©゙’ doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - SURA CHEMISTRY (TAMIL

ENGLISH)

SOLID STATE

Evaluation

1. Graphite and diamond are
A. Covalent and molecular crystals
B. ionic and covalent crystals
C. both covalent crystals
D. both molecular crystals

Answer: c

D Watch Video Solution

2. An ionic compound $A_{x} B_{y}$ crystallizes in fcc type crystal structure with B ions at the centre
of each face and A ion occupying centre of the cube. The correct formula of $A_{x} B_{y}$ is
A. $A B$
B. $A B_{3}$
C. $A_{3} B$
D. $A_{8} B_{6}$

Answer: B
(Watch Video Solution
3. The ration of close packed atoms to tetrahedral hole in cubic packing is
A. $1: 1$
B. 1:2
C. 2:1
D. 1: 4

Answer: B

D Watch Video Solution

4. Solid CO_{2} is an example of

A. Covalent solid

B. metallic solid
C. molecular solid
D. ionic solid

Answer: c

D Watch Video Solution
5. Write each of the following expressions in terms of $\alpha+\beta$ and $\alpha \beta$. $\frac{\alpha+3}{\beta}+\frac{\beta+3}{\alpha}$
A. Both assertion and reason are true and reason is the correct explanation of assertion.
B. Both assertion and reason are true but
reason is not the correct explanation of assertion.
C. Assertion is true but reason is false

D. Both assertion and reason are false.

Answer: a

D Watch Video Solution

6. In calcium fluoride, having the fluorite structure the coordination number of Ca^{2+} on and F^{-}ion are
A. 4 and 2
B. 6 and 6

C. 8 and 4

D. 4 and 8

Answer: c

D Watch Video Solution

7. The number of unit cells in 8 gm of an element X (atomic mass 40) which crystallizes
in bcc pattern in (N_{A} is the Avogadro number)
A. 6.023×10^{23}

$$
\text { B. } 6.023 \times 10^{22}
$$

C. 60.23×10^{23}
D. $\left(\frac{6.023 \times 10^{23}}{8 \times 40}\right)$

Answer: b

D Watch Video Solution
8. The number of carbon atoms per unit cell of diamond is
A. 8
B. 6
C. 1
D. 4

Answer: a

D Watch Video Solution

9. In a solid atom M occupies ccp lattice and $\left(\frac{1}{3}\right)$ of tetrahedral voids are occupied by atom N , find the formula of solid formed by M and N .
A. MN
B. $M_{3} N$
C. $M N_{3}$
D. $M_{3} N_{2}$

Answer: D

D Watch Video Solution

10. The composition of a sample of wurtzite is
$F e_{0.93} O_{1.00}$ what \% of Iron present in the form
of $F e^{3+}$?

A. 0.1605

B. 0.1505
C. 0.1805
D. 0.1705

Answer: B

- Watch Video Solution

11. The ionic radii of A^{+}and B^{-}are
$0.98 \times 10^{-10} \mathrm{~m}$ and $1.81 \times 10^{-10} \mathrm{~m} . \quad$ The coordination number of each ion in $A B$ is
A. 8
B. 2
C. 6
D. 4

Answer: c

D Watch Video Solution

12. CsCl has bcc arrangement, its unit cell edge length is 400pm, its inter atomic distance is
A. 400 pm
B. 800pm
C. $\sqrt{3} \times 100 p m$
D. $\left(\frac{\sqrt{3}}{2}\right) \times 400 \mathrm{pm}$

Answer: d

D Watch Video Solution
13. A solid compound XY has NaCl structure, if the radius of the cation is 100 pm , the radius of
the anion will be

$$
\begin{aligned}
& \text { A. }\left(\frac{100}{0.414}\right) \\
& \text { B. }\left(\frac{0.732}{100}\right) \\
& \text { C. } 100 \times 0.414 \\
& \text { D. }\left(\frac{0.414}{100} 0\right.
\end{aligned}
$$

Answer: a

- Watch Video Solution

14. The vacant space in bcc lattic unit cell is
A. 0.48
B. 0.23
C. 0.32
D. 0.26

Answer: c

D Watch Video Solution
15. The radius of an atom is 300 pm , if it crystallized in a fcc centered cubic lattice, the length of the edge of the unit cell is
A. 488.5 pm
B. 848.5 pm
C. 884.5pm
D. 484.5 pm

Answer: b

D Watch Video Solution
16. The fraction of total volume occupied by
the atoms in a simple cubic is
A. $\left(\frac{\pi}{4 \sqrt{2}}\right)$
B. $\left(\frac{\pi}{6}\right)$
C. $\left(\frac{\pi}{4}\right)$
D. $\left(\frac{\pi}{3 \sqrt{2}}\right)$

Answer: b

D Watch Video Solution

17. The yellow coloured in NaCl crystal is due to
A. excitation of electron in F centers
B. reflection of light from Cl^{-}ion on the
surface
C. refraction of light from $N a^{+}$ion
D. all of the above

Answer: a

- Watch Video Solution

18. If 'a' stands for the edge length of the cubic system, sc,bcc,and fcc. Then the ratio of radii of spheres in these system will be respectively.

$$
\text { A. }\left(\frac{1}{2} a: \frac{\sqrt{3}}{2} a: \frac{\sqrt{2}}{2} a\right)
$$

B. $(\sqrt{a}: \sqrt{3 a}: \sqrt{2} a)$
C. $\left(\frac{1}{2} a: \frac{\sqrt{3}}{4} a: \frac{1}{2 \sqrt{2}} a\right)$
D. $\left(\frac{1}{2} a: \sqrt{3} a: \frac{1}{\sqrt{2}} a\right)$

