©゙’doubtnut

India's Number 1 Education App

MATHS

BOOKS - SURA MATHS (TAMIL

ENGLISH)

APPLICATIONS OF DIFFERENTIAL

CALCULUS

Exercise 71

1. A point moves along a stright line in such a way that after t seconds its distance from the origin is $s=2 t^{2}+3 t$ meters.

Find the average velocity of the points between $\mathrm{t}=3$ and $\mathrm{t}=6$ seconds.

D Watch Video Solution

2. A point moves along a stright line in such a way that after t seconds its distance from the origin is $s=2 t^{2}+3 t$ meters.

Find the instantaneous velocities at $t=3$ and t $=6$ seconds.

D Watch Video Solution

3. A camera is accidentally knocked off an edge of a cliff 400 ft high. The camera falls a distance of $s=16 t^{2}$ in t seconds.

How long does the camera fall before it hits the ground?
4. A camera is accidentally knocked off an edge of a cliff 400 ft high. The camera falls a distance of $s=16 t^{2}$ in t seconds.

What is the average velocity with which the camera falls during the last 2 seconds?

- Watch Video Solution

5. A camera is accidentally knocked off an edge of a cliff 400 ft high. The camera falls a distance of $s=16 t^{2}$ in t seconds.

What is the instantaneous velocity of the camera when it hits the ground?

- Watch Video Solution

6. A particle moves along a line according to
the law $s(t)=2 t^{3}-9 t^{2}+12 t-4$, where $t \geq 0$.

At what times the particle changes direction?

- Watch Video Solution

7. A particle moves along a line according to
the law $s(t)=2 t^{3}-9 t^{2}+12 t-4$, where
$t \geq 0$.

Find the total distance travelled by the particle in the first 4 seconds.

D Watch Video Solution

8. A particle moves along a line according to
the law $s(t)=2 t^{3}-9 t^{2}+12 t-4$, where
$t \geq 0$.

Find the particle's acceleration each time the velocity is zero.

D Watch Video Solution

9. If the volume of a cube of side length x is
$v=x^{3}$. Find the rate of change of the volume
with respect to x when $x=5$ units.

D Watch Video Solution
10. If the mass $m(x)$ (in kilograms) of a thin rod of length x (in meters) is given by, $m(x)=\sqrt{3}$
x then what is the rate of change of mass with respect to the length when it is $x=3$ and $x=27$ meters.

- Watch Video Solution

11. A stone is dropped into a pond causing ripples in the form of concentric circles. The radius r of the outer ripple is increasing at a
constant rate at 2 cm per second. When the radius is 5 cm find the rate of changing of the total area of the disturbed water?

D Watch Video Solution

12. A beacon makes one revolution every 10 seconds. It is located on a ship which is anchored 5 km from a straight shore line. How fast is the beam moving along the shore line when it makes an angle of 45° with the shore?

- Watch Video Solution

13. A conical water tank with vertex down of 12 meters height has a radius of 5 meters at the top. If water flows into the tank at a rate 10 cubic $\mathrm{m} / \mathrm{min}$, how fast is the depth of the water increases when the water is 8 metres deep?

- Watch Video Solution

14. A ladder 17 metre long is leaning against the wall. The base of the ladder is pulled away
from the wall at a rate of $5 \mathrm{~m} / \mathrm{s}$. When the base of the ladder is 8 metres from the wall.

How fast is the top of the ladder moving down the wall?

D Watch Video Solution

15. A ladder 17 metre long is leaning against the wall. The base of the ladder is pulled away from the wall at a rate of $5 \mathrm{~m} / \mathrm{s}$. When the base of the ladder is 8 metres from the wall.

At what rate, the area of the triangle formed by the ladder, wall, and the floor, is changing?

D Watch Video Solution

16. A police jeep, approaching an orthogonal intersection from the northern direction, is
chasing a speeding car that has turned and moving straight east. When the jeep is 0.6 km north of the intersection and the car is 0.8 km to the east. The police deteremine with a radar that the distance between them and the cae is
increasing at $20 \mathrm{~km} / \mathrm{hr}$. If the jeep is moving at
$60 \mathrm{~km} / \mathrm{hr}$ at the instant of measurement, what
is the speed of the car?

