# đず doubtnut 

India's Number 1 Education App

## MATHS

## BOOKS - SURA MATHS (TAMIL ENGLISH)

## APPLICATION OF MATRICES AND DETERMINANTS

Exercise 11

1. Find the adjoint of the following :
$\left[\begin{array}{ll}-3 & 4 \\ 6 & 2\end{array}\right]$

- Watch Video Solution

2. Find the adjoint of the following :
$\left[\begin{array}{lll}2 & 3 & 1 \\ 3 & 4 & 1 \\ 3 & 7 & 2\end{array}\right]$

## - Watch Video Solution

3. Find the adjoint of the following :
$\frac{1}{3}\left[\begin{array}{lll}2 & 2 & 1 \\ -2 & 1 & 2 \\ 1 & -2 & 2\end{array}\right]$

## - Watch Video Solution

4. Find the inverse (if it exists) of the following
$\left[\begin{array}{ll}-2 & 4 \\ 1 & -3\end{array}\right]$

- Watch Video Solution

5. Find the inverse (if it exists) of the following
$\left[\begin{array}{lll}5 & 1 & 1 \\ 1 & 5 & 1 \\ 1 & 1 & 5\end{array}\right]$

## - Watch Video Solution

6. Find the inverse (if it exists) of the following
$\left[\begin{array}{lll}2 & 3 & 1 \\ 3 & 4 & 1 \\ 3 & 7 & 2\end{array}\right]$

## - Watch Video Solution

7. If $\mathrm{F}(\alpha)=\left[\begin{array}{lll}\cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & \cos \alpha\end{array}\right]$

Show that $=\mathrm{F}(\alpha)^{-1}=F(-\alpha)$
8. If $\mathrm{A}=\left[\begin{array}{ll}5 & 3 \\ -1 & -2\end{array}\right]$, show that $\quad A^{2}-3 A-7 I_{2}=0_{2}$.

Hence find $A^{-1}$.

## - Watch Video Solution

9. If $A=\frac{1}{9}\left[\begin{array}{lll}-8 & 1 & 4 \\ 4 & 4 & 7 \\ 1 & -8 & 4\end{array}\right]$, prove that $\quad A^{-1}=A^{T}$.

## - Watch Video Solution

10. If $\mathrm{A}=\left[\begin{array}{lr}8 & -4 \\ -5 & 3\end{array}\right]$, verify that $\mathrm{A}(\operatorname{adj} \mathrm{A})=(\operatorname{adj} \mathrm{A}) \mathrm{A}=|A| I_{2}$.

## - Watch Video Solution

11. 

If
A
$\left[\begin{array}{ll}3 & 2 \\ 7 & 5\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{ll}-1 & -3 \\ 5 & 2\end{array}\right] \operatorname{verify} \operatorname{that}(A B)^{-1}=B^{-1} A^{-1}$.

## - Watch Video Solution

12. If $\operatorname{adj}(A)=\left[\begin{array}{lll}2 & -4 & 2 \\ -3 & 12 & -7 \\ -2 & 0 & 2\end{array}\right]$, find $A$.

## - Watch Video Solution

13. If adj $(A)=\left[\begin{array}{lll}0 & -2 & 0 \\ 6 & 2 & -6 \\ -3 & 0 & 6\end{array}\right]$ find $A^{-1}$.

- Watch Video Solution

14. Find $\operatorname{adj}(\operatorname{adj}(A))$ if $\operatorname{adj} A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 0 \\ -1 & 0 & 1\end{array}\right]$.
15. 

$A=\left[\begin{array}{lc}1 & \tan x \\ -\tan x & 1\end{array}\right]$ show that $\quad A^{T} A^{-1}=\left[\begin{array}{ll}\cos 2 x & -\sin 2 x \\ \sin 2 x & \cos 2 x\end{array}\right]$.

## - Watch Video Solution

16. Find the matrix $A$ for which $A\left[\begin{array}{ll}5 & 3 \\ -1 & -2\end{array}\right]=\left[\begin{array}{cc}14 & 7 \\ 7 & 7\end{array}\right]$.

## - Watch Video Solution

17. Given $\mathrm{A}=A=\left[\begin{array}{ll}1 & -1 \\ 2 & 0\end{array}\right], B=\left[\begin{array}{cc}3 & -2 \\ 1 & 1\end{array}\right]$ and $\quad C=\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right]$,
find a matrix $X$ such that $A X B=C$.

## D Watch Video Solution

18. If $A=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$, show that $A^{-1}=\frac{1}{2}\left(A^{2}-3 I\right)$
19. Decrypt the received encoded message $\left[\begin{array}{ll}2 & -3\end{array}\right]\left[\begin{array}{ll}20 & 4\end{array}\right]$ with the encryption matrix $\left[\begin{array}{ll}-1 & -1 \\ 2 & 1\end{array}\right]$ and the decryption matrix as its inverse where the system of codes are described by the numbers 1-26 to the letters A-Z respectively, and the number 0 to a blank space.