Answer: c

- Watch Video Solution

19. If 'a' is the length of the side of the cube, the distance between the body centrerd atom and one corner atom in the cube will be

$$
\begin{aligned}
& \text { A. }\left(\frac{2}{\sqrt{3}}\right) a \\
& \text { B. }\left(\frac{4}{\sqrt{3}}\right) a \\
& \text { C. }\left(\frac{\sqrt{3}}{4}\right) a \\
& \text { D. }\left(\frac{\sqrt{3}}{2}\right) a
\end{aligned}
$$

Answer: d
20. Potassium has a bcc structure with nearest neighbour distance $4.52 \AA$. Its atomic weight is 39,its density will be
A. $915 \mathrm{kgm}^{-3}$
B. $2142 \mathrm{kgm}^{-3}$
C. $452 \mathrm{kgm}^{-3}$
D. $390 \mathrm{kgm}^{-3}$
21. Schottky defect in a crystal is observe when
A. unequal number of anions and anions are missing from the lattice
B. equal number of cations and anions are missing from the lattice.
C. an ion leaves its normalsite and occupies
an interstitial site
D. no ion is mission from its lattice

Answer: b

- Watch Video Solution

22. The cation leaves its normal position in the crystal and moves to some interstitial position, the defect in the crystal is known as
A. Schottky defect
B. F center
C. Frenkel defect
D. non-stoichiometric defect

Answer: c

- Watch Video Solution

23. Assert: due to Frenkel defect, density of the crystalline solid decrases.

Reason : in Frenkel defect cation and anion leaves the crystal.
A. Both assertion and reason are true and
reason is the correct explanation of assertion.
B. Both assertion and reason are true but reason is not the correct explanation of assertion.
C. Assertion is true but reason is false
D. Both assertion and reason are false.

Answer: d

D Watch Video Solution

24. The crystal with a metal deficiency defect is
A. NaCl
B. FeO
C. ZnO
D. KCl

Answer: b

- Watch Video Solution

Answer The Following Questions

1. Define unit cell.

D Watch Video Solution

2. Give any three characteristics of ionic crystals.

- Watch Video Solution

3. Differentiate crystaline solids and

 amorphous solids.
- Watch Video Solution

4. Classify the following solids.
a. P_{4} b. Brass
c. Diamond d. NaCl
e. lodine

D Watch Video Solution
5. Caluclation of number of atoms in different types of unit cells
6. Distinguish tetrahedral and octahedral voids.

D Watch Video Solution

7. Distinguish tetrahedral and octahedral voids.
8. What are point defects?

D Watch Video Solution

9. Explain Schottky defect.

- Watch Video Solution

10. Write short note on metal excess and metal deficiency defect with an example .

- Watch Video Solution

11. Calculate the number of atoms in a fcc unit cell.

- Watch Video Solution

12. Explain $A A A A$ and $A B A B A$ and $A B C A B C$ type of three dimensional packing with the help of neat diagram.

- View Text Solution

13. Why ionic crystals are hard and brittle ?

D Watch Video Solution

14. Calculate the percentage efficiency of packing in case of body centered cubic crystal.

D View Text Solution

15. What is the two dimensional coordination
number of a molecule in square close packed
layer?

D Watch Video Solution

16. Experiment shows that Nickel oxide has the
formula $N i_{0.96} O_{1.00}$. What fraction of Nickel exists as of $N i^{2+}$ and $N i^{3+}$ ions ?

D Watch Video Solution

17. What is meant by the term "coordination number "? What is the coorrdination number
of atoms in a bcc structure?

- Watch Video Solution

18. An element has bcc structures with a cell edge of 288 pm . The density of the element is
$7.2 \mathrm{gcm}^{-3}$. How many atoms are present in 208 g of the element.

- Watch Video Solution

19. Aluminium crystallizes in a cubic close packed structure .Its metallic radius is 125 pm .

Calculate the edge length of unit cell.

D Watch Video Solution

20. If NaCl is doped with $10^{-2} \mathrm{~mol}$ percentage
of strontium chloride , what is the concentration of cation vacancy?
21. KF crystallizes in fcc structure like sodium chloride. Calculate the distance between K^{+} and F^{-}in KF. (Given : density of KF is $2.48 \mathrm{gcm}^{-3}$)

- Watch Video Solution

22. An atom crystallizes in fcc crystal lattice and has a density of $10 \mathrm{gcm}^{-3}$ with unit cell edge length of100pm. Calculate the number of atoms present in 1 g of crystal.
23. Atoms X and Y form bcc crystalline structure, Atom X is present at the corners of the cube and Y is at the centre of the cube. What is the formula of the compound ?

D Watch Video Solution

24. Sodium metal crystallizes in bcc structure
with the edge length of the unit cell

$4.3 \times 10^{-8} \mathrm{~cm}$. Calculate the radius of sodium

 atom.- Watch Video Solution

25. Write a note on Frenkel defect.

(Watch Video Solution

Evaluate Yourself

1. An element has a face centered cubic unit cell with a length of 353.4 pm along an edge.

The density of the element is $8.9 \mathrm{gcm}^{-3}$. How many atoms are present in 100 g of an element?

D Watch Video Solution

2. Determine the density of CsCl which
crystallizes in a bcc types structure with an edge length 412.1 pm .
3. A face centered cubic solid of an element (atomic mass 60) has a cube edge of $4 \AA$.

Calculate its density.

- Watch Video Solution

Aaditional Questions And Answers

1. Which of the following defects decreases the density of the crystal?
A. Interstitial defect
B. Vacancy defect
C. Frenkel defect
D. None of these above

Answer: B

D Watch Video Solution

2. In which of the following arrangements, octahedral voids are formed?
A. fcc
B. bcc
C. simple cubic
D. hcp

Answer: d

D Watch Video Solution
3. Which of the following cannot be regarded
as molecular solid?