D Watch Video Solution

17. A police jeep, approaching an orthogonal intersection from the northern direction, is chasing a speeding car that has turned and moving straight east. When the jeep is 0.6 km north of the intersection and the car is 0.8 km
to the east. The police deteremine with a radar
that the distance between them and the cae is
increasing at $20 \mathrm{~km} / \mathrm{hr}$. If the jeep is moving at
$60 \mathrm{~km} / \mathrm{hr}$ at the instant of measurement, what is the speed of the car?

D Watch Video Solution

Exercise 72

1. Find the slope of the tangent to the curves
at the respective given points.
$y=x^{4}+2 x^{2}-x$ at $\mathrm{x}=1$

- Watch Video Solution

2. Find the slope of the tangent to the curves
at the respective given points.
$x=a \cos ^{3} t, y=b \sin ^{3} t$ at $t=\frac{\pi}{2}$

- Watch Video Solution

3. Find the point on the curve
$y=x^{2}-5 x+4$ at which the tangent is parallel to the line $3 x+y=7$.
4. Find the point on the curve $y=x^{3}-6 x^{2}+x+3$ where the normal is parallel to the line $x+y=1729$.

D Watch Video Solution

5. Find the points on the curve
$y^{2}-4 x y=x^{2}+5$ for which the tangent is
horizontal.
6. Find the tangent and normal to the following curves at the givne points on the curve.
$y=x^{2}-x^{4}$ at $(1,0)$

D Watch Video Solution

7. Find the tangent and normal to the
following curves at the givne points on the
curve.

$$
y=x^{4}+2 e^{x} \text { at }(0,2)
$$

- Watch Video Solution

8. Find the tangent and normal to the following curves at the givne points on the curve.
$y=x \sin x \quad$ at $\quad\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$
9. Find the tangent and normal to the following curves at the givne points on the curve.
$x=\cos t, y=2 \sin ^{2} t$ at $t=\frac{\pi}{3}$

D Watch Video Solution

10. Find the equations of the tangents to the curve $y=1+x^{3}$ for which the tangent is orthogonal with the line $x+12 y=12$.
11. Find the equations of the tangents to the curve $y=\frac{x+1}{x-1}$ which are parallel to the line $x+2 y=6$.

D Watch Video Solution

12. Find the equation of tangent and normal
to curve given \quad by
$x=7 \cos t$ and $y=2 \sin t, t \in R \quad$ at any
point on the curve.
13. Find the angle between the rectangular hyperboloa $x y=2$ and the parabola $x^{2}+4 y=0$.

D Watch Video Solution

14. Show that the two curves $x^{2}-y^{2}=r^{2}$
and $x y=c^{2}$ where c, r are constants, cut orthogonally.

Exercise 73

1. Explain why Rolle's theorem is not applicable
to the following functions in the respective intervals.
$f(x)=\left|\frac{1}{x}\right|, x \in[-1,1]$

- Watch Video Solution

2. Explain why Rolle's theorem is not applicable to the following functions in the
respective intervals.
$f(x)=\tan x, x \in[0, \pi]$

D Watch Video Solution

3. Explain why Rolle's theorem is not applicable to the following functions in the respective intervals.
$f(x)=x-2 \log x, x \in[2,7]$

D Watch Video Solution

4. Using the Rolle's theorem, determine the values of x at which the tangent is parallel to the x-axis for the following functions :
$f(x)=x^{2}-x, x \in[0,1]$

D Watch Video Solution

5. Using the Rolle's theorem, determine the
values of x at which the tangent is parallel to
the x-axis for the following functions:
$f(x)=\frac{x^{2}-2 x}{x+2}, x \in[-1,6]$
6. Using the Rolle's theorem, determine the values of x at which the tangent is parallel to the x-axis for the following functions:
$f(x)=\sqrt{x}-\frac{x}{3}, x \in[0,1]$

D Watch Video Solution
7. Explain why Lagrange's mean value theorem is not applicable to the following functions in
the respective intervals :
$f(x)=\frac{x+1}{x}, x \in[-1,2]$

