©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - SURA CHEMISTRY (TAMIL ENGLISH)

CO-ORDINATION CHEMISTRY

Evaluation

1. The sum of primary valency and secondary valance of the metal M in the complex $\left[M(e n)_{2}(O x)\right] C l$ is L
A. 3
B. 6
C. -3
D. 9
2. An excess of silver nitrate is added to 100 ml of a 0.02 M solution of pentaaquachloridochromium (III) chloride. The number of moles of AgCl precipitated would be
A. 0.02
B. 0.002
C. 0.01
D. 0.2

Answer: B

- Watch Video Solution

3. A complex has molecular formula $\mathrm{MSO}_{-} 4 \mathrm{C}_{16 \mathrm{H}_{2} \mathrm{O} \text {. The aqeous }}$ solution of it gives white precipitate with Barium chloride solution and no precipitate is obtained when it is treated with silver nirate solution.lf
the secondary valence of the metal is six , which one of the following correctly represents the complex?
A. $\left[\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{C} 1\right] \mathrm{SO}_{42} \mathrm{H}_{2} \mathrm{O}$
B. $\left[M\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{SO}_{4}$
C. $\left[\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{C} 1\right] \mathrm{SO}_{4} 2 \mathrm{H}_{2} \mathrm{O}$
D. $\left[\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{C} 1\right] \mathrm{SO}_{4} 3 \mathrm{H}_{2} \mathrm{O}$

Answer: C

- Watch Video Solution

4. Oxidation state of Iron and the charge on the ligand NO in $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right] \mathrm{SO}_{4}$ are
A. +2 and o respectively
B. +3 and 0 respectively
C. +3 and -1 respectively
D. +1 and +1 respectively

Answer: C

- Watch Video Solution

5. As per IUPAC guidelines .the name of the complex $[\mathrm{Co}(\mathrm{ONO}) \mathrm{Cl}] \mathrm{Cl}$ is
A. Chlorobisethllyenediaminenitritocobalt (III) chloride
B. Chloridobis (ethane -1 ,2-diamine) nitro k-Ocobaltate (III) chlroide
C. Chloridobis (ethane -1,2-diamine) nitrito k-Ocobalt (II) chloride
D. chloridobis (ethane -1,2-diamine)nitro k-Ocobalt (III) chloride

Answer: A

- View Text Solution

6. IUPAC name of the complex $K_{3}\left[\mathrm{A1}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right.$ is
A. Potassiumtrioxalatoaluminium (III)
B. Potassiumtrioxalatoaluminate (II)
C. Potassiumtrisoxalatoaluminate (III)
D. Potassiumtrioxalatoluminate (III)

Answer: D

- Watch Video Solution

7. A magnetic moment of 1.73 BM will be shown by one among the following
A. $\mathrm{TiC1} 1_{4}$
B. $\left[\mathrm{COCl}_{6}\right]^{4-}$
C. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
D. $\left[N i(C N)_{4}\right]^{2-}$

Answer: C

8. Crystal field stabilization energy for high spin d^{5} octahedral complex is
A. $-0.6 \delta_{0}$
B. 0
C. $2\left(P-\delta_{0}\right)$
D. $2\left(P+\delta_{0}\right)$

Answer: B

- Watch Video Solution

9. In which of the following coordinaton entities the magnitude of Δ_{0} will be maximum?
A. $\left[\mathrm{CO}(\mathrm{CN})_{6}\right]^{3-}$
B. $\left[\mathrm{CO}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
C. $\left[\mathrm{CO}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
D. $\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$

Answer: A

- Watch Video Solution

10. Which one the following will give a pair of enantiomorphs?
A. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{CO}(\mathrm{CN})_{6}\right]$
B. $\left[\mathrm{CO}(e n){ }_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
C. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\left[\mathrm{PtC1}_{4}\right]\right.$
D. $\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{NO}_{2}$

Answer: B

11. Which type of isomerism is exhibited by $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
A. Coordination isomerism
B. Linkage isomerism
C. Optical isomerism
D. Geomerical isomerism

Answer: D

- Watch Video Solution

12. How many geomerical isomers are possible for $[P t(P y)(N H 3)(B r)(C 1)]$?
A. 3
B. 4
C. 0
D. 15

- View Text Solution

13. Which one of the following pairs represents linkage isomers?
A. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}-(4)\right]\left[\mathrm{PtC1}_{4}\right]\right.$ and $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{CuC1} 1_{4}\right]$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{3}\right) \mathrm{SO}_{4}\right.$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{ONO})\right]$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{NCS})_{2}\right] \mathrm{Cl}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{SCN})_{2}\right] \mathrm{Cl}$
D. both (b) and (c)

Answer: C

- Watch Video Solution

14. Which kind of isomerism is possible for a complex $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Br} r_{2}\right] \mathrm{Cl}$
A. geometrical and ionization
B. geometrical and optical
C. optical and ionization
D. geometrical only

Answer: A

D Watch Video Solution

15. Which one of the followng complex is not expected to exhibit isomerism?
A. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right) 2\right]^{2+}$
B. $\left[\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Cl}$
D. $\left[F e(e n)_{3}\right]^{3+}$
16. A complex in which the oxidation number of the metal is zero is
A. $K_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
B. $\left[\mathrm{Fe}(\mathrm{CN})_{3}\left(\mathrm{NH}_{3}\right)_{3}\right]$
C. $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$
D. both (b) and (c)

Answer: C

- Watch Video Solution

17. Formula of tris (ethane 1,2-diamine) iron (II) phosphate
A. $\left[\mathrm{Fe}\left(\mathrm{CH}_{3}-\mathrm{CH}\left(\mathrm{NH}_{2}\right)_{2}\right)_{3}\left(\mathrm{PO}_{4}\right)_{3}\right.$
B. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{NH}_{2}\right)_{3}\right]\left(\mathrm{PO}_{4}\right)$
C. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}\right)_{3}\right]\left(\mathrm{PO}_{4}\right)_{2}$
D. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}\right)_{3}\right]_{3}\left(\mathrm{PO}_{4}\right)_{2}$

Answer: D

- View Text Solution

18. Which of the following is paramagnetic in nature?
A. $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
C. $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
D. $\left[N i(C N)_{4}\right]^{2-}$

Answer: C

- Watch Video Solution

19. Fac-mer isomerism is shown by
A. $\left[\mathrm{Co}(e n)_{3}\right]^{3-}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{Cl})_{2}\right]^{+}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)(\mathrm{Cl})_{3}\right]$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{SO}_{4}$

Answer: C

- Watch Video Solution

20. Choose the correct statement.
A. Square planar complex are more stable than octahedral complex
B. The spin only magnetic moment of $\left[\mathrm{Cu}(\mathrm{Cl})_{4}\right]^{2-}$ is 1.732 BM nad it has square planner structure
C. Crystal field splitting energy $\left(\Delta_{0}\right) o f\left[\mathrm{FeF}_{6}\right)^{4+}$ is higer than the $\left(\Delta_{0}\right) o f\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{2+}$
D. Crystal field stabilization energy of $\left.\left[\mathrm{V}_{2} \mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is higer than the crystal field stabilization of $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

Answer: D

- View Text Solution

Answer The Following The Questions

1. (i) Write the IUPAC names for the following complexes.
2. $N a_{2}[N i(E D T A)]$
3. $\left[\mathrm{Co}(\mathrm{en})_{3}\right]_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(ii) What is meant by piezo electricity?