A. Silicon carbide

B. AIN
C. Diamond
D. all of the above

Answer: d

D Watch Video Solution
4. Which of the following is characteristic of ionic solids ?
A. Very low value of electrical conductivity in the molten state
B. Brittle nature
C. Very strong forces of attractions
D. Anisotropic nature

Answer: B:C:D

D Watch Video Solution

5. An example of metal deficiency defect
A. NaCl
B. AgCl
C. CsCl
D. FeS

Answer: d

D Watch Video Solution

6. What is the relation between diamond and graphite?

A. Polymorphous

B. Isomer
C. Isotope
D. Isomorphous

Answer: a

D Watch Video Solution
7. A solid with formula $A B C_{3}$ would probably
have,
A. A at body centre, B at face centres and C
at corners of the cube
B. A at corner of cube, B at body centre, C
at face centre
C. A at corners of hexagon, B at centres of
the hexagon and C inside the hexagonal
unit cell
D. A at corner, B at face centre, C at body
centre
8. A binary solid $A^{+} B^{-}$has a structure with
B^{-}ions constituting the lattice and A^{+}ions occupying 25% tetrahedral holes. Formula of the solid is
A. $A_{2} B$
B. $A B$
C. $A B_{2}$
D. $A B_{4}$

Answer: c

- Watch Video Solution

9. Amorphous solids have

A. Orderly arrangement of atoms
B. Long range of melting point
C. Anisotropy

D. both (a) and (c)

10. Which one of the following crystal has $8: 8$

structure?
A. $M g F_{2}$
B. CsCl
C. KCl
D. NaCl

Answer: b
11. If ' a ' is the length of unit cell, then which one is correct relationship ?
A. For simple cubic lattice, radius of metal

$$
\text { atom }=\frac{a}{20}
$$

B. For bcc lattice , radius of metal atom

$$
=\frac{\sqrt{3} a}{4}
$$

C. For fcc lattice, radius of metal atom

$$
=\frac{a}{2 \sqrt{2}}
$$

D. All of these

Answer: d

D Watch Video Solution

12. Which of the following features is false regarding the structure of CsCl ?
A. It has bcc arrangements
B. Co-ordination number for each ionis 8
C. Number of atoms in a unit cell is 4.
D. The radius ratio $\left(r_{+} / r_{-}\right)$is 0.93

Answer: c

D Watch Video Solution

13. Which type of solids will have the highest melting point?
A. Ionic crystals
B. Network covalent solid
C. Molecular solids

D. Metallic crystals

Answer: b

D Watch Video Solution

14. Which of the following statement is

correct?

A. On increasing temperature, the
coordination number of solid remains
unchanged.
B. On increasing pressure, the coordination number of solid increases.
C. On increasing pressure, the coordination number of solid decreases.
D. On increasing temperature ,the coordination numbr of solid increases.

Answer: B

D Watch Video Solution

15. Which of the following is incorrect statement about the Bragg's equation $n \lambda=2 d \sin \theta ?$
A. n, represents order of reflection
B. λ, represents wave length of uv-rays
used
C. θ, represents angle of incidence
D. d, represents distance between two
parallel planes

Answer: b

- Watch Video Solution

16. Calculate the number of atoms in a cubic
unit cell having one atom on each corner and one atom on each body diagonal
A. 2
B. 3
C. 4
D. 5

Answer: d

D Watch Video Solution

17. Three atoms P, Q and R crystallize in a cubic solid lattic having P atom at corners, Q atom at body centre and R atom at the face centre. Identify formula of the compound.
A. PQR
B. $P Q R_{2}$
C. $P Q R_{3}$

D. $P_{3} Q R$

Answer: C

D Watch Video Solution

18. An element with atomic mass 60 having fcc structure has a density of $6.23 \mathrm{~g} / \mathrm{cm}^{3}$. What is the edge length of unit cell ?

A. 200 Pm

B. 300 Pm

C. 400 Pm

D. 500 Pm

Answer: c

D Watch Video Solution

19. In a face -centered cubic lattice, a unit cell
is shared equally by how many unit cells?
A. 8
B. 4
C. 2
D. 6

Answer: d

D Watch Video Solution

20. Schottky defects conains
A. Cation vacancies only
B. Cation vacancies and interstitital cations
C. Equal number of cation and anion
vacancies
D. Anion vacancies and interstitial anions

Answer: c

D Watch Video Solution

21. What is wrong about a.b.c.c. unit cell ?
A. In addition to an atom at the centre of
the body of the unit cell, there are 8
atoms at 8 different corners
B. $\frac{1}{8}$ atom at a corner of the unit cell
C. No. of atoms in the unit cells is 2
D. The no. of atoms in the unit cells is 4

Answer: d

D Watch Video Solution

22. In a body centred cubic unit cell, a metal atom at the centre of the cell is surrounded by how many other metal atoms?
A. 12
B. 4
C. 6
D. 8

Answer: d

- Watch Video Solution

23. Which one of the following does not belong to $A B$ type?
A. $C u_{2} O$
B. $C s C l$
C. FeS
D. ZnS

Answer: A

D Watch Video Solution

24. A regular three dimensional arrangement of identical points in space is called
A. Unit cell
B. Space lattice
C. Primitive
D. Crystallography

Answer: B

D Watch Video Solution

25. The smallest repeating unit in space lattice
which when repeated over and again results in
the crystal of the given substance is called
A. Space lattice
B. Crystal lattice
C. Unit cell
D. Isomorphism

Answer: c

D Watch Video Solution

26. In the Bragg's equation for diffraction of X -
rays, ' n ' represents
A. The number of moles
B. Avogadro number
C. A quantum number
D. Order of reflection