## - Watch Video Solution

## Exercise 12

1. Find the rank of the following matrices by minor method:
$\left[\begin{array}{lr}2 & -4 \\ -1 & 2\end{array}\right]$
2. Find the rank of the following matrices by minor method:
$\left[\begin{array}{ll}-1 & 3 \\ 4 & -7 \\ 3 & -4\end{array}\right]$

## - Watch Video Solution

3. Find the rank of the following matrices by minor method:
$\left[\begin{array}{llll}1 & -2 & -1 & 0 \\ 3 & -6 & -3 & 1\end{array}\right]$

## D Watch Video Solution

4. Find the rank of the following matrices by minor method:
$\left[\begin{array}{llr}1 & -2 & 3 \\ 2 & 4 & -6 \\ 5 & 1 & -1\end{array}\right]$
5. Find the rank of the following matrices by minor method:
$\left[\begin{array}{llll}0 & 1 & 2 & 1 \\ 0 & 2 & 4 & 3 \\ 8 & 1 & 0 & 2\end{array}\right]$

## - Watch Video Solution

6. Find the rank of the following matrices by row reduction method

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 3 \\
2 & -1 & 3 & 4 \\
5 & -1 & 7 & 11
\end{array}\right]
$$

## D Watch Video Solution

7. Find the rank of the following matrices by row reduction method

$$
\left[\begin{array}{ccl}
1 & 2 & -1 \\
3 & -1 & 2 \\
1 & -2 & 3 \\
1 & -1 & 1
\end{array}\right]
$$

## Watch Video Solution

8. Find the rank of the following matrices by row reduction method
:
$\left[\begin{array}{lrrr}3 & -8 & 5 & 2 \\ 2 & -5 & 1 & 4 \\ -1 & 2 & 3 & -2\end{array}\right]$

## - Watch Video Solution

9. Find the inverse of each of the following by Gauss - Jordan method:
$\left[\begin{array}{ll}2 & -1 \\ 5 & -2\end{array}\right]$
10. Find the inverse of each of the following by Gauss - Jordan method:

$$
\left[\begin{array}{lll}
1 & -1 & 0 \\
1 & 0 & -1 \\
6 & -2 & -3
\end{array}\right]
$$

## - Watch Video Solution

11. Find the inverse of each of the following by Gauss - Jordan method:
$\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8\end{array}\right]$

## - Watch Video Solution

1. Solve the following system of linear equations by matrix inversion method.
$2 x+5 y=-2, x+2 y=-3$

## - Watch Video Solution

2. Solve the following system of linear equations by matrix inversion method.
$2 x-y=8,3 x+2 y=-2$

## - Watch Video Solution

3. Solve the following system of linear equations by matrix inversion method.
$2 x+3 y-z=9, x+y+z=9,3 x-y-z=-1$
4. Solve the following system of linear equations by matrix inversion method.
$x+y+z-=2=0,6 x-4 y+5 z-31=0,5 x+2 y+2 z=13$.

## - Watch Video Solution

5. If $\mathrm{A}=\left[\begin{array}{lll}-5 & 1 & 3 \\ 7 & 1 & -5 \\ 1 & -1 & 1\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{lll}1 & 1 & 2 \\ 3 & 2 & 1 \\ 2 & 1 & 3\end{array}\right]$, find the products
$A B$ and $B A$ and hence solve the system of equations $x+y+2 z=$ $1,3 x+2 y+z=7,2 x+y+3 z=2$.

## - Watch Video Solution

6. A man is appointed in a job with a monthly salary of certain amount and a fixed amount of annual increment. If his salary was

Rs 19,800 per month at the end of the first month after 3 years of service and Rs 23,400 per month at the end of the first month after 9 years of service find his starting salary and his annual increment. (Use matrix inversion method to solve the problem.)

## ( Watch Video Solution

7. Four men and 4 women can finish a piece of work jointly in 3 days while 2 men and 5 women can finish the same work jointly in

4 days. Find the time taken by one man alone and that of one woman alone to finish the same work by using matrix inversion method.

## - Watch Video Solution

8. The prices of three commodities $A, B$ and $C$ are Rs $x, y$ and $z$ per unit respectively. A person $P$ purchases 4 units of $B$ and sells two
units of $A$ and 5 units of $C$. Person $Q$ purchases 2 units of $C$ and sells 3 units of $A$ and one unit of $B$. Person $R$ purchases one unit of $A$ and sells 3 unit of $B$ and one unit of $C$. In the process, $P Q$ and $R$ earn Rs 15,000 , Rs 1,000 and Rs 4,000 respectively. Find the prices per unit of $A, B$ and $C$. (Use matrix inversion method to solve the problem.)

## - Watch Video Solution

## Exercise 14

1. Solve the following systems of linear equation by Cramer's rule:
$5 x-2 y+16=0, x+3 y-7=0$

## - Watch Video Solution

2. Solve the following systems of linear equation by Cramer's rule: $\frac{3}{x}+2 y=12, \frac{2}{x}+3 y=13$

## - Watch Video Solution

3. Solve the following systems of linear equation by Cramer's rule:
$3 x+3 y-z=11,2 x-y+2 z=9,4 x+3 y+2 z=25$

## - Watch Video Solution

4. Solve the following systems of linear equation by Cramer's rule:
$\frac{3}{x}-\frac{4}{y}-\frac{2}{z}-1=0, \frac{1}{x}+\frac{2}{y}+\frac{1}{z}-2=0, \frac{2}{x}-\frac{5}{y}-\frac{4}{z}+1=0$
5. In a competitive examination, one mark is awarded for every correct answer while $\frac{1}{4}$ mark is deducted for every wrong answer. A student answered 100 questions and got 80 marks. How many questions did he answer correctly ? (Use Cramer's rule to solve the problem).

