. The frictional force is
A. conservative
B. non - conservative
C. resistive

D. submissive

Answer: B
5. In the conservative force field,
the object is conserved.
A. Total energy
B. Internal Energy
C. external energy
D. Kinetic Energy

Answer: A

D Watch Video Solution
6. When the elonation or compression is x, the spring potential energy (U) is given by
A. $K x^{2}$
B. $\frac{1}{2} K x^{2}$
C. $\frac{K}{x^{2}}$
D. $2 K x^{2}$

Answer: B

D Watch Video Solution
7. In a vertical circular motion, the minimum speed required by the mass to complete the circle is
A. $\sqrt{4 g r}$
B. $\sqrt{2 g r}$
C. $\sqrt{5 g r}$
D. $\sqrt{5 r}$

Answer: C

- Watch Video Solution

8. The is not conserved in an inelastic collision
A. Kinetic Energy
B. potential Energy
C. Internal Energy

D. Pressure Energy

Answer: A
(D) Watch Video Solution
9. In conservative force, Force is the gradiet of Potential energy.
A. Potential
B. negative
C. Positive
D. Kinetic

Answer: B

D Watch Video Solution
10. The work done by a force on the object is equal to the change in its Kinetic. This is called
A. Lami's Theorem
B. Right Hand Plam Rate
C. Work - Energy Theorem
D. Benoullis theorem

Answer: C

D Watch Video Solution

1. Choose The Odd One Out -
A. spring force
B. viscous force
C. magnetic force
D. electrostatic force

Answer: b

D Watch Video Solution

2. Choose The Odd One Out -

A. $\int_{h} \vec{F}_{a} \cdot d r$
B. mgh
C. $\int_{0}^{h}\left|\vec{F}_{a}\right| \mid d r \cos \theta$
D. $\frac{1}{2} K x^{2}$

Answer: d
(Watch Video Solution

3. Choose The Odd One Out -

A. Work/time
B. Force \times Velocity
C. 746 W
D. 1 kWh

Answer: d

1. Choose the Correct Pair -
A. $1 \mathrm{hp}-746 \mathrm{~W}$
B. $1 \mathrm{k} \mathrm{Wh}-36 \times 10^{4} J$
C. 1 Unit - 1 Wh
D. 1 erg -10^{-7} Cabric

Answer: a

- Watch Video Solution

2. Choose the Correct Pair -

$$
\begin{aligned}
& \text { A. } K . E-\frac{P^{2}}{2 m} \\
& \text { B. P. } E .=m g h^{2} \\
& \text { C. Elastic P.E. }-\left(-\frac{1}{2}\right) K x \\
& \text { D. Static Energy - }\left(\frac{1}{2}\right) m V
\end{aligned}
$$

Answer: a

1. Choose the Incorrect Pair :
A. Conservative Force - Viscous Force
B. None - conservative force - Frictional
force
C. Centripetal force - Inward force
D. Frictional force - Resistive force

- Watch Video Solution

2. Choose the Incorrect Pair :
A. Minimum speed at - $\sqrt{g r}$
B. $1 G W-10^{9} W$
c. Work - $\int \vec{F} \cdot d t$
D. 1 Unit -1 k Wh

Answer: c

- Watch Video Solution

1. Assertion : When Air is blow on a plastic cover, lying on the floor. If flies to a particular height in different directions. Also It's energy at different positions keep changing.

Reason : Work done by the force on the body changes the kinetic energy of the body. This is
called Work - Energy Theorem. i.e.,
$W=\Delta K . E$.
A. Assertion and Reason are correct and

Reason is the correct explanation of

Assertion
B. Assertion and Reason are true but

Reason is the false explanation of the

Assertion
C. Assertion is true - but Reason is false

D. Assertion is false but Reason is true

Answer: A

2. Assertion : When a Rubber band is stretched to a particular length, there is a change in length as well as the elastic potential energy is increased i.e., $U=\frac{1}{2} K x^{2}$

Reason : A bullet shot from the gun if embedded in a long of wood. Kinetic Energy is not conserved, but momentum is conserved, but momentum is conserved. The loss in kinetic is $\Delta \theta=K . E_{i}-K . E_{f}$
A. Assertion and Reason are correct and

Reason is the correct explanation of

Assertion
B. Assertion and Reason are true but

Reason is the false explanation of the

Assertion
C. Assertion is true - but Reason is false

D. Assertion is false but Reason is true

Answer: B

Additional Questions Viii Choose The Correct Or

 Incorrect Statements1. (I) KWh is the unit of electrical energy not of
power.
(II) The frictional force is a conservative force which statement is correct ?