- Watch Video Solution

2. Write the formula for the following coordination compounds.
(a). Potassiumhexacyanidoferrate(II)
(b) . Pentacarbonyliron (0)
© . Pentaamminenitrito -k-N-cobalt (III) ion
(d). Hexaamminecobalt (III) sulphate
(e). Sodiumtetrafluoridodihydroxido chromate (III)

(Watch Video Solution

3. Arrange the following in order of increasing molar conductivity
(i). $\mathrm{Mg}\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)(\mathrm{Cl})_{5}\right]$
(b) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]_{3}\left[\mathrm{CoF}_{6}\right]_{2}$
(iii) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$

- View Text Solution

4. $N i^{2+}$ is identified using alcoholic solution of dimethyl glyoxime.Write the structural formula for the rosy red precipitate of a complex formed in the reaction.

- View Text Solution

5. $\left[C u C l_{4}\right)^{2-}$ exists while $\left[C u I_{4}\right)^{2-}$ does not exist why?

- Watch Video Solution

6. Calculate the ratio of $\frac{\left[\mathrm{Ag}^{+}\right]}{\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}}$in 0.2 M solution of NH_{3}. If the stability constant for the complex $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+} i s 1.7 \times 10^{7}$

- Watch Video Solution

7. Give an example of coordination compound used in medicine and two examples of biologically important coordination compounds.

- View Text Solution

8. Based VB theory explain why $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ is paramagnetic, while $\left[N i\left(C N_{4}\right)^{2-}\right.$ is diamagnetic.

- Watch Video Solution

9. Draw all possible geometrical isomers of the complex $\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right]^{+}$ and identify the optically active isomer.

- View Text Solution

10. $\left[T_{i}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is coloured , while $\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is colourless -explain

- Watch Video Solution

11. Give an example of complex of the type $\left[M a_{2} b_{2} c_{2}\right]$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are monodentate ligands and give the possible isomers.

- View Text Solution

12. Give one test to differentiate
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{SO}_{4}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Cl}$.
13. In an octahedral crystal field, draw the figures to show splitting of d orbitals

- Watch Video Solution

14. What is linkage isomerism ? Explain with an example.

- Watch Video Solution

15. Write brifly about of the applications of coordination compouds in volumetric analysis.

- Watch Video Solution

16. Calassify the following ligand based on the number of donor atoms.
NH_{3}
(b)en
$\bigcirc o x^{2}$
(d) triaminotriethylamine
(e) pyridine

- Watch Video Solution

17. Give the difference between double salts and coordination compounds.

- Watch Video Solution

18. Write the postulates of Warner's theory.

- Watch Video Solution

19. $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is diamagnetic ,while $\left[\mathrm{NiCl}_{4}\right]^{2}-$ is paramagnetic ,explain using crystal field theory.
20. Why tetrahedral complex do not exhibit geometrical isomerism?

- Watch Video Solution

21. Explain optical isomerism in coordination compounds with an example.

- View Text Solution

22. What are hydrate isomers? Explain with an example.

- Watch Video Solution

23. What is crystal field splitting energy?

- Watch Video Solution

24. What is crystal field stabilization energy (CFSE) ?

- Watch Video Solution

25. A solution of $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is green whereas a solution of $\left[\mathrm{Ni}\left(\mathrm{CN}_{4}\right)\right]^{2-}$ is colorless -Explain.

- Watch Video Solution

26. Discuss brifly the nature of bonding in metal carbonyls.

- Watch Video Solution

27. What is the coordination entity formed when excess of liquid ammonia is added to an aqueous solution of copper sulphate?

- Watch Video Solution

28. On the basis of VB theory explain the nature of bonding in $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$

- Watch Video Solution

29. What are the limitations of VB theory?

- Watch Video Solution

30. Write the oxidation state,coordination number, natures of ligand magnetic property and electronic configuration in octahedral crystal field for the complex $K_{4}\left[M n(C N)_{6}\right]$.

- Watch Video Solution

1. When a coordination compounds $\mathrm{CrCl}_{3} 4 \mathrm{H}_{2} \mathrm{O}$ is mixed with silver nitrate solution one mole of silver chloride is precipitated per mole of the compounds. There are no free solvent molecules in that compound. Assign the secondary valence to the metal and write the structural formula of the compounds.

- Watch Video Solution

2. In the complex $\left[\mathrm{Pt}\left(\mathrm{NO}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Br}$, identify the following
i. Central metal atom/ ion
ii. Ligands (s) and their types
iii. Coordination entity
iv. Oxidation number of the central metal ion
v. Coordination number

- Watch Video Solution

3. Write the IUPAC name for the following compouns.
(i) $\mathrm{K}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{3}(\mathrm{Cl})_{2}\left(\mathrm{NH}_{3}\right)\right]$
(ii) $\left[\mathrm{Cr}(\mathrm{CN})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]\left[\mathrm{CO}(o x)_{2}(3 n)\right]$
(iii) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{2}\right]$
(iv) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{3}(\mathrm{NC})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}$
(v) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$

- View Text Solution

4. A solution of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{I}_{2}\right] \mathrm{Cl}$ when treated with AgNO_{3} gives a white precipitate What should be the formula of isomer of the dissolved complex that gives yellow precipitate with AgNO_{3} What are the above isomers called?

- Watch Video Solution

5. The spin only magnetic moments of Tetrachloridomanganate (II) ion is
5.9 BM. On the basis of VBT, predict the type of hybridisation and
geometry of the compound.

- Watch Video Solution

6. Predict the number of unpaired electrons in $\left[\mathrm{CoCl}_{4}\right)^{2-}$ ion on the basis of $V B$

- Watch Video Solution

7. The mean pairing energy and octahedral field splitting energy of $\left[M n(C N)_{\square}\right]^{3-}$ are $28,800 \mathrm{~cm}^{-1}$ and $38500 \mathrm{~cm}^{-1}$ respectively Whether this complex is stable in low spin or high spin?