## D Watch Video Solution

6. A chemist has one solution which is $50 \%$ acid and another solution which is 25 \% acid. How much each should be mixed to make 10 litres of a 40 \% acid solution ? (Use Cramer's rule to solve the problem).
7. $A$ fish tank can be filled in 10 minutes using both pumps $A$ and $B$ simultaneously. However, pump B can pump water in or out at the same rate. If pump $B$ is inadvertently run in reverse, then the tank will be filled in 30 minutes. How long would it take each pump to fill the tank by itself ? (Use Cramer's rule to solve the problem ).

## - Watch Video Solution

8. A family of 3 people went out for dinner in a restaurant. The cost of two dosai, three idlies and two vadais is Rs 150 . The cost of the two dosai, two idlies and four vadais is Rs 200. The cost of five dosai, four idlies and two vadais is Rs 250 . The family has Rs 350 in hand and they ate 3 dosai and six idlies and six vadais. Will they be able to manage to pay the bill within the amount they had?

## Exercise 15

1. Solve the following systems of linear equations by Gaussian elimination method.
$2 x-2 y+3 z=2, x+2 y-z=3,3 x-y+2 z=1$.

## - Watch Video Solution

2. Solve the following systems of linear equations by Gaussian elimination method.
$2 x+4 y+6 z=22,3 x+8 y+5 z=27,-x+y+2 z=2$

## - Watch Video Solution

3. If $a x^{2}+\mathrm{bx}+\mathrm{c}$ is divided by $\mathrm{x}+3, \mathrm{x}-5$, and $\mathrm{x}-1$, the remainders are 21 , 61 and 9 respectively. Find $a, b$, and c. (Use Gaussian elimination

## - Watch Video Solution

4. An amount of Rs 65,000 is invested in three bonds at the rates of $6 \%, 8 \%$ and $10 \%$ per annum respectively. The total annual income is Rs 4,800 . The income from the third bond is Rs 600 more than that from the second bond. Determine the price of each bond. (Use Gaussian elimination method.)

## - Watch Video Solution

## Exercise 16

1. Test for consistency and if possible solve the following system of
equations by rank method.
$x-y+2 z=2,2 x+y+4 z=7,4 x-y+z=4$

## D Watch Video Solution

2. Test for consistency and if possible solve the following system of equations by rank method.
$3 x+y+z=2, x-3 y+2 z=1,7 x-y+4 z=5$.

## ( Watch Video Solution

3. Test for consistency and if possible solve the following system of equations by rank method.
$2 x+2 y+z=5, x-y+z=1,3 x+y+2 z=4$

## - Watch Video Solution

4. Test for consistency and if possible solve the following system of equations by rank method.
$2 x-y+z=2,6 x-3 y+3 z=6,4 x-2 y+2 z=4$.

## - Watch Video Solution

5. Find the value of $k$ for which the equations $k x-2 y+z=1, x-$ $2 k y+z=-2, x-2 y+k z=1$ have
(i) no solution
(ii) unique solution
(iii) infinitely many solution

## - Watch Video Solution

6. In vestigate the values of $\lambda$ and $\mu$ the system of linear equations
$2 x+3 y+5 z=9,7 x+3 y-5 z=8,2 x+3 y+\lambda z=\mu$, have
(i) no solution
(ii) a unique solution
(iii) an infinite number of solutions.

## - Watch Video Solution

## Exercise 17

1. Solve the following system of homogeneous equations.
$3 x+2 y+7 z=0,4 x-3 y-2 z=0,5 x+9 y+23 z=0$

## ( Watch Video Solution

2. Solve the following system of homogeneous equations.
$2 x+3 y-z=0, x-y-2 z=0,3 x+y+3 z=0$.

## - Watch Video Solution

3. Determine the values of $\lambda$ for which the following system of equations $x+y+3 z=0,4 x+3 y+\lambda z=0,2 x+y+2 z=0$ has
(i) a unique solution
(ii) a non-trivial solution.

## - Watch Video Solution

4. By using Gaussian elimination method, balance the chemical reaction equation:

$$
\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} .
$$

## D Watch Video Solution

## Exercise 18

1. If $|\operatorname{adj}(\operatorname{adj} A)|=|A|^{9}$ square matrix A is
A. 3
B. 4
C. 2
D. 5

## Answer: D

## - Watch Video Solution

2. If $A$ is a $3 \times 3$ non -singular matrix such that $\mathrm{AA}^{T}=A^{T} A \operatorname{and} B=A^{-1} A^{T}$, then $B B^{T}=$
A. A
B. B
C. $I_{3}$
D. $B^{T}$