Answer: d

D Watch Video Solution
27. The number of close neighbours in a body centred cubic lattice of identifical spheres is
A. 6
B. 4
C. 12
D. 8

Answer: d

D Watch Video Solution

28. In a simple cubic cell, each point on a corner is shared by

A. One unit cell

B. Two unit cell

C. 8 unit cell
D. 4 unit cell

Answer: c

D Watch Video Solution
29. Pick out the example for covalent and molecular crystal.
A. Ice, Diamond
B. Diamond, Ice
C. $\mathrm{NaCl}, \mathrm{FeS}$
D. FeS,Ice

Answer: b

D Watch Video Solution
30. The wavelength of X-rays is in the order of
A. $10^{-8} \mathrm{~cm}$
B. $10^{-10} \mathrm{~cm}$
C. $10^{-8} m$
D. $10^{-10} \mathrm{~nm}$

Answer: a

- Watch Video Solution

31. The diffraction of crystal of Ba with X-ray of wavelength $2.29 \AA$ gives a first order reflection at $27^{\circ} 8^{\prime}$. What is the distance between the diffracted patterns?
A. $5.02 \AA$
B. $0.398 \AA$
C. $2.51 \AA$
D. $10.04 \AA$

Answer: b

D Watch Video Solution
32. Crystalline solids are also called as
A. supercooled liquids
B. true solids
C. pseudo solids
D. all the above

Answer: B

- Watch Video Solution

33. Which one of the following statements is not true
A. The heat of vaporisation of ionic crystals are high
B. Ionic crystals are soluble in non-polar solvent
C. Ionic crystals are hard and brittle
D. Ionic crystals are conductors in solution
state

Answer: b

34. The cation leaves its normal position in the crystal and moves to some interstitial position, the defect in the crystal is known as
A. Schottky defect
B. Metal excess defect
C. Frenkel defect
D. Metal deficiency defect

Answer: c

35. Which type of defect is founding transition metals that have variable valency ?
A. Frenkel defect
B. Schottky defect
C. Line defect
D. Metal deficiency defect

Answer: d

D Watch Video Solution

36. Which one of the following statement is wrong about Frenkel defect ?
A. An ion occupies an interstitial position
B. Anion is much larger in size than the
cation
C. The crystal remains neutral
D. Non-stoichiometric compound is formed

Answer: d

D Watch Video Solution
37. Element ' A ' and ' B ' form a compound with
cubic structure in which 'A' atoms are at the corners of the cube and ' B ' atoms at the face centres. What is the formula of the compound ?
A. $A B$
B. $A B_{2}$
C. $A B_{3}$
D. $A B_{6}$
38. In an hexagonal crystal
A. $a=b=c, \alpha=\beta=\gamma=90^{\circ}$
B. $a=b=c, \alpha=\beta=\gamma-90^{\circ}$
C. $a=b$ $c, \alpha=\beta=\gamma=90^{\circ}$
D.

$$
a=b \neq c, \alpha=\beta=90^{\circ}, \gamma=120^{\circ}
$$

39. Which of the following exists as covalent crystals in solid state?
A. phosphorus
B. sulphur
C. chlorine

D. silicon

Answer: d
40. Which among the following is an amorphous solid?
A. Graphite
B. SiO_{2}
C. Sic
D. Diamond

Answer: a
41. Which one of the following is a network solid?
A. diamond
B. silicon carbide
C. naphthalene
D. both (a) and (b)

Answer: d

- Watch Video Solution

42. Example of hydrogen bonded molecular solids
A. $\mathrm{H}_{2} \mathrm{O}$
B. glucose
C. urea
D. all the above

Answer: d

D Watch Video Solution
43. An excess of potassium ion makes KCl crystals appear violet since
A. Some of anionic sites are occupied by
unpaired electron
B. Anionic sites are occupied by pair of
electrons
C. both (a) and (b)
D. neither (a) nor (b)

Answer: a

44. The number of chloride ions present per unit of CsCl are
A. 6
B. 8
C. 1
D. 4

Answer: c

Fill In The Blanks

1. Frankel defect is also known as
A. stoichiometric defect
B. dislocation defect
C. both (a) \& b
D. non-stoichiometri defect

Answer: C

D Watch Video Solution

2. Amorphous solids can also be called

A. pseudo solids
B. true solids
C. super cooled liquids
D. both(a) \& (c)

Answer: d

D Watch Video Solution

3. Graphite is a good conductor of electricity due to the presence of
A. Lone pair of electrons
B. Free valence electrons
C. Cations
D. Anions

Answer: b

- Watch Video Solution

4. The number of carbon atoms per unit of diamond unit cell is
A. 8
B. 6
C. 1
D. 4

Answer: a

D Watch Video Solution

5. The mass of unit cell of $N a_{2} O$ is
A. Twice the formula mass of $\mathrm{Na}_{2} \mathrm{O}$
B. Four times the formula mass of $\mathrm{Na}_{2} \mathrm{O}$
C. Six times the formula mass of $\mathrm{Na}_{2} \mathrm{O}$
D. Thrice the formula mass of $\mathrm{Na}_{2} \mathrm{O}$

Answer: B

D Watch Video Solution

6. The C-C and Si-C inter atomic distances are

154 pm and 188 pm . The atomic radius of Si is
A. 77Pm
B. 94 Pm
C. 114 Pm
D. 111 Pm

Answer: d

- Watch Video Solution

7. The total number of elements of symmetry
in a cubic crystal is
A. 9
B. 23
C. 10
D. 14

Answer: b

D Watch Video Solution

8. The number of octahedral void (s) per atom

 present in a cubic close-packed structure isA. 1
B. 2
C. 3
D. 4

Answer: a

D Watch Video Solution

9. Co-ordination number in ABAB..... Type

 arrangement isA. 6
B. 8
C. 12
D. 6

D Watch Video Solution

10. The coordination number of Zn in ZnO and

Zn is ZnS are respectively
A. 4 and 6
B. 4 and 4
C. 2 and 4
D. 4 and 3

Answer: b

- Watch Video Solution

11. The point defects shown by FeO and FeS respectively \qquad
A. Metal deficiency defect
B. Metal excess defect
C. Schottky defect
D. Frenkel defect