- View Text Solution

Choose The Correct Answers

1. Identify the ambidentate ligand among the following.
A. NH_{3}
B. $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$
C. NO_{2}^{-}
D. $S C N^{-}$

Answer: C and D

- Watch Video Solution

2. An aqueous solution of $\left(\mathrm{PdCl}_{2}\right) 4 \mathrm{NH}_{3}$ when treated with excess of AgNO_{3} precipitated 2 moles of AgCl . Predict the secondary valency of the compound.
A. 2
B. 3
C. 4
D. 6

Answer: C

- Watch Video Solution

3. The total number of electrons donate by ligand to platinum ion in $\left[\mathrm{Pt}(e n)_{2} \mathrm{Cl}_{2}\right]$ is
A. 8
B. 10
C. 12
D. 14

Answer: C

- Watch Video Solution

4. Primary and secondary valencies of Cu in $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}$ is
A. 4,4
B. 2,4
C. 4,1
D. 4,2

Answer: B

- Watch Video Solution

5. Structural formula of tetra aquadichlorido Chromium (III) chloride .
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
B. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{3}\right.$
C. $\left[\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2} \mathrm{Cr}\right] \mathrm{Cl}_{2}$
D. $\left[\mathrm{Cl}_{2}\left(\mathrm{H}_{2} \mathrm{o}\right)_{4} \mathrm{Cr}\right] \mathrm{Cl}_{3}$

Answer: A

6. Which of the following octahedral complexes do not show geometrical isomerism?
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$
B. $\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]$
C. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
D. $\left[\mathrm{Co}(e n)_{3}\right]^{3+}$

Answer: D

- Watch Video Solution

7. Co-ordination isomerism is exhibited by
A. $\left[\mathrm{Cr}(e n)_{2} \mathrm{Cl}_{2}\right] \mathrm{NO}_{2}$
B. $\left[\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{CuCl}_{4}\right]$
C. $\left[\mathrm{Cr}(e n)_{2} \mathrm{Cl}_{2}\right] \mathrm{NO}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$

Answer: B

- Watch Video Solution

8. The spin only magnetic moments of $\left[M n B r_{4}\right]^{2-}$ is 5.9 BM .Geometry of the complex ion is
A. Tetrahedral
B. Octahedral
C. Square planar
D. Pentagonal pyramidal

Answer: A

- Watch Video Solution

9. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ and $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ differ in
A. magnetic nature
B. co-ordination number
C. oxidation number
D. Structure

Answer: A

- Watch Video Solution

10. According to CFT ,five d-orbitals of an octahedral complex split to give
A. One orbital with lower energy and four orbitals with higher energy
B. Two orbitals with lower energy and three orbitals with higher
C. Three orbitals with lower energy and two orbitals with higher energy
D. Four orbitals with energy and one orbitals with higher energy .

Answer: C

- Watch Video Solution

11. IUPAC name of $\mathrm{H}_{2}\left[\mathrm{PtCl}_{6}\right]$ is
A. Hexa chloridoplatinum (IV) acid
B. Hexa chloridoplatinum (IV) acid
C. Hexachloridoplatinic (IV) acid
D. Dihydrogenhexachloro platinate (IV)

Answer: D

12. Which of the following is correct statement?
A. $\left[T i\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \wedge(3+)$ is coloured complex
B. $\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is colourless complex
C. d-d transition is not possible in $\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ complex
D. All of these

Answer: D

- Watch Video Solution

13. Naming the ligand in $\left[M(e n)_{2}\right]^{n+}$ starts with
A. Di
B. Bi
C. Bis
D. any of these

Answer: C

D Watch Video Solution

14. Ligand Which is used to treat hard water
A. NH_{3}
B. $O x$
C. $e n$
D. EDTA

Answer: D

15. The name of complex ion, $\left[F e(C N)_{6}\right]^{3-}$ is
A. Tricyanoferrate (III) ion
B. Hexacyano ion (III) ion
C. Hexacyanitoferrate (III) ion
D. Hexacyanido ferrate (III) ion

Answer: D

- Watch Video Solution

16. Which of these statement about $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ is true?
A. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ has four unpaired electrons and will be in a high spin configuration
B. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ has four unpaired electrons and will be in a low spin configuration
C. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ has no unpaired electrons and will be in a high spin configuration
D. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ has no unpaired electrons and will be low spin configuration

Answer: D

- Watch Video Solution

17. Among the following complexes the one which shows zero crystal field stabilisation energy is
A. $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
C. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
D. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

Answer: B

18. The hypothetical complex triamminediaqua chloridocabalt (III) chloride can be represented as
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
B. $\left[\mathrm{Co}(\mathrm{NH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}_{3}\right]$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{2}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Cl}\right]$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \mathrm{Cl}_{3}$

Answer: A

- Watch Video Solution

19. Which of the following co-ordination compounds would exhibit optical isomerism?
A. Pentaamminenitrocobalt (III) iodide
B. Diamminedichloropaltinum (II)
C. Tris-(ethylenediamine)cobalt (III) bromide
D. Transdicyanobis(ethylenediamine) chromium (III) chloride

Answer: C

- View Text Solution

20. In Co-ordination compound s. $\left[\mathrm{Cr}(e n)_{3}\right]\left[\mathrm{CrF}_{6}\right]$
A. a)ligand is en (ethylenediamine)
B. b)Oxidation state of central atom is +3
C. c)Central metal is Cr (in anionic complex)
D. d)Cation complex is $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$

Answer: D

- Watch Video Solution

21. Which among the following square planar complex will exhibet geometrical isomerism?
A. $\left[M a_{2} B_{2}\right]^{n t}$
B. $\left[M A_{2} B C\right)^{n t}$
C. $[M(x y)]^{n t}$
D. all the above

Answer: D

- View Text Solution

22. Predict the geometry and hybridisation of $\mathrm{Fe}(\mathrm{CO})_{5}$
A. Trigonal planar $d s p^{3}$
B. Trigonal bipyramidal $d s p^{3}$
C. Square planar $d s p^{2}$
D. Octahedral $d^{2} p^{3}$

- Watch Video Solution

23. Coordination compounds are stabilised by Chelate effect . Which among the following is the most stable complex?
A. $\left[F e(C N)_{6}\right]^{3-}$
B. $\left[\mathrm{Fe}(\mathrm{Co})_{5}\right]$
C. $\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
D. $\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$

Answer: D

- Watch Video Solution

24. Which of the following will exhibit linkage isomerism?
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right]^{2+}$
B. $\left.\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{CO}\right)\right]^{3+}$
C. $\left[\mathrm{Fe}(e n)_{2} \mathrm{Cl}_{2}\right]^{+}$
D. all the above