Answer: C
3. $\mathrm{A}=\left[\begin{array}{ll}3 & 5 \\ 1 & 2\end{array}\right]$, $\mathrm{B}=\operatorname{adj} \mathrm{A}$ and $\mathrm{C}=3 \mathrm{~A}$, then $\frac{|a d j B|}{|C|}=$
A. $\frac{1}{3}$
B. $\frac{1}{9}$
C. $\frac{1}{4}$
D. 1

Answer: A

## - Watch Video Solution

4. If $\mathrm{A}\left[\begin{array}{cc}1 & -2 \\ 1 & 4\end{array}\right]=\left[\begin{array}{ll}6 & 0 \\ 0 & 6\end{array}\right]$, then $\mathrm{A}=$
A. $\left[\begin{array}{cc}1 & -2 \\ 1 & 4\end{array}\right]$
B. $\left[\begin{array}{cc}1 & 2 \\ -1 & 4\end{array}\right]$
C. $\left[\begin{array}{cc}4 & 2 \\ -1 & 1\end{array}\right]$
D. $\left[\begin{array}{cc}4 & -1 \\ 2 & 1\end{array}\right]$

## Answer: A::B::D

- Watch Video Solution

5. If $\mathrm{A}=\left[\begin{array}{ll}7 & 3 \\ 4 & 2\end{array}\right]$, then $\quad 9 I_{2}-A=$
A. $A^{-1}$
B. $\frac{A^{-1}}{2}$
C. $3 A^{-1}$
D. $2 A^{-1}$

## Answer: A: B

6. If $\mathrm{A}=\left[\begin{array}{ll}2 & 0 \\ 1 & 5\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{ll}1 & 4 \\ 2 & 0\end{array}\right]$ then $|\operatorname{adj}(\mathrm{AB})|=$
A. -40
B. -80
C. -60
D. -20

## Answer:

- Watch Video Solution

7. If $\mathrm{P}=\left|\begin{array}{ccc}1 & x & 0 \\ 1 & 3 & 0 \\ 2 & 4 & -2\end{array}\right|$ is the adjoint of $3 \times 3$ matrix A and $|\mathrm{A}|=4$, then $x$ is
A. 15
B. 12
C. 14
D. 11

## Answer: A

## - Watch Video Solution

8. If $\mathrm{A}=\left[\begin{array}{rrr}3 & 1 & -1 \\ 2 & -2 & 0 \\ 1 & 2 & -1\end{array}\right]$ and $A^{-1}=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$ then the value of $a_{23}$ is
A. 0
B. -2
C. -3
D. -1
9. If $A, B$ and $C$ are invertible matrices of some order, then which one of the following is not true?
A. $\operatorname{adj} \mathrm{A}=|\mathrm{A}| A^{-1}$
B. $\operatorname{adj}(A B)=(\operatorname{adj} A)(\operatorname{adj} B)$
C. $\operatorname{det} A^{-1}=(\operatorname{det} A)^{-1}$
D. $(A B C)^{-1}=C^{-1} B^{-1} A^{-1}$

## Answer: A::B::D

## - Watch Video Solution

10. 

$(A B)^{-1}=\left[\begin{array}{cc}12 & -17 \\ -19 & 27\end{array}\right]$ and $A^{-1}=\left[\begin{array}{cc}1 & -1 \\ -2 & 3\end{array}\right]$ then $B^{-1}=$
A. $\left[\begin{array}{cc}2 & -5 \\ -3 & 8\end{array}\right]$
B. $\left[\begin{array}{ll}8 & 5 \\ 3 & 2\end{array}\right]$
C. $\left[\begin{array}{ll}3 & 1 \\ 2 & 1\end{array}\right]$
D. $\left[\begin{array}{cc}8 & -5 \\ -3 & 2\end{array}\right]$

## Answer: B::C

## - Watch Video Solution

11. If $A^{T} . A^{-1}$ is symmetric, then $A^{2}=$
A. $A^{-1}$
B. $\left(A^{T}\right)^{2}$
C. $A^{T}$
D. $\left(A^{-1}\right)^{2}$

## - Watch Video Solution

12. If $A$ is $a$ non-singular matrix such that $A^{-1}=\left[\begin{array}{cc}5 & 3 \\ -2 & -1\end{array}\right], \operatorname{then}\left(A^{T}\right)^{-1}=$
A. $\left[\begin{array}{cc}-5 & 3 \\ 2 & 1\end{array}\right]$
B. $\left[\begin{array}{cc}5 & 3 \\ -2 & -1\end{array}\right]$
C. $\left[\begin{array}{cc}-1 & -3 \\ 2 & 5\end{array}\right]$
D. $\left[\begin{array}{ll}5 & -2 \\ 3 & -1\end{array}\right]$

## Answer: A::B::C

- Watch Video Solution

13. $\mathrm{A}=\left[\begin{array}{cc}\frac{3}{5} & \frac{4}{5} \\ x & \frac{3}{5}\end{array}\right]$ and $A^{T}=A^{-1}$, then the value of x is
A. $\frac{-4}{5}$
B. $\frac{-3}{5}$
C. $\frac{3}{5}$
D. $\frac{4}{5}$