Which Statement is correct?
A. I only
B. II only

C. Both are correct

D. None

Answer: A

D Watch Video Solution

2. (I) The total linear momentum is conserved only for Elastic collisions not for inelastic.
(II) Power is also equal to force \times velocity

Which statement is correct ?
A. I only
B. II only
C. Both are correct
D. None

Answer: B

- Watch Video Solution

3. (I) The work done by a non - conservative force, around the closed path is zero.
(II) The co-efficient of restitution is e.

Which statement is incorrect ?
A. I only
B. II only
C. Both are correct
D. None

Answer: A
(Watch Video Solution
4. (I) Force is the negative gradient of Potential Energy.
(II) Work done is not completely recoverable in

Non - conservative forces.

Which statement is correct ?
A. I only
B. II only
C. Both are correct
D. none

(D) Watch Video Solution

Additional Questions Very Short Answer

 Questions1. Write the spring force acting on the object at the positions given below (surface is frictionless)

- View Text Solution

2. Write the spring force acting on the object at the positions given below (surface is

frictionless)

D View Text Solution
3. What is power ? Give its dimensional formula?
(D) Watch Video Solution
4. What is the condition for perfect inelastic collision?

D Watch Video Solution
5. What is the work done by the centripetal
force in circular motion?
(D) Watch Video Solution
6. What is meant by positive work ? Give example.

D Watch Video Solution

7. Define the following.

Law of conservation of energy

(Watch Video Solution
8. Define energy and write its unit and dimension.

D Watch Video Solution
9. Can Kinetic energy of a system be changed without changing its momentum ?
10. Can momentum of a system be changed without changing its kinetic energy ? Give example.

D Watch Video Solution

11. Define Potential energy. Write the expression of it.

D Watch Video Solution
12. Define gravitational potential energy.

D Watch Video Solution

13. How can an object move with zero acceleration (constant velocity) when the external force is acting on the object ?

D Watch Video Solution

14. Define power.

- Watch Video Solution

15. Define average power.

D Watch Video Solution

16. Define instantaneous power.

- Watch Video Solution

17. Give the unit and dimension of power.

- Watch Video Solution

18. Define watt.

D Watch Video Solution

19. Which unit is used to measure electrical energy ? (or) Define kilo watt hour.

D Watch Video Solution
20. Define work. Give its unit and dimension.

D Watch Video Solution

21. List the various units for energy and give their equivalent SI values.

- Watch Video Solution

22. Define work - energy theorem.

23. Define electrostatic potential energy.

D Watch Video Solution

Additional Questions Short Answer Questions

1. Write down the coefficient of restitution for
the following cases :

A ball rebounding from a floor
2. A box is pulled with a force of 25 N to produce a displacement of 15 m . If the angle between the force and displacement is 30°.

Find the work done by the force?

D Watch Video Solution

3. Consider a system of two identical particles
having mass m. If one of the particles of mass
m is pushed towards the center of mass of the particles through a distance x, by what
amount the other particle should move so as
to keep the center of mass of particles at the original position?

D Watch Video Solution

4. How will you measure the work done ?

When
the force acts along the direction of motion of the body
5. How will you measure the work done? When
the force is inclined to the direction of motion of the body?

D Watch Video Solution

6. Writen the different cases of zero work done. Given examples of each case. (or) Can work done on an object becomes zero ?

Explain with example.

- View Text Solution

7. What is meant by negative work ? Give example.

- Watch Video Solution

8. Obtain graphically and mathematically work done by a variable force.

- View Text Solution

9. What is mechanical energy ? What are its two types?

D Watch Video Solution
10. What does the work - kinetic energy
theorem imply ?

D Watch Video Solution
11. Draw force - displacement graph for a spring and find an expression for the potential energy of an elastic spring.

D View Text Solution

12. Depict Δ kinetic energy $=\Delta U$ in potential energy-displacement graph for a spring.

- View Text Solution

13. What is conservative force ? State how it is

 determioned from potential energy?D View Text Solution
14. When does a force is said to be in work?