Answer: A

- Watch Video Solution

25. Which is a double salt ?
A. $\mathrm{K}_{2} \mathrm{SO}_{4} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O}$
B. NaCl
C. $K_{4}\left[F e(C N)_{6}\right]$
D. KCl

Answer: A

26. An example of complex compound having coordination number 4
A. $K_{4}\left[F e(C N)_{6}\right]$
B. $\left[\mathrm{Co}(e n)_{3}\right] C l$
C. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$
D. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}_{2}$

Answer: D

- Watch Video Solution

27. The geometry of $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ complex ion
A. Linear
B. Tetrahedral
C. Square planar

D. Angular

Answer: C

- Watch Video Solution

28. An example of a chelating ligand is
A. NO_{2}^{-}
B. chloro
C. Bromo
D. en

Answer: D

D Watch Video Solution

29. The geometry of complex ion $\left[F e(C N)_{6}\right]^{4-}$ is
A. tetrahedral
B. square planar
C. octahedral
D. triangular

Answer: C

D Watch Video Solution

30. The oxidation number of nickel in the complex ion $\left[\mathrm{NiCl}_{4}\right]^{2-}$ is
A. +1
B. -1
C. +2
D. -2

Answer: C

31. Which is not an anionic complex?
A. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}_{2}$
B. $K_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
C. $K_{3}\left[F e(C N)_{6}\right]$
D. $\left[\mathrm{NiCl}_{4}\right]^{2-}$

Answer: A

- Watch Video Solution

32. The geometry of $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is
A. Tetrahedral
B. square planar
C. Triangular
D. Octahedral

Answer: B

- Watch Video Solution

33. An example of an ambidentate ligand is
A. $C N^{-}$
B. Cl^{-}
C. NO^{-}
D. I^{-}

Answer: C

- Watch Video Solution

34. $\left[\mathrm{FeF}_{6}\right]^{4-}$ Paramagnetic because
A. F^{-}is a weaker ligand
B. F^{-}is a strong ligand
C. F^{-}is a flexdentate ligand
D. F^{-}is a chelating ligand

Answer: A

- Watch Video Solution

35. In $\left[F e^{11}(C N)_{6}\right]^{4-}$ the central metal ion is
A. Fe
B. $F e^{+2}$
C. $F e^{+3}$
D. $C N^{-}$

Answer: B

36. The coordination number of $\mathrm{Ni}(\mathrm{II})$ in $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is
A. 2
B. 4
C. 5
D. 6

Answer: B

- Watch Video Solution

37. The name of $\left[\mathrm{Pt}^{I V}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]^{2+}$ is
A. Diamminedichloroplatinum (IV) ion
B. Diamminedichloroplatinate (IV)
C. Diamminedichloroplatinum
D. Dichlorodiammineplatinum (IV)ion

Answer: A

(Watch Video Solution

38. For a compound $K_{4}\left[F e(C N)_{6}\right] \rightarrow 4 K^{+}+\left[F e(C N)_{6}\right]^{4-}$ the complex ion is
A. K^{+}
B. $C N^{-}$
C. $F e^{11}$
D. $\left[F e(C N)_{6}\right]^{4-}$

Answer: D

- Watch Video Solution

39. A metal ion from the first transition series forms an octahedral complex with magnetic moment of 4.9 BM and another octahedral complex which is diamagnetic .The metal ion is
A. Fe^{2+}
B. Co^{2+}
C. $M n^{2+}$
D. $N i^{2+}$

Answer: A

- Watch Video Solution

40. Paramagnetic moment is expressed in
A. Debye unit
B. K Joules
C. BM
D. ergs

Answer: C

- Watch Video Solution

41. The type of isomerism found in the complex $\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{SO}_{4}$ and $\left[\mathrm{Co}\left(\mathrm{SO}_{4}\right)\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{NO}_{2}$
A. Hydrate isomerism
B. Coordination isomerism
C. Linkage isomerism
D. Ionisation

Answer: D

- Watch Video Solution

42. What is the eletronic configuration of Cr in $\mathrm{K}_{3}\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3} \mathrm{H}_{2} \mathrm{O}\right]$.
A. d^{3}
B. d^{2}
C. d^{1}
D. d^{0}

Answer: A

- Watch Video Solution

43. Which of the following complex does not give white precipitate with AgNO_{3} ?
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5 \mathrm{Cl}}\right] \mathrm{Cl}_{3}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}_{3}$

Answer: B

D Watch Video Solution

44. Consider the following statement and identify the incorrect satement(s)
(i). $C N^{-}$is a powerful ligand.
(ii). Hemoglobin is a monomer and myoglobin is a tetramer.
(iii). Cis -Pt $\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}$ is an anti -tumour drug.
A. only (i)
B. only (ii)
C. only (iii)
D. both (i) and (iii)

Answer: B

45. Which of the following is wrong about double salts?
A. retains their properties only in solid state
B. contains two or more salt in stoichiometric proportions
C. they don't dissociate into its constituent ions
D. none of the above

Answer: C

- Watch Video Solution

46. An example of cationic complex is
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
B. $\mathrm{K}_{2}\left[\mathrm{CoCl}_{4}\right]$
C. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{CuCl}_{4}\right]$
D. $K_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$

- Watch Video Solution

47. An example of unidentate ligand is
A. $\mathrm{NH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$
B. $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$
C. $\mathrm{CH}_{3} \mathrm{COO}^{-}$
D. both (b) and (c)

Answer: C

- Watch Video Solution

48. Which of the following is not true about secondary valecny?
A. It corresponds to the co-ordination number of metal
B. It is satisfied by negative ions or neutral melecule
C. They are non directional in nature
D. both a and b

Answer: C

- Watch Video Solution

49. A ' d ' block metal ion has magnetic moment of $1.7332 B M$. The number of unpaired electrons are
A. 1
B. 2
C. 3
D. 4

Answer: A

50. Paramagnetism is the property of
A. Paired electrons
B. completely filled electronic sub-shells
C. unpaired electrons
D. completely vacant electronic sub-shells

Answer: C

- Watch Video Solution

51. The sum of primary valency and secondary valance of the metal M in the complex $\left[M(e n)_{2}(O x)\right] C l$ is L
A. 3
B. 6
C. -3

D. 9

Answer: D

- Watch Video Solution

52. IUPAC name of the complex $K_{3}\left[A 1\left(C_{2} O_{4}\right)_{3}\right]$ is
A. Potassiumtrioxalatoaluminium (III)
B. Potassiumtrioxalatoaluminate (II)
C. Potassiumtrisoxalatoaluminate (III)
D. Potassiumtrioxalatoluminate (III)

Answer: D

- View Text Solution

53. Which of the following is paramagnetic in nature?
A. $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
C. $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
D. $\left[N i(C N)_{4}\right]^{2-}$