## Answer: D

## - Watch Video Solution

14. If $\mathrm{A}=\left[\begin{array}{cc}1 & \tan \frac{\theta}{2} \\ -\tan \frac{\theta}{2} & 1\end{array}\right]$ and $\mathrm{AB}=I_{2}$, then $\mathrm{B}=$
A. $\left(\cos ^{2} \frac{\theta}{2}\right) A$
B. $\left(\cos ^{2} \frac{\theta}{2}\right) A^{T}$
C. $\left(\cos ^{2} \theta\right) I$
D. $\left(\sin ^{2} \frac{\theta}{2}\right) A$

## Answer: A::B::C

## - Watch Video Solution

15. $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ and $\mathrm{A}(\operatorname{adj} \mathrm{A})=\left[\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right]$, then $=\mathrm{k}$
A. 0
B. $\sin \theta$
C. $\cos \theta$
D. 1

Answer: A
16. If $A=\left[\begin{array}{cc}2 & 3 \\ 5 & -2\end{array}\right]$ be such that $\lambda A^{-1}=A$, then $\lambda$ is
A. 17
B. 14
C. 19
D. 21

Answer: A

## - Watch Video Solution

17. If $\operatorname{adj} A=\left[\begin{array}{cc}2 & 3 \\ 4 & -1\end{array}\right]$ and $\operatorname{adj} B=\left[\begin{array}{cc}1 & -2 \\ -3 & 1\end{array}\right]$ then $\operatorname{adj}(A B)$ is
A. $\left[\begin{array}{cc}-7 & -1 \\ 7 & -9\end{array}\right]$
B. $\left[\begin{array}{cc}-6 & 5 \\ -2 & -10\end{array}\right]$
C. $\left[\begin{array}{cc}-7 & 7 \\ -1 & -9\end{array}\right]$
D. $\left[\begin{array}{cc}-6 & -2 \\ 5 & -10\end{array}\right]$

## Answer: A::B

## - Watch Video Solution

18. The rank of the matrix $\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ -1 & -2 & -3 & -4\end{array}\right]$ is
A. 1
B. 2
C. 4
D. 3

## Answer: A

$x^{a} y^{b}=e^{m}, x^{c} y^{d}=e^{n}, \Delta_{1}=\left[\begin{array}{ll}m & b \\ n & d\end{array}\right] \Delta_{2}=\left[\begin{array}{ll}a & m \\ c & n\end{array}\right], \Delta_{3}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ then the value of $x$ and $y$ are respectively.
A. $e^{\left(\Delta_{2} / \Delta_{1}\right)}, e^{\left(\Delta_{3} / \Delta_{1}\right)}$
B. $\log \left(\Delta_{1} / \Delta_{3}\right), \log \left(\Delta_{2} / \Delta_{3}\right)$
C. $\log \left(\Delta_{2} / \Delta_{1}\right), \log \left(\Delta_{3} / \Delta_{1}\right)$
D. $e^{\left(\Delta_{1} / \Delta_{3}\right)}, e^{\left(\Delta_{2} / \Delta_{3}\right)}$

## Answer: A::B::C::D

## - Watch Video Solution

20. Which of the following is/are correct ?
(i) Adjoint of a symmetric matrix is also a symmetric matrix.
(ii) Adjoint of a diagonal matrix is also a diagonal matrix.
(iii) If A is a square matrix of order n and $\lambda$ is a scalar, then $\operatorname{adj}$ ( $\lambda A)=\lambda^{n} \operatorname{adj}(\mathrm{~A})$
(iv) $\mathrm{A}(\operatorname{adj} \mathrm{A})=(\operatorname{adj} \mathrm{A}) \mathrm{A}=|A| I$
A. Only (i)
B. (ii) and (iii)
C. (iii) and (iv)
D. (i), (ii) and (iv)

## Answer: A::D

## - Watch Video Solution

21. If $\rho(\mathrm{A})=\rho([\mathrm{A} \mid \mathrm{B}])$, then the system $\mathrm{AX}=\mathrm{B}$ of linear equations is
A. consistent and has a unique solution
B. consistent
C. consistent and has infinitely many solution
D. inconsistent

## Answer: C

## - Watch Video Solution

22. If $0 \leq \theta \leq \pi$ and the system of equations $\mathrm{x}+(\sin$
$\theta) y-(\cos \theta) z=0,(\cos \theta) x-y+z=0,(\sin \theta) x+y-z=0$ has a non -trivial solution then $\theta$ is
A. $\frac{2 \pi}{3}$
B. $\frac{3 \pi}{4}$
C. $\frac{5 \pi}{6}$
D. $\frac{\pi}{4}$

## Watch Video Solution

23. The augmented matrix of a system of linear equations is $\left[\begin{array}{cccc}1 & 2 & 7 & 3 \\ 0 & 1 & 4 & 6 \\ 0 & 0 & \lambda-7 & \mu+5\end{array}\right]$. The system has infinitely many solutions if
A. $\lambda=7, \mu \neq-5$
B. $\lambda=-7, \mu=-5$
C. $\lambda \neq 7, \mu \neq-5$
D. $\lambda=7, \mu=-5$

Answer: A::B::D

- Watch Video Solution

24. Let $\mathrm{A}=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right] \operatorname{and} 4 B=\left[\begin{array}{ccc}3 & 1 & -1 \\ 1 & 3 & x \\ -1 & 1 & 3\end{array}\right]$.