D Watch Video Solution

8. Explain why Lagrange's mean value theorem
is not applicable to the following functions in
the respective intervals :
$f(x)=|3 x+1|, x \in[-1,3]$

D Watch Video Solution

9. Using the Lagrange's mean value theorem determine the values of x at which the tangent is parallel to the secant line at the end points of the given interval:
$f(x)=x^{3}-3 x+2, x \in[-2,2]$

D Watch Video Solution

10. Using the Lagrange's mean value theorem determine the values of x at which the tangent
is parallel to the secant line at the end points
of the given interval:
$f(x)=(x-2)(x-7), x \in[3,11]$

D Watch Video Solution

11. Show that the value in the conclusion of
the mean value theorem for
$f(x)=\frac{1}{x}$ on a closed interval of positive numbers $[\mathrm{a}, \mathrm{b}]$ is $\sqrt{a b}$.
12. Show that the value in the conclusion of the mean value theorem for
$f(x)=A x^{2}+B x+C$ on any interval $[\mathrm{a}, \mathrm{b}]$
is $\frac{a+b}{2}$

D Watch Video Solution

13. A race car driver is racing at $20^{t h} \mathrm{~km}$. If his
speed never exceeds $150 \mathrm{~km} / \mathrm{hr}$, what is the maximum distance he can cover in the next two hours.
14. Suppose that for a function
$f(x), f^{\prime}(x) \leq 1$ for all $1 \leq x \leq 4$. Show that $f(4)-f(1) \leq 3$.

- Watch Video Solution

15. Does there exist a differentiable function
$\mathrm{f}(\mathrm{x})$ such that $\mathrm{f}(0)=-1, \mathrm{f}(2)=4$ and $f^{\prime}(x) \leq 2$ for all x. Justify your answer.
16. Show that there lies a point on the curve
$f(x)=x(x+3) e^{\frac{\pi}{2}},-3 \leq x \leq 0$ where tangent drawn is parallel to the x-axis.

D Watch Video Solution

17. Using mean value theorem prove that for,
$a>0, b>0,\left|e^{-a}-e^{-b}\right|<|a-b|$.
18. Write the Maclaurin series expansion of the
following functions :
e^{x}

- Watch Video Solution

2. Write the Maclaurin series expansion of the
following functions :
$\sin x$
3. Write the Maclaurin series expansion of the following functions :
$\cos x$

D Watch Video Solution

4. Write the Maclaurin series expansion of the
following functions :

$$
\log (1-x),-1 \leq x \leq 1
$$

5. Write the Maclaurin series expansion of the following functions :
$\tan ^{-1}(x),-1 \leq x \leq 1$

D Watch Video Solution

6. Write the Maclaurin series expansion of the
following functions :
$\cos ^{2} x$
7. Write down the Taylor series expansion, of the function $\log x$ about $\mathrm{x}=1$ upto three non
zero terms for $x>0$.

D Watch Video Solution

8. Expand $\sin x$ in ascending powers $x-\frac{\pi}{4}$ upto three non-zero terms.

D Watch Video Solution
9. Expand the polynomial $f(x)=x^{2}-3 x+2$
in powers of $x-1$.

D Watch Video Solution

Exercise 75

1. Evaluate the following limits, if necessary use l' Hopital Rule :
$\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$

D Watch Video Solution
2. Evaluate the following limits, if necessary use I' Hopital Rule :
$\lim _{x \rightarrow \infty} \frac{2 x^{2}-3}{x^{2}-5 x+3}$

D Watch Video Solution

3. Evaluate the following limits, if necessary use l' Hopital Rule :
$\lim _{x \rightarrow \infty} \frac{x}{\log x}$
4. Evaluate the following limits, if necessary use l' Hopital Rule:
$\lim _{x \rightarrow \frac{\pi}{2}^{-}} \frac{\sec x}{\tan x}$

- Watch Video Solution

5. Evaluate the following limits, if necessary use I' Hopital Rule:
$\lim _{x \rightarrow \infty} e^{-x} \sqrt{x}$
6. Evaluate the following limits, if necessary use I' Hopital Rule :
$\lim _{x \rightarrow 0}\left(\frac{1}{\sin x}-\frac{1}{x}\right)$