Answer: C

- Watch Video Solution

54. How many geometrical isomers are possible for $\left[\mathrm{Pt}(\mathrm{Py})\left(\mathrm{NH}_{3}\right)(\mathrm{Br})(\mathrm{Cl})\right]$?
A. 3
B. 4
C. 0
D. 15

Answer: A

55. In $\mathrm{CoCl}_{3} .6 \mathrm{NH}_{3}$, the no of ionisable Cl^{-}ions in the complex is
A. $3 \mathrm{Cl}^{-}$
B. $2 \mathrm{Cl}^{-}$
C. Cl^{-}
D. 0

Answer: A

Watch Video Solution

Fill In The Blanks

1. The isomerism exhibited by the complexes
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$ and $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{8}\right]\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$ is
A. Geometrical
B. Coordination
C. linkage
D. Ionisation

Answer: B

- Watch Video Solution

2. The ionisation isomers of $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{NO}_{2}\right)\right] \mathrm{Cl}$ is
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}(\mathrm{NO})_{2}\right]$
B. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{NO}_{2}$
C. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}(\mathrm{oNo})\right]$
D. both (a) and (b)

Answer: B

3. Werner's theory was not able to explainof coordination compounds
A. colour
B. magnetic properties
C. both (a) and (b)
D. neither (a) nor (b)

Answer: C

- Watch Video Solution

4. Identify the Co-ordination entity in the given complex $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right] \mathrm{Cl}_{2}$
A. $C l_{2}$
B. $\left(\mathrm{NH}_{3}\right)_{4}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right]$
D. $\left(\mathrm{H}_{2} \mathrm{O}\right)$

Answer: C

- Watch Video Solution

5. Pickout the central metal ion in the complex $K_{3}\left[\mathrm{Al}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$
A. $3 K^{+}$
B. $A l^{3+}$
C. $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$
D. both (a) and (b)

Answer: B

6. The coordination polyhedron of the complex $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$ is
A. square planar
B. Tetrahedral
C. trigonal
D. octahedral

Answer: D

- Watch Video Solution

7. The primary and secondary valencies of $\left[\mathrm{CoCl}_{2}(e n)_{2}\left[\mathrm{SO}_{4}\right.\right.$ are respectively
A. 4,6
B. 2,4
C. 4,4
D. 6,4

Answer: A

D Watch Video Solution

8. $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ is acomplex.
A. anionic
B. cationic
C. neutral
D. ambidentate

Answer: C

9. According to IUPAC NO is
A. nitro
B. nitrosyl
C. nitrato
D. nitrito

Answer: B

- Watch Video Solution

10. Magnu's green salt in
A. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\left[\mathrm{PtCl}_{4}\right]\right.$
B. $K\left[P t C l_{3}\left(C_{2} H_{4}\right)\right]$
C. $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
D. $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$

Answer: A

11. The ligand capable of coordinating in two or more ways with the central metal ion are called \qquad ligands.
A. didentate
B. tridentate
C. ambidentate
D. none of the above

Answer: C

- Watch Video Solution

12. An example of ambidentate ligand is \qquad
A. cyano
B. nitro
C. chloro
D. triphenyl phosphine

- Watch Video Solution

13. _______ is used as an antitumor drug in cancer treatment.
A. Ca-EDTA
B. Cis-platin
C. Sodium thio sulphate
D. Nickel chloride

Answer: B

- Watch Video Solution

14. In an octahedral complex the ($n-1$) d orbital are involved in hybridization.The complex is called \qquad complex
A. inner orbital
B. low spin
C. spin paired
D. all the above

Answer: D

- Watch Video Solution

15. According to crystal field theory , The bond between the ligand and central metal atom is \qquad
A. Purely ionic
B. Purely covalent
C. Coordinate
D. 50 \% ionic and 50% covalent
16. A Cobaltous complex $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ absorbs orange light of $5900 \AA$ The colour of the complex is \qquad
A. orange
B. yellow orange
C. blue yellow
D. yellow

Answer: C

- Watch Video Solution

17. Phthalo blue -a bright blue pigment is a complex of \qquad
A. Copper (I) ion
B. Copper (II) ion
C. Nickel (II) ion
D. Nickel (IV) ion

Answer: B

- Watch Video Solution

18. The magnetic moment of $\mathrm{Cr}(\mathrm{Co})_{6}$ is \qquad BM
A. 0
B. 2.84
C. 4.90
D. 5.92

Answer: A

19. Crystal field stabilization energy for high spin d^{4} octahedral complex is
A. $-0.6 \Delta_{0}$
B. $-1.8 \Delta_{0}$
C. $-1.6 \delta_{0}$
D. $-1.4 \delta_{0}$

Answer: A

- Watch Video Solution

20. The ambidentate ligands are \qquad
A. SCN -and NCS
B. NO_{2}-and ONO
C. both (a) and (b)
D. None

Answer: C

D Watch Video Solution

21. ________ valencies are directional in nature
A. Primary
B. Secondary
C. tertiary
D. None

Answer: D

22. In co-ordination complex ligand ammonia is written as
A. ammine
B. amine
C. ammonal
D. none of these

Answer: A

- Watch Video Solution

23. The number of trans positions in a octahedral complex is \qquad
A. 6
B. 4
C. 3
D. 2

Answer: C

24. In co-ordination complex geometrical isomerism is possible for _____complex
A. square planar
B. tetrahedral
C. octahedral
D. both (a) and (c)

Answer: D

- Watch Video Solution

25. The chemical formula for diammine silver (I) chloride is \qquad
A. $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}$
B. $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)\right] \mathrm{Cl}$
C. $\left[\mathrm{Ag}\left(\mathrm{NH}_{2}\right)_{2}\right] \mathrm{Cl}$
D. $\left[\mathrm{Ag}\left(\mathrm{NH}_{4}\right)_{2}\right] \mathrm{Cl}$

- Watch Video Solution

26. Primary valency corresponds to the
A. oxidation state of the metal
B. co-ordination number
C. number of ligands
D. charge on the complex

Answer: A

- Watch Video Solution

27. Magnetic moment is given by the formula
A. $\sqrt{n(n+1)}$
B. $\sqrt{n(n+2)}$
C. $\sqrt{(n+2)}$
D. $\sqrt{n^{2}+(n+2)}$

Answer: B

- Watch Video Solution

28. The structure of hexaquatitanium (III) ion is \qquad
A. $\left[T i\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
B. $\left[T i\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3-}$
C. $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right] \mathrm{H}_{2} \mathrm{O}$
D. $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]$

Answer: A

29. The oxidation state of the central metal ion in the complex $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{CN})(e n)_{2}\right]^{2+}$ is \qquad
A. 0
B. +1
C. +2
D. +3