Answer: a

D Watch Video Solution

12. The coordination number of a metal crystallising in a hexagonal close packed structure is \qquad
A. 6
B. 4
C. 8
D. 12

Answer: d

D Watch Video Solution

13. An example of covalent crystalline solid is
A. Nal
B. Al
C. Si
D. Ar

Answer: c

- Watch Video Solution

14. Iodine crystals are
A. covalent
B. ionic
C. metallic
D. molecular
A. solubility in polar solvents
B. high vapour pressure
C. low melting point

D. good conductivity in solid state

Answer: a
16. The number of atoms present in a unit cell
of a mono atomic substance of a simple cubic
lattic, body centered cubic and face centred
cubic respectively are
A. 4,5 and 6
B. 8,9 and 14
C. 2,3 and 5
D. 1,2 and 4

Answer: d

D Watch Video Solution

17. In a face centred cubic cell, an atom at the
face contributes to the unit cell \qquad
A. $\frac{1}{4}$ part
B. 1 part
C. $\frac{1}{2}$ part
D. $\frac{1}{8}$ part

D Watch Video Solution

18. Potassium crystallizes in bcc lattice, hence
the coordination number of potasium in potassium metal is \qquad
A. 0
B. 8
C. 6
D. 4

Answer: b

D Watch Video Solution

19. The number of chloride ions that
surrounds the central Na^{+}ion in NaCl crystal
is \qquad
A. 12
B. 8
C. 6
D. 4

Answer: c

- Watch Video Solution

20. An example for Frenkel defect is

A. NaCl
B. AgBr
C. CsCl
D. FeS

Answer: b

D Watch Video Solution

21. The Bragg's equation is
A. $\lambda=2 d \sin \theta$
B. $n d=2 \lambda \sin \theta$
C. $2 \lambda=n d \sin \theta$
D. $n \lambda=2 d \sin \theta$

Answer: d
22. The crystal structure of CsCl is
A. Simple cubic
B. Face-centred cubic
C. Tetragonal
D. Body centred cubic

Answer: d
23. The total number of atoms per unit cell is $b c c$ is
A. 1
B. 2
C. 3
D. 4

Answer: b

D Watch Video Solution

24. A cubic crystal has faces.

A. 2
B. 4
C. 6
D. 8

Answer: c
(Watch Video Solution
25. Bragg's equation gives the essential condition for \qquad to occur

A. deflection

B. diffraction

C. reflection
D. refraction

Answer: b
26. The force that binds a metal on to a number of electrons within its sphere of influence is known as \qquad bond.
A. covalent
B. ionic
C. metallic
D. co-ordinate

Answer: c

D Watch Video Solution
27. The number of cesium ion per unit cell in

CsCl crystal system is
A. 4
B. 8
C. 6
D. 1

Answer: d

D Watch Video Solution
28. In edge centred lattice, an atom in the edge is shared by
A. 4 unit cell
B. 12 unit cell
C. 2 unit cell
D. 8 unit cell

Answer: b

D Watch Video Solution
29. Calculate the number of atoms in a fcc unit cell.
A. 4
B. 8
C. 12
D. 2

Answer: a
(D) Watch Video Solution
30. An example of covalent crystal is

A. CsCl

B. NaCl
C. ice
D. Diamond

Answer: d

D Watch Video Solution
31. A crystal which has the same unit cell and contains the same lattice points throughout the crystal is
A. perfect
B. imperfect
C. distorted
D. both (b) and (c)

Answer: a

D Watch Video Solution
32. The size of the anion in Frenkel defect crystal is \qquad
A. larger than the cation
B. smaller than the cation
C. equal in size with cation
D. both are large in size

Answer: a
(D) Watch Video Solution
33. The seven primitive crystal systems differe in the \qquad arrangement.
A. crystallographic axes
B. angles
C. both (a) and (b)
D. neither (a) nor (b)

Answer: c

D Watch Video Solution
34. The cation leaves its normal position in the
crystal and moves to some interstitial position, the defect in the crystal is known as
A. metal excess
B. p type
C. Schottky defect
D. Frenkel

Answer: d

D Watch Video Solution
35. If electrical conductivity is found to be same in all directions through a solid the substance is solid and the property is called \qquad
A. crystalline, isotropy
B. amorphous, isotropy
C. crystalline, anisotropy
D. amorphous,isotropy

Answer: b

36. $A B A B$ type of packing is called
A. hexagonal close packing
B. cubic close packing
C. tetragonal close packing
D. none of the above

Answer: a

37. Coordination number of tetrahedral and

 octahedral voids respectively areA. 2,4
B. 4,2
C. 4,6
D. 6,4

Answer: c

38. The coordiantion number of each sphere in

 body centred cubic packing isA. 2
B. 4
C. 6
D. 8

Answer: d

39. Crystal of NaCl has yellow colour due the presence of
A. cation vacancy
B. Fcentres
C. both (a) and (b)
D. neither (a) nor (b)

Answer: b
(D) Watch Video Solution
40. The structure of ionic compound depends upon___ of the ions
A. stoichiometry
B. size
C. both (a) and (b)
D. neither (a) nor (b)

Answer: c

D Watch Video Solution
41. Structure of $\mathrm{B}_{2} \mathrm{O}_{3}$ is
A. trigonal planar
B. tetrahedral
C. octahedral
D. cubic

Answer: a

- Watch Video Solution

42. The coordination number of ZnS is
A. 3
B. 4
C. 6
D. 8

Answer: b

D Watch Video Solution
43. The correct order of packing efficiency in different types of unit cells is
A.fcc $>\mathrm{bcc}>\mathrm{sc}$
B. $\mathrm{sc}<\mathrm{fcc}<\mathrm{bcc}$
C. fcc $<\mathrm{bcc}>\mathrm{sc}$
D. $\mathrm{bcc}<\mathrm{fcc}<\mathrm{sc}$

Answer: a

D Watch Video Solution

1. Assertion (A) : The packing efficiency is maximum for the fcc structure.

Reason (R) : The co-ordination number is 12
in fcc structure.
A. Both assertion and reason are true and
reason is the correct explanation of
assertion.
B. Both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. Assertion is true but reason is false
D. Both assertion and reason are false.