- Watch Video Solution

7. Evaluate the following limits, if necessary use I' Hopital Rule:
$\lim _{x \rightarrow 1^{+}}\left(\frac{2}{x^{2}-1}-\frac{x}{x-1}\right)$
8. Evaluate the following limits, if necessary use I' Hopital Rule :
$\lim x^{x}$
$x \rightarrow o^{+}$
(Watch Video Solution
9. Evaluate the following limits, if necessary
use I' Hopital Rule :
$\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}$

D Watch Video Solution
10. Evaluate the following limits, if necessary use I' Hopital Rule :
$\lim _{\pi}(\sin x)^{\tan x}$
$x \rightarrow \frac{\pi}{2}$

D Watch Video Solution

11. Evaluate the following limits, if necessary use I' Hopital Rule :
$\lim _{0^{+}}(\cos x)^{\frac{1}{x^{2}}}$ $x \rightarrow 0^{+}$

- Watch Video Solution

12. If an initial amount A_{0} of money is invested at an interest rate r compounded n times a
year, the value of the investment after t years
is $A=A_{0}\left(1+\frac{1}{n}\right)^{n t}$. If the interest is compounded continuously, (that is as $n \rightarrow \infty$
), show that the amount after t years is
$A=A_{0} e^{r t}$.

D Watch Video Solution

Exercise 76

1. Find the absolute extrema of the following
functions on the given closed interval.
$f(x)=x^{3}-12 x+10,[1,2]$

- Watch Video Solution

2. Find the absolute extrema of the following
functions on the given closed interval.
$f(x)=3 x^{4}-4 x^{3},[-1,2]$

D Watch Video Solution

3. Find the absolute extrema of the following
functions on the given closed interval.
$f(x)=6 x^{\frac{4}{3}}-3 x^{\frac{1}{3}},[-1,1]$

D Watch Video Solution

4. Find the absolute extrema of the following
functions on the given closed interval.
$f(x)=2 \cos x+\sin 2 x,\left[0, \frac{\pi}{2}\right]$
5. Find the intervals of monotonicities and hence find the local extremum for the following functions:
$f(x)=2 x^{3}+3 x^{2}-12 x$

D Watch Video Solution

6. Find the intervals of monotonicities and
hence find the local extremum for the following functions:
$f(x)=\frac{x}{x-5}$
7. Find the intervals of monotonicities and
hence find the local extremum for the following functions:
$f(x)=\frac{e^{x}}{1-e^{x}}$

D Watch Video Solution
8. Find the intervals of monotonicities and hence find the local extremum for the
following functions:
$f(x)=\frac{x^{3}}{3}-\log x$

- Watch Video Solution

9. Find the intervals of monotonicities and
hence find the local extremum for the following functions:
$f(x)=\sin x \cos x+5, x \in(0,2 \pi)$

D Watch Video Solution

1. Find intervals of concavity and points of inflexion for the following functions:
$f(x)=x(x-4)^{3}$

- Watch Video Solution

2. Find intervals of concavity and points of inflexion for the following functions:
$f(x)=\sin x+\cos x, 0<x<2 \pi$
3. Find intervals of concavity and points of inflexion for the following functions:
$f(x)=\frac{1}{2}\left(e^{x}-e^{-x}\right)$

D Watch Video Solution

4. Find the local extrema for the following
functions using second derivative test :
$f(x)=-3 x^{5}+5 x^{3}$
5. Find the local extrema for the following functions using second derivative test :
$f(x)=x \log x$

D Watch Video Solution

6. Find the local extrema for the following
functions using second derivative test :
$f(x)=x^{2} e^{-2 x}$

7. For the function
 $f(x)=4 x^{3}+3 x^{2}-6 x+1$ find the intervals

of monotonicity, local extrema, intervals of concavity and points of inflection.

- Watch Video Solution

Exercise 78

1. Find two positive numbers whose sum is 12
and their product is maximum.
2. Find two positive numbers whose product is

20 and their sum is minimum.