Answer: D

30. The oxidation state of nickle in $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ is \qquad
A. 0
B. +1
C. +2
D. +3

- Watch Video Solution

Assertion Reason

1. Assertion : $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is inner orbital complex.

Reason : $\mathrm{H}_{2} \mathrm{O}$ is strong ligand.
A. Both assertion and reason are true and the reason is the correct explanation of the assetion
B. Both the assertion and reason are true but the reason is not the correct explanation of the assertion.
C. Assertion is true but reason is false
D. Both assertion and reason are false

Answer: D

2. Assertion :Tetrahedreal complex do not show geometrical isomerism Reason: The relative position of the ligand attached to the central metal atom is same with respect to each other.
A. Both assertion and reason are true and the reason is the correct
explanation of the assetion
B. Both the assertion and reason are true but the reason is not the correct explanation of the assertion.
C. Assertion is true but reason is false
D. Both assertion and reason are false

Answer: A

- Watch Video Solution

3. Assertion: Complexes having ambidentate ligands exhibit linkage isomerism

Reason: Ambidentate ligands atom through either of its two different donor atoms.
A. Both assertion and reason are true and the reason is the correct explanation of the assetion
B. Both the assertion and reason are true but the reason is not the correct explanation of the assertion.
C. Assertion is true but reason is false
D. Both assertion and reason are false

Answer: A

- Watch Video Solution

4. Assertion : $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\left(\mathrm{NO}_{2}\right)\right]$ does not give a white precipitate with AgNO_{3}

Reason: Chlorine is present within the coordination sphere
A. Both assertion and reason are true and the reason is the correct explanation of the assetion
B. Both the assertion and reason are true but the reason is not the correct explanation of the assertion.
C. Assertion is true but reason is false
D. Both assertion and reason are false

Answer: A

- Watch Video Solution

5. Assertion : Octahedral complex of type $[M A B C D E F)^{n \pm}$ exhibits only two geometrical isomers.

Reason: As the number of different ligands increase the number of possible isomers decreases.
A. Both assertion and reason are true and the reason is the correct explanation of the assetion
B. Both the assertion and reason are true but the reason is not the correct explanation of the assertion.
C. Assertion is true but reason is false
D. Both assertion and reason are false

Answer: D

- View Text Solution

6. Assetion : According to Werner, The outer sphere of the complex is called the ionisation sphere .

Reason : The groups present in ionisation sphere are loosely bound to the central metal ion and do not ionize in solution.
A. Both assertion and reason are true and the reason is the correct
explanation of the assetion
B. Both the assertion and reason are true but the reason is not the correct explanation of the assertion.
C. Assertion is true but reason is false
D. Both assertion and reason are false.

Answer: C

- Watch Video Solution

7. Assetion : $\ln \left[\mathrm{Ni}(e n)_{3}\right] C l_{2}$ the Coordination number of $N i^{2+}$ is 6 .

Reason : en is a bidentate ligand.
A. Both assertion and reason are true and the reason is the correct explanation of the assetion
B. Both the assertion and reason are true but the reason is not the correct explanation of the assertion.
C. Assertion is true but reason is false
D. Both assertion and reason are false.

Answer: A

- Watch Video Solution

8. Assertion : $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ is a hetuoleptic complex. Reason: NH_{3} and $\mathrm{C}^{\prime-}$ are weak ligands.
A. Both assertion and reason are true and the reason is the correct
explanation of the assetion
B. Both the assertion and reason are true but the reason is not the correct explanation of the assertion.
C. Assertion is true but reason is false
D. Both assertion and reason are false

Answer: C

- View Text Solution

9. Assertion: $\left[\mathrm{FeFe}_{6}\right]^{4-}$ is an inner orbital complex.

Reason: Coordination number of the complex is 4 and exhibits $d^{2} s p^{3}$ hybridisation.
A. Both assertion and reason are true and the reason is the correct explanation of the assetion
B. Both the assertion and reason are true but the reason is not the correct explanation of the assertion.
C. Assertion is true but reason is false
D. Both assertion and reason are false

Answer: D

10. Assertion: Octahedral complex $\left[F e(C N)_{6}\right]^{3-}$ is a low spin complex . Reason : It has a negative CFSE value.
A. Both assertion and reason are true and the reason is the correct explanation of the assetion
B. Both the assertion and reason are true but the reason is not the correct explanation of the assertion.
C. Assertion is true but reason is false
D. Both assertion and reason are false

Answer: A

- Watch Video Solution

11. Assertion: $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ colourless

Reason : d-dtransition is not possible since the central metal has d^{0}

configuration.

A. Both assertion and reason are true and the reason is the correct explanation of the assetion
B. Both the assertion and reason are true but the reason is not the correct explanation of the assertion.
C. Assertion is true but reason is false
D. Both assertion and reason are false

Answer: D

- Watch Video Solution

12. Assertion : Trans $\left[\mathrm{CoCl}_{2}(e n)_{2}\right]^{2+}$ is optically inactive.

Reason: The coordination numbers of the complex is 6 .
A. Both assertion and reason are true and the reason is the correct
B. Both the assertion and reason are true but the reason is not the correct explanation of the assertion.
C. Assertion is true but reason is false
D. Both assertion and reason are false

Answer: B

- Watch Video Solution

13. Assertion $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ is optically inactive Reason: It has a plane o symmetry.
A. Both assertion and reason are true and the reason is the correct
explanation of the assetion
B. Both the assertion and reason are true but the reason is not the correct explanation of the assertion.
C. Assertion is true but reason is false
D. Both assertion and reason are false

Answer: A

- Watch Video Solution

14. Assertion $K_{2}[\mathrm{Ni}(\mathrm{EDTA})]$ is more stable than $K_{3}\left[\mathrm{Al}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$

Reason: Ni is a transition element whereas A 1 is non-transition element.
A. Both assertion and reason are true and the reason is the correct explanation of the assetion
B. Both the assertion and reason are true but the reason is not the correct explanation of the assertion.
C. Assertion is true but reason is false
D. Both assertion and reason are false.

Answer: B

15. Assertion : Cis Platin is $\left[\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ is a square planar coordination complex

Reason: It is anti cancer drug.
A. Both assertion and reason are true and the reason is the correct explanation of the assetion
B. Both the assertion and reason are true but the reason is not the correct explanation of the assertion.
C. Assertion is true but reason is false
D. Both assertion and reason are false.

Answer: B

- Watch Video Solution

16. Assertion:EDTA is used remove lead poisoning.

Reason: EDTA is a chelatinf ligand.
A. Both assertion and reason are true and the reason is the correct
explanation of the assetion
B. Both the assertion and reason are true but the reason is not the correct explanation of the assertion.
C. Assertion is true but reason is false
D. Both assertion and reason are false.