If $B$ is the inverse of $A$, then the value of x is
A. 2
B. 4
C. 3
D. 1

Answer: A

## - Watch Video Solution

25. If $A=\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$, then $\operatorname{adj}(\operatorname{adj} A)$ is
A. $\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$
B. $\left[\begin{array}{rrr}6 & -6 & 8 \\ 4 & -6 & 8 \\ 0 & -2 & 2\end{array}\right]$
C. $\left[\begin{array}{ccc}-3 & 3 & -4 \\ -2 & 3 & -4 \\ 0 & 1 & -1\end{array}\right]$
D. $\left[\begin{array}{rrr}3 & -3 & 4 \\ 0 & -1 & 1 \\ 2 & -3 & 4\end{array}\right]$

## Answer: A::B::C::D

## D Watch Video Solution

## Additional Questions 1 Mark

1. The system of linear equations $x+y+z=6, x+2 y+3 z=14$ and $2 x+5 y+$ $\lambda z=\mu(\lambda, \mu \in \mathrm{RR})$ is consistent with unique solution if
A. $\lambda=8$
B. $\lambda=8, \mu \neq 36$
C. $\lambda \neq 8$
D. none

## Answer: A::B::D

## - Watch Video Solution

2. If the system of equations $x=c y+b z, y=a z+c x$ and $z=b x+a y$ has $a$ non - trivial solution then
A. $a^{2}+b^{2}+c^{2}=1$
B. $a b c \neq 1$
C. $a+b+c=0$
D. $a^{2}+b^{2}+c^{2}+2 a b c=1$

## Answer: A::B::C

3. Let $A$ be a $3 \times 3$ matrix and $B$ its adjoint matrix If $|B|=64$, then $|A|$
=
A. $\pm 2$
B. $\pm 4$
C. $\pm 8$
D. $\pm 12$

## Answer:

## - Watch Video Solution

4. If $A^{T}$ is the transpose of a square matrix A, then
A. $|A| \neq\left|A^{T}\right|$
B. $|A|=\left|A^{T}\right|$
C. $|A|+\left|A^{T}\right|=0$
D. $|A|=\left|A^{T}\right|$ only

## Answer: A

## - Watch Video Solution

5. The number of solutions of the system of equations $2 x+y=4, x-$
$2 y=2,3 x+5 y=6$ is
A. 0
B. 1
C. 2
D. infinitely many

## D Watch Video Solution

6. If $A$ is a square matrix that $|A|=2$, than for any positive integer $n$,
$\left|A^{n}\right|=$
A. 0
B. 2 n
C. $2^{n}$
D. $n^{2}$

Answer: B

## - Watch Video Solution

7. The system of linear equations $x+y+z=2,2 x+y-z=3,3 x+2 y+k z=$ has a unique solution if
A. $k \neq 0$
B. $-1<k<1$
C. $-2<k<2$
D. $k=0$

## Answer:

## - Watch Video Solution

8. If $A$ is a square matrix of order $n$, then $|\operatorname{adj} A|=$
A. $|A|^{n-1}$
B. $|A|^{n-2}$
C. $|A|^{n}$
D. none

## ( Watch Video Solution

9. If the system of equations $x+2 y-3 x=2$, $(k+3) z=3,(2 k+1) y+z=2$ is inconsistent then k is
A. $-3,-\frac{1}{2}$
B. $-\frac{1}{2}$
C. 1
D. 2

## Answer: A::B::C

## - Watch Video Solution

10. If $\mathrm{A}=\left(\begin{array}{cc}\cos x & \sin x \\ -\sin x & \cos x\end{array}\right)$ and $\mathrm{A}(\operatorname{adj} \mathrm{A})=\lambda\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ then $\lambda$ is
A. $\sin x \cos x$
B. 1
C. 2
D. none

## Answer: B

## - Watch Video Solution

11. If A is a matrix of order $m \times n$, then $\rho(\mathrm{A})$ is
A. $m$
B. $n$
C. $\leq \min (m, n)$
D. $\geq \min (m, n)$

## Answer:

## - Watch Video Solution

12. The system of equations $x+2 y+3 z=1, x-y+4 z=0,2 x+y+7 z=1$ has
A. One solution
B. Two solution
C. No solution
D. Infinitely many solution

## Answer: A

13. If $\rho(\mathrm{A})=\rho([\mathrm{A} / \mathrm{B}])=$ number of unknowns, then the system is
A. consistent and has infinitely many solutions
B. consistent
C. inconsistent
D. consistent and has unique solution.