D Watch Video Solution

15. State total linear momentum is conserved
in all collisions.

D View Text Solution

Additional Questions Long Answer Questions

1. Deduce the relation between linear momentum and kinetic energy.

- Watch Video Solution

2. Derive an expression for the potential energy of a body near the surface of the Earth.
(OR) Calculate the potential energy of the object of mass m at a height h.

D View Text Solution

3. Derive an expression for the potential energy of an elastic stretched spring.

D Watch Video Solution

4. State and prove the law of conservation of
linear momentum.
5. Derive an expression for the velocity of the body moving in a vertical circle. And also find a tension at the top of the circle.

- Watch Video Solution

6. What is a perfect inelastic collision ? Derive
the expression of the common velocity after collision.

Watch Video Solution

Numerical Problems

1. A circket ball falls from a height of 40 m .

What is the velocity with which the ball hits
the ground ?
A. $40 m s^{-1}$
B. $20 m s^{-1}$
C. $16 m s^{-1}$
D. $28 m s^{-1}$

Answer: D

- Watch Video Solution

2. Convert 1 kWh in joule.

A. $1.2 \times 10^{2} j$
B. $2.4 \times 10^{4} \mathrm{~J}$
C. $3.6 \times 10^{6} J$
D. $4.4 \times 10^{3} \mathrm{~J}$

Answer: C
3. A motor which is capable of raising 2,000
litres of water in 3 mins from a well 120 m deep. So what is the power of a motor ?
A. $8.730 k W$
B. 7.840 kW
C. $11.652 k W$
D. 13.066 kW
4. If momentum of a body increases by 100%
then what will be percentage increase in its kinetic energy?
A. 200%
B. 100%
C. 300%
D. 400%

- Watch Video Solution

5. A body of mass of 3 kg initially at rest wakes
under the action of an applied horizontally
force of 10 N on a table with co-efficient of
kinetic friction $=0.3$, then what is the workdone by the applied force in 10 s :

- Watch Video Solution

6. A particles moves along x - axis from $x=0$ to
$x=7 m$ under the influence of a force given by $f(x)=12-2 x+3 x^{2}$ then the workdone is,
A. 205 J
B. 390 J
C. 378 J
D. 291 J

Answer: C

D Watch Video Solution

7. A particles along y axis from $y=1 m$ to $y=3$

m under the influence of a force given by $f(y)=6-2 y+3 y^{2}$ then the work done is,
A. 48 J
B. 50 J
C. $-48 J$

$$
\text { D. }-50 J
$$

Answer: C

D Watch Video Solution
8. Find the workdone if a particle moves from position $\vec{r}_{1}=(2 \hat{j}+\hat{j}-3 \hat{k})$ to a position $\vec{r}_{2}=(4 \hat{i}+6 \hat{j}-7 \hat{k})$ under the effect of
force $\vec{F}=(3 \hat{i}+2 \hat{j}+4 \hat{k}) N$.

D Watch Video Solution

9. A ball bounces to 75% of its original height.

Calculate the mechanical energy lost in each bounce.
B. 0.35
C. 0.25
D. 0.20

Answer: C

D Watch Video Solution
10. Two masses of 2 g and 6 are moving with equal kinetic energy. The ratio of the magnitudes of their Linear momenta is,
A. $1: 2$
B. 2:1
C. 2: 6
D. $1: \sqrt{3}$

Answer: D

D Watch Video Solution

11. A large and small vehicle moving with the some kinetic energy on a straight road. Their
engine are simultaneously OFF. Which one will stop at a longer distance?

D Watch Video Solution

12. A bullet of mass 30 g moving with a speed
of $500 \mathrm{~ms}^{-1}$ pentrates 10 cm into a fixed
target. Calculate the average force exerted by target on the bullet.
13. A particle of mass 2 kg moving with a velocity $v_{1}=(2 \hat{i}-3 \hat{j}) m / s$ experience a perfectly inelastic collision with another particle of mass 2 kg having velocity $\vec{v}_{2}=(3 \hat{j}+6 \hat{k}) m / s$. Find the velocity and speed of the particle formed.

D Watch Video Solution

14. Find the work done in moving a particle along a vectors $\vec{S}=(\hat{i}-2 \hat{j}+3 \hat{k}) m$ if
applied force is $\vec{F}=(2 \hat{i}-3 \hat{j}+4 \hat{k}) N$.