Answer: B

D Watch Video Solution

2. Assertion (A) : Total number of octahedral
voids present in unit cell of cubic close packing including the one that is present at the body centre is four.

Reason (R) : Besides the body centre there is
one octahedral void present at the centre of
each of the six faced of the unit cell and each
of which is shared between the adjacent unit cells.
A. Both assertion and reason are true and reason is the correct explanation of assertion.
B. Both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. Assertion is true but reason is false

D. Both assertion and reason are false.

Answer: c

D View Text Solution

3. Assertion (A) : Graphite is a good conductor of electricity. However diamond belongs to the category of insulators.

Reason (R): Graphite is soft in nature on the other hand diamond is very hard and brittle.
A. Both assertion and reason are true and
reason is the correct explanation of assertion.
B. Both assertion and reason are true but reason is not the correct explanation of assertion.
C. Assertion is true but reason is false

D. Both assertion and reason are false.

Answer: b

4. Assertion (A) : The total number of atoms present in a simple cubic unit cell is one .

Reason (R) : Simple cubic unit cell has atoms at incorners each of which is shared between eight adjacent unit cells .
A. Both assertion and reason are true and
reason is the correct explanation of
assertion.
B. Both assertion and reason are true but reason is not the correct explanation of assertion.
C. Assertion is true but reason is false
D. Both assertion and reason are false.

Answer: a

- Watch Video Solution

5. Assertion : In NaCl structure, the inter ionic distance is $a / 2$.
(a Unit cell edge length).

Reason : NaCl forms face centered cubic unit cell.
A. Both assertion and reason are true and
reason is the correct explanation of assertion.
B. Both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. Assertion is true but reason is false
D. Both assertion and reason are false.

Answer: b

D View Text Solution

6. Assertion : The number of spheres are eual
to the number of octahedral voids as well as tetrahedral voids.

Reason : octahedral void and tetrahedral void has equal size.
A. Both assertion and reason are true and reason is the correct explanation of assertion.
B. Both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. Assertion is true but reason is false
D. Both assertion and reason are false.

Answer: d

D View Text Solution

7. Assertion : In Schottky defect, density of crystal decreases.

Reason: Number of cations and anions are missing in Schottky defect are equal.
A. Both assertion and reason are true and
reason is the correct explanation of
assertion.
B. Both assertion and reason are true but reason is not the correct explanation of assertion.
C. Assertion is true but reason is false
D. Both assertion and reason are false.

Answer: a

- Watch Video Solution

8. Assertion: Covalent crystals have the highest melting point

Reason : Covalent bonds are stronger than ionic bonds
A. Both assertion and reason are true and
reason is the correct explanation of
assertion.
B. Both assertion and reason are true but
reason is not the correct explanation of assertion.

C. Assertion is true but reason is false

D. Both assertion and reason are false.

Answer: c

D Watch Video Solution

9. Assertion: A crystal with schottky defect is
electrically neutraly

Reason : Equal number of cation and anion
vacanies are present
A. Both assertion and reason are true and
reason is the correct explanation of assertion.
B. Both assertion and reason are true but reason is not the correct explanation of assertion.
C. Assertion is true but reason is false

D. Both assertion and reason are false.

Answer: a

10. Assertion: CsCl is a body centred cubic arrangement

Reason : CsCl has one Cs^{+}ion and SCl^{-} ions in its unit cell
A. Both assertion and reason are true and
reason is the correct explanation of
assertion.
B. Both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. Assertion is true but reason is false
D. Both assertion and reason are false.

Answer: c

D Watch Video Solution

11. Assertion: Frenkel defects is exhibited by alkali halides

Reason : Alkali ions have small size.
A. Both assertion and reason are true and
reason is the correct explanation of assertion.
B. Both assertion and reason are true but reason is not the correct explanation of assertion.
C. Assertion is true but reason is false
D. Both assertion and reason are false.

Answer: d

D View Text Solution
12. Assertion (A) : The packing efficiency is maximum for the fcc structure.

Reason (R) : The co-ordination number is 12 in fcc structure.
A. Both assertion and reason are true and
reason is the correct explanation of
assertion.
B. Both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. Assertion is true but reason is false
D. Both assertion and reason are false.