## Answer: A::C::D

## D Watch Video Solution

14. Which of the following is not an elementary transformation?
A. $R_{i} \leftrightarrow R_{j}$
B. $R_{i} \rightarrow 2 R_{i}+R_{j}$
C. $C_{j} \rightarrow C_{j}+C_{i}$
D. $R_{i} \rightarrow R_{i}+C_{j}$

## Answer: C

## - Watch Video Solution

15. If $\rho(\mathrm{A})=r$ then which of the following is correct?
A. all the minors of order in which do not vanish
B. A' has at least one minor of order $r$ which does not vanish and all higher order minors vanish
C. A' has at least one $(r+1)$ order minor which vanish
D. all $(r+1)$ and higher order minors should not vanish

## Answer: A::B::C::D

## Additional Questions li Fill In The Blanks

1. Every homogeneous system
A. Is always consistent
B. Has only trivial solution
C. Has infinitely many solution
D. Need not be consistent

## Answer: A::C

## - Watch Video Solution

2. If $\rho(A) \neq \rho([A \mid B])$, then the system is
A. consistent and has infinitely many solutions
B. consistent and has a unique solution
C. consistent
D. inconsistent

## Answer: C

## - Watch Video Solution

3. In the non-homogeneous system of equations with 3 unknowns if $\rho(A)=\rho([A \mid B])=2$, then the system has
A. unique solution
B. one parameter family of solution
C. two parameter family of solutions
D. in consistent

Answer: A
4. Cramer's rule is applicable only when
A. $\Delta \neq 0$
B. $\Delta=0$
C. $\Delta=0, \Delta_{x}=0$
D. $\Delta_{x}=\Delta_{y}=\Delta_{z}=0$

## Answer: A::D

## - Watch Video Solution

5. In a homogeneous system if $\rho(A)=\rho([A \mid 0])<$ the number of unknowns then the system has
A. trivial solution
B. only non- trivial solution
C. no solution
D. trivial solutions and infinitely many non- trivial solutions

## Answer: A::D

## - Watch Video Solution

6. In the system of equations with 3 unknowns, if $\Delta=0$ and one of $\Delta_{x}, \Delta_{y}$, of $\Delta_{z}$ is non zero then the system is $\qquad$
A. Consistent
B. inconsistent
C. consistent with one parameter family of solutions
D. consistent with two parameter family of solutions

## D Watch Video Solution

7. In the system of liner equations with 3 unknowns if $\rho(A)=\rho([A \mid B])=1$, the system has
A. unique solution
B. inconsistent
C. consistent with 2 parameter family of solution
D. consistent with one parameter family of solution.

## Answer: A::B::C

## - Watch Video Solution

8. If $\mathrm{A}=\left[\begin{array}{lll}2 & 0 & 1\end{array}\right]$ then the rank of $\mathrm{AA}^{T}$ is
A. 1
B. 2
C. 3
D. 0

## Answer: A

## - Watch Video Solution

9. If A is a non-singular matrix then $\left|A^{-1}\right|=$
A. $\left|\frac{1}{A^{2}}\right|$
B. $\frac{1}{|A|^{2}}$
C. $\left|\frac{1}{2}\right|$
D. $\frac{1}{|A|}$

## - Watch Video Solution

10. In a square matrix the minor $M_{i j}$ and the co-factor $A_{i j}$ of and element $a_{i j}$ are related by
A. $A_{i j}=-M_{i j}$
B. $A_{i j}=M_{i j}$
C. $A_{i j}=(-1)^{i+j} M_{i j}$
D. $A_{i j}=(-1)^{i-j} M_{i j}$

## Answer: A

## - Watch Video Solution

Additional Questions Iv Choose The Odd Man Out

1. The rank of any $3 \times 4$ matrix is
A. May be 1
B. May be 2
C. May be 3
D. May be 4

## Answer: A::B::D

## - Watch Video Solution

2. If $A$ is symmetric then
A. $A^{T}=\mathrm{A}$
B. $\operatorname{adj} A$ is symmetric
C. $\operatorname{adj}\left(A^{T}\right)=(a d j A)^{T}$
D. A is orthogonal

## Answer: A

## - Watch Video Solution

3. If $A$ is a non-singular matrix of odd order them
A. Order of $A$ is $2 m+1$
B. Order of $A$ is $2 m+2$
C. $|\operatorname{adj} \mathrm{A}|$ is positive
D. Order of $A$ is $2 m+2$

## Answer:

4. If A is a orthogonal matrix, then
A. $\mathrm{AA}^{T}=A^{T} A=I$
B. A is non- singular
C. $|A|=0$
D. $A^{-1}=A^{T}$

## Answer: A

## - Watch Video Solution

5. A matrix which is obtained from an identity matrix by applying only one elementary transformation is
A. Identity matrix
B. Elementary matrix
C. Square matrix
D. Equivalent of identify matrix

## Answer: A::D

## - Watch Video Solution

## Additional Questions V Choose The Incorrect Answer

1. In an echelon form which of the following is incorrect ?
A. Every row of A which has all its entries 0 occurs below every row which has a non-zero entry.
B. The first non-zero entry in each non-zero row is 1
C. The number of zeros before the first non-zero element in a row is less than the number of such zeros in the next row
D. Two row can have same number of zeros before the first nonzero entry

## Answer: b

## - Watch Video Solution

2. Which of the following elementary transformation is not correct
?
A. $R_{i} \rightarrow R_{i}+2 R_{j}$
B. $C_{i} \rightarrow C_{i}-C_{j}$
C. $R_{i} \rightarrow 7 R_{i}+\frac{5}{3} R_{j}$
D. $C_{i} \rightarrow C_{i}-R_{j}$