- Watch Video Solution

15. Find the workdone in moving a particle along a vectors $\vec{S}=(\hat{i}+2 \hat{j}+6 \hat{k}) m$ if applied force is $\vec{F}=(2 \hat{i}+3 \hat{j}+5 \hat{k}) N$ at an angle 60°.

- Watch Video Solution

16. A body of mass 600 g travels in a straight line with velocity $\quad v=a x^{\frac{3}{2}}$. Where $a=3 m^{\frac{1}{2}} s^{-1}$. What is the workdone by the net force during its displacement from $\mathrm{x}=0$ to $\mathrm{x}=3 \mathrm{~m}$?

D Watch Video Solution

17. A body of mass 500 g initially at rest is moved by a horizontal force of 1 N . Calculate the workdone by the force in 20 s and show
that is equal to the change in kinetic energy of the body.

D Watch Video Solution

18. Find the work done in pulling and pushing an object through 200 m horizontally when a force of 1000 N is acting along a chain making an angle of 60° with ground. Assume the floor to be smooth friction less surface.

Creative Questions Hots

1. Why should the object be moved at constant velocity when we define potential energy?

D Watch Video Solution

2. Why does a pilot not fall down, when his aeroplane loops a vertical loops?

D Watch Video Solution
3. A motor cyclist is going in a vertical circle.

What is the necessary condition so that he may not fall down ?

D Watch Video Solution

4. What is the power of an engine which can
lift 20 metric ton of coal per hour from a mine 30 metres deep ?

D Watch Video Solution

5. A body constrained to move along the x axis of a coordinate system is subjected to a constant force $\vec{F}=(2 \hat{i}-\hat{j}+4 \hat{k}) N$, then what is the workdone by this force in moving the body over a distance of 4 m along the x axis.

- Watch Video Solution

6. A molecule in gas container hits the wall with speed $350 \mathrm{~m} / \mathrm{s}$ at an angle 45° with the
normal and rebound with the same speed. Is momentum conserved in the collision ?

D View Text Solution

7. Calculate work done to move a boy of mass

20 kg along an inclined plane $\left(\theta=45^{\circ}\right)$ with constent velocity through a distance of 10 m .
8. A bullet of mass 25 g moving with a velocity
of $400 \mathrm{~ms}^{-1}$ strikes a cardboard and goes out
from the other end with a velocity of $300 \mathrm{~ms}^{-1}$, find out the work done in passing through the cardboard.

- Watch Video Solution

9. Find the work done and power of an car engine which can maintain a speed of $40 \mathrm{~ms}^{-1}$
for a mass of a car $2 \times 10^{3} \mathrm{~kg}$ on a rough level road to 2 km . The coefficient of friction is 0.05 .

D Watch Video Solution

Value Based Questions

1. Ramu and Raju are dragging water in a bucket from the wells A and B respectively.

Ramu dragged three buckets of water within 5
minutes but Raju could not do for the short
interval of time. He could take only two
buckets of water in 7 minutes. What do you inter from this Incidence.

What is the Expression for Work or Energy?

D Watch Video Solution

2. Ramu and Raju are dragging water in a bucket from the wells A and B respectively.

Ramu dragged three buckets of water within 5 minutes but Raju could not do for the short
interval of time. He could take only two buckets of water in 7 minutes. What do you
inter from this Incidence.

What is the expression and unit for power?

D Watch Video Solution

3. Ruvanjani was told to switch on motor by her mother. Since the tank at the top of her building is empty, water is filled from the well.

After the tank is full, she switched it off. She went near the tap opened it and washed her
hands and legs with water from the tap for ten minutes. What concept is hidden in this
scene.

What are the different energies at different position from the tank to the Tap.

D Watch Video Solution

4. Ruvanjani was told to switch on motor by
her mother. Since the tank at the top of her building is empty, water is filled from the well.

After the tank is full, she switched it off. She went near the tap opened it and washed her hands and legs with water from the tap for
ten minutes. What concept is hidden in this scene.

What is the Total Energy near the tap ?

D Watch Video Solution

5. Ruvanjani was told to switch on motor by
her mother. Since the tank at the top of her building is empty, water is filled from the well.

After the tank is full, she switched it off. She went near the tap opened it and washed her hands and legs with water from the tap for
ten minutes. What concept is hidden in this
scene.

What is the Total Energy near the tap ?

- Watch Video Solution