- Watch Video Solution

3. Find the smallest possible value of $x^{2}+y^{2}$ given that $\mathrm{x}+\mathrm{y}=10$.
4. A garden is to be laid out in a rectangular area and protected by wire fence. What is the largest possible area of the fenced garden with 40 metres of wire.

- Watch Video Solution

5. A rectangular page is to contain $24 \mathrm{~cm}^{2}$ of print. The margins at the top and bottom of the page are 1.5 cm and the margins at other sides of the page is 1 cm . What should be the
dimensions of the page so that the area of the paper used is minimum.

D Watch Video Solution

6. A farmer plans to fence a rectangular pasture adjacent to a river. The pasture must contain $1,80,000$ sq. mtrs in order to provide enough grass for herds. No fencing is needed along the river. What is the length of the minimum needed fencing material?
7. Find the dimensions of the rectangle with maximum area that can be inscribed in a circle of radius 10 cm .

D Watch Video Solution

8. Prove that among all the rectangles of the given perimeter, the square has the maximum area.
9. Find the dimensions of the largest rectangle
that can be inscribed in a semi circle of radius
rcm.

D Watch Video Solution

10. A manufacturer wants to design an open
box having a square base and a surface area of
108 sq. cm. Determine the dimensions of the box for the maximum volume.
11. The volume of a cylinder is given by the formula $V=\pi r^{2} h$. Find the greatest and least values of V if $r+h=6$.

- Watch Video Solution

Exercise 710

1. The volume of a sphere is increasing in
volume at the rate of $3 \pi \mathrm{~cm}^{3} / \mathrm{sec}$. The rate of
change of its radius when radius is $\frac{1}{2} \mathrm{~cm}$
A. $3 \mathrm{~cm} / \mathrm{s}$
B. $2 \mathrm{~cm} / \mathrm{s}$
C. $1 \mathrm{~cm} / \mathrm{s}$
D. $\frac{1}{2} \mathrm{~cm} / \mathrm{s}$

Answer:

D Watch Video Solution

2. A balloon rises straight up at $10 \mathrm{~m} / \mathrm{s}$. An observer is 40 m away from the spot where the balloon left the ground. Find the rate of
change of the balloon's angle of elevation in
radian per second when the balloon is 30 metres above the ground.
A. $\frac{3}{25}$ radians/sec
B. $\frac{4}{25}$ radians/sec
C. $\frac{1}{5}$ radians $/ \mathrm{sec}$
D. $\frac{1}{3}$ radians $/ \mathrm{sec}$

Answer:

D Watch Video Solution
3. The position of a particle moving along a horizontal line of any time t is given by $s(t)=3 t^{2}-2 t-8$. The time at which the particle is at rest is
A. $t=0$
B. $t=\frac{1}{3}$
C. $\mathrm{t}=1$
D. $t=3$

Answer:

D Watch Video Solution
4. A stone is thrown up vertically. The height it reaches at time t seconds is given by
$x=80 t-16 t^{2}$. The stone reaches the maximum height in time t seconds is given by
A. 2
B. 2.5
C. 3
D. 3.5
5. The point on the curve $6 y=x^{3}+2$ at which y - co ordinate is changing 8 times as
fast as x - co -ordinate is
A. $(4,11)$
B. $(4,-11)$
C. $(-4,11)$
D. $(-4,-11)$
6. The abscissa of the point on the curve
$f(x)=\sqrt{8-2 x}$ at which the slope of the tangent is -0.25 ?
A. -8
B. -4
C. -2
D. 0
7. The slope of the line normal to the curve $f(x)=2 \cos 4 x$ at $x=\frac{\pi}{12}$ is
A. $-4 \sqrt{3}$
B. -4
C. $\frac{\sqrt{3}}{12}$
D. $4 \sqrt{3}$

Answer:
8. Angle between $y^{2}=x$ and $x^{2}=y$ at the origin is
A. $\tan ^{-1} \frac{3}{4}$
B. $\tan ^{-1}\left(\frac{4}{3}\right)$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{4}$

Answer:

- Watch Video Solution

9. The value of the limit $\lim _{x \rightarrow 0}\left(\cot x-\frac{1}{x}\right)$ is
A. 0
B. 1
C. 2
D. ∞

Answer:

- Watch Video Solution

10. The function $\sin ^{4} x+\cos ^{4} x$ is increasing in the interval
A. $\left[\frac{5 \pi}{8}, \frac{3 \pi}{4}\right]$
B. $\left[\frac{\pi}{2}, \frac{5 \pi}{8}\right]$
C. $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$
D. $\left[0, \frac{\pi}{4}\right]$

Answer:

- Watch Video Solution

11. The number given by the Rolle's theorem
for the function $x^{3}-3 x^{2}, x \in[0,3]$ is
A. 1
B. $\sqrt{2}$
C. $\frac{3}{2}$
D. 2

Answer:

D Watch Video Solution
12. The number given by the Mean value
theorem for the function $\frac{1}{x}, x \in[1,9]$ is
A. 2
B. 2.5
C. 3
D. 3.5

Answer:

- Watch Video Solution

13. The minimum value of the function
$|3-x|+9$ is
A. 0
B. 3
C. 6
D. 9

Answer:

D Watch Video Solution
14. The maximum slope of the tangent to the curve $y=e^{x} \sin x, x \in[0,2 \pi]$ is at

$$
\begin{aligned}
& \text { A. } x=\frac{\pi}{4} \\
& \text { В. } x=\frac{\pi}{2} \\
& \text { С. } x=\pi \\
& \text { D. } x=\frac{3 \pi}{2}
\end{aligned}
$$

Answer:

D Watch Video Solution
15. The maximum value of the function $x^{2} e^{-2 x}, x>0$ is

> A. $\frac{1}{e}$
> B. $\frac{1}{2 e}$
> C. $\frac{1}{e^{2}}$
> D. $\frac{4}{e^{4}}$

Answer:

D Watch Video Solution
16. One of the closest points on the curve $x^{2}-y^{2}=4$ to the point $(6,0)$ is
A. $(2,0)$
B. $(\sqrt{5}, 1)$
C. $(3, \sqrt{5})$
D. $(\sqrt{13},-\sqrt{3})$

Answer:

D Watch Video Solution
17. The maximum value of the product of two positive numbers, when their sum of the squares is 200 , is
A. 100
B. $25 \sqrt{7}$
C. 28
D. $24 \sqrt{14}$

Answer:

D Watch Video Solution

18. The curve $y=a x^{4}+b x^{2}$ with $a b>0$

A. has no horizontal tangent
B. is concave up
C. is concave down
D. has no points of inflection

Answer:
19. The point of inflection of the curve

$$
y=(x-1)^{3} \text { is }
$$

A. $(0,0)$
B. $(0,1)$
C. $(1,0)$
D. $(1,1)$

Answer:

D Watch Video Solution

Government Exam Questions

1. Using Rolle's theorem find the point on the
curve $y=x^{2}+1,-2 \leq x \leq 2$ where the tangent is parallel to x-axis.

- Watch Video Solution

2. Write the Maclaurin series expansion of e^{-x}

3. Evaluate: $\lim x \log x$.
 $$
x \rightarrow 0^{+}
$$

- Watch Video Solution

4. Evaluate $\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{e^{x}-1}\right)$.

- Watch Video Solution

5. A steel plant is capable of producing x tonnes per day of a law-grade steel and y tonnes per day of a hight-grade steel, where
$y=\frac{40-5 x}{10-x}$. If the fixed market price of lowgrade steel is half that of high-grade steel, then what should be optimal productions in law-grade steel and high-grade steel in order to have maximum receipts.

D Watch Video Solution

6. Find the equations of tangent and normal
to the curve $y^{2}-4 x-2 y+5=0$ at the point where it cuts the x-axis.
7. Prove that among all the rectangles of the given area, square has the least perimeter.