Answer: C
3. It $A$ is an invertible matrix, then which of the following is not true.
A. $\left(A^{2}\right)^{-1}=\left(A^{-1}\right)^{2}$
B. $\left|A^{-1}\right|=|A|^{-1}$
C. $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
D. $|A| \neq 0$

## Answer: A::B

## - Watch Video Solution

4. The matrix $\left[\begin{array}{ccc}5 & 10 & 3 \\ -2 & -4 & 6 \\ -1 & -2 & x\end{array}\right]$ is a singular matrix if the value of $x$ is
A. 3
B. non-existent
C. All values of $x$
D. none of the above

## Answer: C

## - Watch Video Solution

5. The number of solutions of the system of equations $2 x+y-z=7, x-$
$3 y+2 z=1, x+3 y-3 z=5$ is
A. 0
B. 3
C. No solution
D. inconsistent

## D Watch Video Solution

## Additional Questions 2 Marks

1. For any $2 \times 2$ matrix if $A(\operatorname{adj} A)=\left[\begin{array}{cc}10 & 0 \\ 0 & 10\end{array}\right]$ then find $|A|$.

## - Watch Video Solution

2. For the matrix A, if $A^{3}=I$, then find $A^{-1}$.

## - Watch Video Solution

3. If A is a square matrix such that $A^{3}=I$, then prove that A is non-singular

## - Watch Video Solution

4. Show that the system of equations is inconsistent. $2 x+5 y=7,6 x+15 y=13$.

## - Watch Video Solution

5. Find the rank of the matrix $\left[\begin{array}{ccc}3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2\end{array}\right]$

## - Watch Video Solution

6. Find the rank of matrix $\mathrm{A}=\left[\begin{array}{cccc}4 & 5 & -6 & 1 \\ 7 & -3 & 0 & 8\end{array}\right]$.
7. Show that the equations $3 x+y+9 z=0,3 x+2 y+12 z=0$ and $2 x+y+7 z=0$ have non-trival solutions also.

## - Watch Video Solution

8. Find $k$ if the equations $x+2 y+2 z=0, x-3 y-3 z=0,2 x+y+k z=0$ have only the trivial solution.

## - Watch Video Solution

9. Solve $2 x-y=3,5 x+y=4$ using matrices.

## - Watch Video Solution

10. Solve $6 x-7 y=16,9 x-5 y=35$ using (Cramer's rule).

## Additional Questions 3 Marks

1. Solve $2 x+3 y=10, x+6 y=4$ using Cramer's rule.

## - Watch Video Solution

2. For what value of $t$ will the system $t x+3 y-z=1, x+2 y+z=2$, $t x+y+2 z=-1$ fail to have unique solution ?

## - Watch Video Solution

3. Solve $3 x+a y=4,2 x+a y=2, a \neq 0$ by Cramer's rule.
4. Verify $(A B)^{-1}=B^{-1} A^{-1}$ for $\mathrm{A}=\left[\begin{array}{ll}2 & 1 \\ 5 & 3\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{ll}4 & 5 \\ 3 & 4\end{array}\right]$.

## - Watch Video Solution

5. Under what conditions will the rank of the matrix
$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & h-2 & 2 \\ 0 & 0 & h+2 \\ 0 & 0 & 3\end{array}\right]$ be less than 3 ?

## - Watch Video Solution

6. Find the rank of the matrix math $\left[\begin{array}{cccc}4 & 4 & 0 & 3 \\ -2 & 3 & -1 & 5 \\ 1 & 4 & 8 & 7\end{array}\right]$

## - Watch Video Solution

7. Verify that $\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}$ for $\mathrm{A}=\left[\begin{array}{cc}-2 & -3 \\ 5 & -6\end{array}\right]$.

## - Watch Video Solution

8. Solve $2 x-3 y=7,4 x-6 y=14$ by Gaussian Jordan method.

## - Watch Video Solution

9. Solve $x+y+3 z=4,2 x+2 y+6 z=7,2 x+y+z=10$.

## - Watch Video Solution

10. If the rank of the matrix $\left[\begin{array}{ccc}\lambda & -1 & 0 \\ 0 & \lambda & -1 \\ -1 & 0 & \lambda\end{array}\right]$ is 2 , then find $\lambda$.

## - Watch Video Solution

1. Using determinants find the quadratic defined by $f(x)=a x^{2}+b x+c$, if $f(1)=0, f(2)=-2$ and $f(3)=-6$.

## ( Watch Video Solution

2. Solve
$\frac{2}{x}+\frac{3}{y}+\frac{10}{z}=4, \frac{4}{x}-\frac{6}{y}+\frac{5}{z}=1, \frac{6}{x}+\frac{9}{y}-\frac{20}{z}=2$

## - Watch Video Solution

3. The sum of three numbers is 20 . If we multiply the third number
by 2 and add the first number to the result we get 23 . By adding second and third numbers to 3 times the first number we get 46 .

Find the numbers using Cramer's rule.
4. For what value of $\lambda$, the system of equations $x+y+z=1, x+2 y+4 z=\lambda$, $x+4 y+10 z=\lambda^{2}$ is consistent
5. Show that the equations $-2 x+y+z=a, x-2 y+z=b, x+y-2 z=c$ are consistent only if $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$.

- Watch Video Solution