Answer: A

- Watch Video Solution

Correct Statement S

1. Pick the correct statement,The IUPAC nomenclature for $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}$ is
A. Tetrammine copper (II) sulphate
B. Tetrammine Carbonate cobalt (III) chloride
C. Triamminetronitro -k N cobalt (III)
D. Triamminetriaquachromium (III) Chloride

Answer: A

D Watch Video Solution

2. Which among the following statement is correct?
A. Magnitude of crystal field splitting energy depends only on ligand field.
B. Lower CFSE favour formation of low spin complex.
C. $t_{2 g}$ orbitals are three fold degenerate while eg orbitals and two fold degenerate
D. all the above

Answer: C

Incorrect Statement S

1. Incorrect statement
A. Polynuclear metal carbonyls are homonuclear
B. Polynuclear metal carbonyls are hetronuclear
C. Metal carbonyls contain carbonyls ligand
D. Non-bridged metal carbonyls contains terminal carbonyl.

Answer: C

- View Text Solution

Match The Following

1. Match the complex in Column I with the geometry and hybridisation in
(\#\#SUR_CHE_XII_V01_C05_EO9_005_Q01.png" width="80\%">
A. $\begin{array}{llll}1 & 2 & 3 & 4 \\ d & c & a & b\end{array}$
B $\begin{array}{lll}1 & 2 & 4\end{array}$
B. $\begin{array}{llll}a & b & c & d\end{array}$
c. $\begin{array}{llll}1 & 2 & 3 & 4 \\ d & b & a & c\end{array}$
D. $\begin{array}{llll}1 & 2 & 3 & 4 \\ d & a & c & b\end{array}$

Answer: A

- View Text Solution

2. Match the list-1 with list -II and select the correct answers using the code given below the list:
`(\#\#SUR_CHE_XII_V01_C05_E09_008_Q01.png" width="80\%">
A. $\begin{array}{llll}1 & 2 & 3 & 4 \\ d & a & b & c\end{array}$
B. $\begin{array}{llll}1 & 2 & 3 & 4 \\ d & c & b & a\end{array}$
C. $\begin{array}{llll}1 & 2 & 3 & 4 \\ b & c & d & a\end{array}$
D. $\begin{array}{llll}1 & 2 & 3 & 4 \\ b & d & a & c\end{array}$

Answer: C

- View Text Solution

3. Match the list -1 with list $-I I$ and select the correct answers using the code given below the list.
`(\#\#SUR_CHE_XII_V01_C05_E09_009_Q01.png" width="80\%">
A. $\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
$b \begin{array}{lll}c & d & a\end{array}$
B. $\begin{array}{llll}1 & 2 & 3 & 4 \\ c & b & a & d\end{array}$
C. $\begin{array}{llll}1 & 2 & 3 & 4 \\ c & a & d & b\end{array}$
D. $\begin{array}{llll}1 & 2 & 3 & 4 \\ d & c & b & a\end{array}$

Answer: C

4. Pick the odd man out
A. Co
B. $C N^{-}$
C. $C l^{-}$
D. NH_{3}

Answer: C

- Watch Video Solution

5. Which one of the following is wrongly matched.
A. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \quad$ Plumbate
B. $\left[F e(C N)_{6}\right]^{3-}$
$s p^{3} d^{2}$
C. $\left[\mathrm{Ni}(\mathrm{Co})_{4}\right] \quad$ nautral ligand
D. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \quad$ High spin complex

Answer: B

D View Text Solution

6. Pick out the mononuclear carbonyl among the following
A. $\left[\mathrm{Co}_{2}(\mathrm{CO})_{s}\right]$
B. $\left[M n_{2}(C O)_{10}\right]$
C. $\left[\mathrm{Cr}(\mathrm{CO})_{6}\right]$
D. $\left[\operatorname{MnRe}(C O)_{10}\right]$

Answer: C

Watch Video Solution

7. Ionic radius of alkali metals are in the following order
A. $\mathrm{I}^{-}<\mathrm{Br}^{-}<\mathrm{Cl}^{-}<\mathrm{SCN}^{-}<\mathrm{S}^{2-}<\mathrm{F}<\mathrm{OH}^{-}$
B. $\mathrm{I}^{-}<\mathrm{Br}^{-}<\mathrm{SCN}^{-}<\mathrm{Cl}^{-}<\mathrm{S}^{2-}<\mathrm{F}<\mathrm{OH}^{-}$
c. $\mathrm{Br}^{-}<\mathrm{I}^{-}<\mathrm{SCN}^{-}<\mathrm{S}^{2-}<\mathrm{Cl}^{-}<\mathrm{F}<\mathrm{OH}^{-}$
D. $\mathrm{Br}^{-}<\mathrm{I}^{-}<S C N^{-}<\mathrm{S}^{2}<\mathrm{Cl}^{-}<\mathrm{OH}^{-}<\mathrm{F}$

Answer: B

- Watch Video Solution

Very Short Answer

1. Write a neutral molecule in which the central atom is $s p^{3} d^{2}$ hybridised

- Watch Video Solution

2. Name the following complex using IUPAC norms. $\left[\mathrm{Co}(e n)_{2}(\mathrm{ONO}) \mathrm{Cl}\right] \mathrm{Cl}$
3. What is the coordination number of central metal ion in $\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$?

- Watch Video Solution

4. Give the names of two complex which are used in medicines

- Watch Video Solution

5. Write the IUPAC names of the complex.

- Watch Video Solution

6. Write the IUPAC name of $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right](\mathrm{Cl})_{2}$

- Watch Video Solution

7. Define 'Ligand 'Give an example of neutral ligand.

- Watch Video Solution

8. Write the formula of copper hexacynoferrate (II).

- Watch Video Solution

9. Write the IUPAC name of $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}$

- Watch Video Solution

10. Pick the correct statement,The IUPAC nomenclature for $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}$ is
11. Give the chemical formula of potassium trioxalato ferrate (III)

- Watch Video Solution

12. Name the type of isomerism that occurs in complex in which both cation and anion are complex ions.

- View Text Solution

13. Define coordination number

- Watch Video Solution

14. Give the geometry and magnetic character of $\left[\mathrm{NiCl}_{4}\right]^{2-}$

- Watch Video Solution

15. Name a complex used in the treatment of cancer .

- Watch Video Solution

16. Calculate the magnetic moments of $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$, If atomic number of Fe is 26

- Watch Video Solution

17. How many geometrical isomers are possible in the following coordination entities?
(i) $\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
(ii) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$

- Watch Video Solution

18. Give an example for the complexes possessing co-ordination number 8 and 7.

- View Text Solution

19. Give reason for the following: optical isomerism is not shown by square planar complexes.

- Watch Video Solution

20. Arrange the following complex ions the increasing order of crystal field splitting energy $\left(\delta_{0}\right)\left[\mathrm{CrCl}_{6}\right]^{3-},\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-},\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$

- Watch Video Solution

21. Name the following :
(i) Ring that is attached to Fe^{2+} in hameoglobin
(ii) Vitamin B_{12} is a co-ordination compound of this element.
(iii) Complex that is used in the hydrogenatin of alkenes.