Answer: b

D Watch Video Solution

Correct Statement S

1. I. Anisotropy is the property which depends on the direction of measurement.
II. Structural units of an ionic crystals are cations and anions.
III. Amorphous solids are anisotropic in nature.
IV. Crystalline solids have an orderly arrangements.
A. Only I
B. Only II
C. III \& IV
D. I,II\& IV

Answer: d
2. I. Gas molecules move randomly without exerting reasonable forces on one another.
II. Covalent solids are held together by weak vander waals forces.
III. Molecules are held together by strong force of attraction.
IV. Covalent solids are good thermal and electrical conductors.
A. Only I
B. Only II
C. I,II \& IV
D. I \& III

Answer: D

D View Text Solution

3. I. Ionic solids conduct electricity, because the ions are fixed in their lattice positions.
II. Hydrogen bonded molecular solids are soft solids under room temperature.
III. Dipole-dipole interactions are found in polar molecular solids
IV. X-ray diffraction analysis is used for the determination of crystal structure.
A. IIIII, \& IV
B. Only II
C. Only I
D. III \& IV

Answer: A

4. The correct statement regarding defects in crystalline solid is \qquad
A. Frenkel defect is a dislocation defect
B. Frenkel defect is found in halids of
alkaline metals
C. Schottky defects have no effect on the density of crystalline solids
D. Frenkel defects decrese the density of

Answer: a

D Watch Video Solution

Incorrect Statement S

1. Odd one out
A. Each sphere is in contact with 6 of its
neighbouring spheres in $A B A B$ types
B. Each sphere isin contact with 4 neighbouring spheres in AAAA types.
C. Polonium is the only metal with the
simple cubic pattern
D. The number voids depends on the number of close packed spheres.

Answer: b

D View Text Solution

2. Odd one out

A. Co-ordination number of each sphere is

12 in hcp arrangements.
B. Co-ordination number of each sphere is

8 in ccp arrangements.
C. The cubic close packing is based on the
face centered cubic unit cell.
D. The structure of an ionic compound
depends upon the stoichiometry

D Watch Video Solution

3. Odd one out

A. Schottky defect change the

stoichiometry of the crystal
B. Large number of Shottky defects in a
crystal lowers its density
C. Schottky defect arises due to missing of equal number of cations and anions D. Metal excess defect due to the presence of more number of metal ions

Answer: a

- Watch Video Solution

4. Odd one out
A. Metal deficienty defect due to less
number of anions than cations
B. Piczo electricity means electricity
resulting from pressure and latent heat.
C. Constituents are randomly arranged in
amorphous solids
D. Piezoelectric effect caused by mechanical
stress on material.

Answer: a

5. Which one of the following statement is wrong about Frenkel defect ?
A. An ion occupies an interstitial position
B. Anion is much larger in size than the cation
C. The crystal remains neutral
D. Non-stoichiometric compound is formed

Answer: d

Very Short Answer

1. Why do solids have a definite volume ?

D Watch Video Solution

2. Classify the following as amorphous or crystalline solids.

Polyurethane, Naphthalene, Benzoic acid,

Teflon, Potassium nitrate Cellophane, Polyvinyl chloride, Fiber glass, Copper.

D Watch Video Solution

3. What type of stoichiometric defect is shown by ZnS .

D Watch Video Solution

4. Ionic solids conduct electricity in mollten
state but not in solid state. Explain.
5. Distinguish between.

Face-centred and body-centred unit cells.

D Watch Video Solution

6. What type of defect can arise when a solid is heated ? Which physical property is affected by it and in what way?

- Watch Video Solution

7. Calculate the number of atoms in a fcc unit cell.

D Watch Video Solution

8. Name an element with which silicon can be doped to give an n-type semi conductor.
9. Which point effect in crystal doesn't alter
the density of the relevant solid?

- Watch Video Solution

10. Define the term amorphous.
(Watch Video Solution
11. Define void.
12. What is point defect in crystals ?

D Watch Video Solution

13. Diamond and solid rhombic sulphur are covalent solids but the latter has very low melting point than the former. Explain why?

D Watch Video Solution

14. Aluminium crystallizes in a cubic close packed structure .Its metallic radius is 125 pm .

Calculate the edge length of unit cell.

D Watch Video Solution

15. Define the term : space lattice.

D Watch Video Solution
16. What is coordination number ?

- Watch Video Solution

17. How many atoms can be present in a simple cubic lattice?

- Watch Video Solution

18. Write a note on the assignment of atoms per unit cell in body centred cubic lattic or CsCl .
19. A compound made up of two atoms X and Y has a face centred cubic arrangement. X is present in the corners and Y at the centre of each face. If one atom is missing from corner.

What is the simplest formula of the compound.

D Watch Video Solution

20. What are primitive unit cells ?
21. Name the seven primitive crystal system.

D Watch Video Solution
22. NaCl has a sharp melting point but glass does not -Justify.

D Watch Video Solution
23. In CaF_{2} crystal, Ca^{2+} ions are present in arrangement. Calculate the number of F^{-} ions in the unit cell.

- Watch Video Solution

24. Define packing efficiency.

- Watch Video Solution

25. Distinguish between cubic and hexagonal unit cells.

D View Text Solution
26. Why is FeS not formed in stoichometric composition?

D View Text Solution
27. What is F centre ?

- Watch Video Solution

28. Frenkel defect is not show by alkali metal halides but silver halides do. Give reason.

D Watch Video Solution

Short Answer

1. Why are solids rigid ?

- Watch Video Solution

2. Silver crystallines in fcc lattice. If edge length of the cell is $4.07 \times 10^{-8} \mathrm{~cm}$ and density is $10.5 \mathrm{gcm}^{-3}$. Calculate the atomic mass of silver.

D Watch Video Solution

3. If NaCl is doped with $10^{-3} \mathrm{~mol} \%$ of SrCl_{2},

What is the concentration of cation valencies ?

Watch Video Solution

4. Why are solids incompressible?

- Watch Video Solution

5. Classify the following solids in different categories based on the nature of intermolecular force operating in them :

Potassium sulphate, tin, benzene, urea, ammonia, water, zinc sulphide, graphite, rabidium, argon,silicon carbide.
6. What is the formula ofa compound in which
the element Y form ccp lattice and atoms of X
occupy $\frac{2}{3} r d$ of tetrahedral voids ?