- View Text Solution

22. What is Co-ordination entity?

- Watch Video Solution

23. What is a central atom or ion?

- Watch Video Solution

24. What are ligands?

- Watch Video Solution

25. What is Co-ordination sphere?
26. What is Co-ordination polyhedron?

- View Text Solution

27. What is Co-ordination number?

- Watch Video Solution

28. What is oxidation state of a central atom in a co-ordination entity?

- Watch Video Solution

29. Calculated the Oxidation number of
(i) iron in $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
(ii) Cobalt in $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}$
30. Give the formula and IUPAC ligand name for Ethylenediamine.

- View Text Solution

31. Identify the ligand and the central metal in the Co-ordination compounds $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{6}\right] \mathrm{Cl}$

- Watch Video Solution

32. What are structural isomers?

- Watch Video Solution

33. What are Co-ordination isomers ? Give examples
34. What are solvate isomers?

- View Text Solution

35. What are stereoisomers?

Watch Video Solution
36. Draw the C is and trans isomers of $M A_{2} B_{2}$ type

- Watch Video Solution

37. What is facial isomer?

- Watch Video Solution

38. What is mer isomer?

D Watch Video Solution

39. Give the two isomers of $\mathrm{Co}_{2}(\mathrm{Co})_{5} \cdot$)

- View Text Solution

40. What are enatiomers?

- Watch Video Solution

41. What are lonisation isomers?

- View Text Solution

42. What are anionic \& cationic complex ? Give an example.
43. What is hydrate isomerism ? Give an example.

- View Text Solution

44. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ is diamagnetic where as $\left[\mathrm{CoF}_{6}\right]^{3-}$ is paramagnetic explain.

- View Text Solution

Short Answer

1. How is magnitude of δ_{0} affected by (i) nature of ligands (ii) oxidation state of metal ion.

- View Text Solution

2. Draw the structures of geometrical isomers of $\left.\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{2}\right)(\mathrm{CN})_{4}\right]^{-}$

- Watch Video Solution

3. Aqueous copper sulphate solution (blue) gives
(i) a green precipitate with aqueous potaassium fluoride.
(ii) a bright green solution with aqueous potassium chloride . Explain these experimental results.

- Watch Video Solution

4. What is meant by inidentate, didentate and ambidentate ligands ?Give two examples for each.

- Watch Video Solution

5. Draw the structure of the following homoleptic metal carbonyl.
(i) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
(ii) $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$
(iii) $\left[\mathrm{Cr}(\mathrm{CO})_{6}\right]$

- Watch Video Solution

6. Match the common name with formula and the IUPAC ligand name.

- View Text Solution

7. Describe optical isomerism with suitable example.

- Watch Video Solution

8. What are the limitations of VB theory?

- Watch Video Solution

9. Discuss brifly the nature of bonding in metal carbonyls.

- Watch Video Solution

10. What is π back bonding?

- View Text Solution

11. What is stability contant ?

- Watch Video Solution

12. What is the significance of stability constants?
13. Name some metal complex that are present in our biological system and their role in it.

- Watch Video Solution

14. Draw and explain the structure of Cisplatin

- Watch Video Solution

15. Mohr's salt answers the presence of $\mathrm{Fe}^{2+} \mathrm{NH}^{4+}$ and SO_{4}^{2-} ions. Whereas the potssium ferrithiocyanate will not answer Fe^{3+} and SCN ions give reason.

- View Text Solution

16. Write the IUPAC name for the following
(i) $\mathrm{K}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{3}(\mathrm{Cl})_{2}\left(\mathrm{NH}_{3}\right)\right]$
(ii) $\left.\left[F e(C N)_{6}\right]^{4}-\right)$

- Watch Video Solution

Longer Answer

1. Mention the type of hybridisation and magnetic propety of the following complexex using VB theory a $\left[\mathrm{FeF}_{6}\right]^{4-}$ b) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$

- View Text Solution

2. Write the postulates of Warner's theory.

- Watch Video Solution

3. What are the important features of valence bond theory?
4. Indicate the types of isomerism exhibited by the following complexes and draw the structrues for these isomers :
(i) $\mathrm{K}\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right]$
(ii) $\left[\mathrm{CO}(e n)_{3}\right] \mathrm{Cl}_{3}$
(iii) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)(\right.$

- Watch Video Solution

5. For the complex $\left[\mathrm{NiCl}_{4}\right]^{2-}$ Write (i) the IUPAC name (II) The hybridisaton type (iii) The shape of the complex

- Watch Video Solution

6. what is meant by stability of a co-ordination compound in solution? State the factors which govern stability of complexes.

- View Text Solution

7. How are Co-ordination compounds classified?
8. What are the important features of valence bond theory?

- Watch Video Solution

9. What are the salient feature of crystall field theory ?

- View Text Solution

10. How are metal carbonyls classified depending on the number of metal atoms?

- Watch Video Solution

11. How are metal carbonyls classified depending on the number of metal atoms?
12. Give the IUPAC name for the following compounds
$\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}$
(ii) $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NO}\right]$
(iii) $\left[\operatorname{Cr}\left(P \mathrm{Ph}_{3}\right)(C O)_{3}\right]$
(iv) $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$
(v) $\left[\mathrm{FeF}_{6}\right]^{4-}$

- Watch Video Solution

13. Give the structure for the following compounds
(i) Pentaamminechlorocobalt (III) ion
(ii) Triamminetrinitrito -kN Cobalt (III)
(iii) tetraammineaquabromidocobalt (III) nitrate
(iv) Dichloridobis (ethane-1,2-diamine)cobalt (III) chloride
(v) Tetraamminecopper(II) sulphate
14. CuSO_{4} on mixing with $\mathrm{NH}_{3}(1: 4 \mathrm{ratio})$ does not give test for Cu^{2+} ions but gives test for SO_{4}^{2-} ions why?

Watch Video Solution

2. Name the metal present in
(i) Chlorophyll
(ii) Haemoglobin
(iii) Vitamin B_{12}
(iv) Cis-platin

- Watch Video Solution

1. What is meant by inidentate, didentate and ambidentate ligands ?Give two examples for each.

- Watch Video Solution

2. What is crystal field stabilization energy (CFSE) ?

- Watch Video Solution

Long Answer

1. Write the postulates of Warner's theory.

- Watch Video Solution