- Watch Video Solution

7. Calculate the number of unit cells in 8.1 g of aluminium, if it crystallises in a face centered
cubic structure. (Atomic mass of
$A l=27 \mathrm{gmol}^{-1}$)
8. Inspite of long range order in the arrangement of particles, why are the crystals usually not perfect?

D Watch Video Solution

9. Examine the given defective crystal :

Answer the following questions.

Is the above defect stoichiometric or nonstoichiometric?

D View Text Solution

10. Examine the given defective crystal :

Answer the following questions.

What are such defects called ? Give an example of the compound which shows this type of defect.
11. ZnO turns yellow on heating. Why ?
(Watch Video Solution
12. What change occurs when AgCl is doped with $C d C l_{2}$?

- Watch Video Solution

13. What type of semiconductor is produced when silicon is doped with boron?

D Watch Video Solution

14. How do the spacings of the three planes (
100), (101) and (111) of simple cubic lattice vary?

D Watch Video Solution
15. Diffraction angle 2θ equal to 14.8° for a crystal having interplanar distance in the crystal is 0.400 nm when second order diffraction was observed. Calculate the wavelength of X-ray used.

D Watch Video Solution

16. A metallic element exists as a cubic lattice.

Each edge of the unit cell is $2.88 \AA$. The density
of the metal is $7.20 \mathrm{gcm}^{-3}$. How many unit cells there will be in 100 g of the metal ?

D Watch Video Solution
17. Sketch the Simple cubic

D Watch Video Solution

18. Sketch the face-centered cubic

- Watch Video Solution

19. Sketch the body centred cubic lattices.

D Watch Video Solution

20. Calculate the number of atoms in a fcc unit cell.

D Watch Video Solution

21. State Bragg's law.
22. Write the properties of ionic crystals.

D Watch Video Solution

23. Answer the following :

Name the intermolecular force present in ice.
(Watch Video Solution
24. Answer the following :

What type of bond is present in network solid ?

D Watch Video Solution

25. Distinguish the following.

Crystal lattice and unit cell

D Watch Video Solution

26. Classify the following solids.

a. P_{4} b. Brass
c. Diamond d. NaCl
e. lodine
A.
B.
C.
D.

Answer:

27. Explain the equivalent resistance of a series

 and parallel resistor network.
D Watch Video Solution

Long Answer

1. Ionic solids, which have anionic vacancies due to metal excess defect, develop colour.

Explain with the help of a suitable example
2. A cubic solid is made of two elements P and
Q. Atoms of Q are at the corners of the cube and P at the body - centre. What is the formula of the compound ? What is the coordination numbers of P and Q ?
3. What are the general characteristics of solids ?

D Watch Video Solution
4. What are molecular solids ? Explain the types of molecular solids.

D Watch Video Solution
5. An element with molar mass $2.7 \times 10^{-2} \mathrm{~kg}$ mol^{-1} forms a cubic unit cell with edge length 405 pm .If its density is $2.7 \times 10^{3} \mathrm{kgm}^{-3}$. What is the nature of the cubic unit cell ?

D Watch Video Solution

6. How can you determine the atomic mass of an unknonw metal if you know its density and the dimension of its unit cell ? Explain.
7. Explain the following :

Similarities and differences between metallic and ionic crystals.

- Watch Video Solution

8. How are crystals defects classified ?

- Watch Video Solution

9. What are stoichiometric defects in ionic solids ? Explain.

- Watch Video Solution

10. Write note on impurity defect ?

D Watch Video Solution

11. KF crystallizes in fcc structure like sodium
chloride, calculate the distance between K^{+}
and F^{-}in KF. (Given : density of KF is
$2.48 \mathrm{gcm}^{-3}$)

- Watch Video Solution

12. Explain the following :

Similarities and differences between metallic and ionic crystals.

D Watch Video Solution

1. A compound forms hexagonal closed packed structure. What is the total number of voids in
0.5 mol of it ? How many of these are tetrahedral voids?

D Watch Video Solution

2. Sodium crystallizes in a bcc unit cell.

Calculate the approximate number of unit cells in 9.2 g of sodium. (Atomic mass Na 23 u).
3. The energy requried to vapourize one mole of coper is smaller than that of energy required to vapourise 1 mole of diamond why ?

- Watch Video Solution

Unit Test

1. The ratio of close packed atoms to tetrahedral hole in cubic packing is
A. 1:1
B. 1:2
C. 2:1
D. 1:4

Answer: B

- Watch Video Solution

2. Crystal of NaCl has yellow colour due the presence of
A. excitation of electron in F centers
B. reflection of light from Cl^{-}ion on the
surface
C. refraction of light from $N a^{+}$ion
D. all of the above

Answer: a

- Watch Video Solution

3. potassium has a bcc structure with nearest neighbour distance $4.52 \AA$. Its atomic weight is

39,its density will be
A. $910 \mathrm{kgm}^{-3}$
B. $2142 \mathrm{kgm}^{-3}$
C. $452 \mathrm{kgm}^{-3}$
D. $390 \mathrm{kgm}^{-3}$

Answer: a

D Watch Video Solution

4. The vacant space in bcc lattic unit cell is

A. 48%
B. 23%
C. 0.32
D. 0.26

Answer: c
5. Assertion : monoclinic sulphur is an example of monclinic crystal system

Reason : For a monoclinic system, $=b>c$ an $\alpha=\gamma=90^{\circ}, \beta \Longrightarrow 90^{\circ}$
A. Both assertion and reason are true and
reason is the correct explanation of assertion.
B. Both assertion and reason are true but
reason is not the correct explanation of assertion.

C. Assertion is true but reason is false

D. Both assertion and reason are false.

Answer: a

- Watch Video Solution

Answer In Paragraph

1. Distinguish between hexagonal close packing and cubic packing.
2. Why ionic crystals are hard and brittle ?

D Watch Video Solution