D Watch Video Solution

Additional Questions

1. If a particle moves is a straight line according to $s=t^{3}-6 t^{2}-15 t$, the time interval during which the velocity is negative and acceleration is positive is
A. $2<t<5$
B. $2 \leq t \leq 5$
C. $t \geq 2$
D. $t \leq 2$

Answer:

- Watch Video Solution

2. The law of linear motion of a particle is
given by $s=\frac{1}{3} t^{3}-16 t$, the acceleration at
the time when the velocity vanishes is
A. 4
B. 6
C. 2
D. 8

Answer:

D Watch Video Solution

3. If the rate of increase of
$s=x^{3}-5 x^{2}+5 x+8$ is twice the rate of
increase of x, then one value of x is
A. $\frac{3}{5}$
B. $\frac{10}{3}$
C. $\frac{3}{10}$
D. $\frac{1}{3}$

Answer:

D Watch Video Solution

4. The point on the curve $y=x^{2}$ is the tangent parallel to X -axis is
A. $(1,1)$
B. $(2,2)$
C. $(4,4)$
D. $(0,0)$

Answer:

D Watch Video Solution
5. The equation of the tangent to the curve
$y=x^{2}-4 x+2$ at $(4,2)$ is
A. $x+4 y+12=0$
B. $4 x+y+12=0$
C. $4 x-y-14=0$
D. $x+4 y-12=0$

Answer:

D Watch Video Solution

6. Equation of the normal to the curve
$y=2 x^{2}+3 \sin x$ at $\mathrm{x}=0$ is
A. $x+y=0$

$$
\text { B. } 3 y=0
$$

C. $x+3 y=7$
D. $x+3 y=0$

Answer:

D Watch Video Solution

7. The least value of a when
$f(x)=x^{2}+a x+1$ is increasing on $(1,2)$ is
A. -2
B. 2
C. 1
D. -1

Answer:

D Watch Video Solution

8. The value of $\lim e^{-x}$ is $x \rightarrow \infty$

A. 0
B. ∞
C.e
D. $\frac{1}{e}$

Answer:

- Watch Video Solution

9. The critical points of the function

$$
f(x)=(x-2)^{\frac{2}{3}}(2 x+1) \text { are }
$$

$$
\text { A. }-1,2
$$

B. $1,-\frac{1}{2}$
C. 1, 2
D. none

Answer:

D Watch Video Solution

10. The equation of the tangent to the curve
$x=t \cos t, y=t \sin t$ at the origin is

$$
\text { A. } x=0
$$

$$
\text { B. } y=0
$$

C. $x+y=0$
D. $x+y=7$

Answer:

- Watch Video Solution

11. In LMV theorem, we have
$f^{\prime}\left(x_{1}\right)=\frac{f(b)-f(a)}{b-a}$ then $a<x_{1}$
A. $<b$
B. $\leq b$
C. $=b$
D. $\neq b$

Answer:

D Watch Video Solution

12. If the slope of the curve $2 y^{2}=a x^{2}+b$ at
$(1,-1)$ is -1 , then the values of a, b is
A. 2, 0
B. 0,2
C. 0,0
D. 2, 2

Answer:

D Watch Video Solution

13. If the curves $y=2 e^{x}$ and $y=a e^{-x}$
intersect orthogonally, then $\mathrm{a}=$
A. $\frac{1}{2}$
B. $-\frac{1}{2}$
C. 2
D. $2 e^{2}$

Answer:
(Watch Video Solution
14. The function $-3 x+12$ is
function on
R.
A. decreasing
B. strictly decreasing
C. increasing
D. strictly increasing

Answer:

D Watch Video Solution

15. The function $f(x)=x^{9}+3 x^{7}+64$ is increasing on
A. R

> B. $(-\infty, 0)$
> C. $(0, \infty)$

D. None of these

Answer:

D Watch Video Solution

16. If $x+y=8$, then the maximum value of $x y$ is
A. 8
B. 16
C. 30
D. 24

Answer:

D Watch Video Solution

17. The curve $y=e^{x}$ is
A. convex

B. concave

C. convex upwards
D. concave upwards

Answer:

D Watch Video Solution

18. $\lim _{x \rightarrow 0} \frac{x}{\tan x}$ is
A. 1
B. -1
C. 0
D. ∞

Answer:

D Watch Video Solution

19. The statement "If f has a local extremum at
c and if $f^{\prime}(c)$ exists then $f^{\prime}(c)=0$ " is
A. the extreme value theorem
B. Fermats' theorem

C. Law of mean

D. Rolle's theorem

Answer:

D Watch Video Solution

20. Identify the incorrect statement.
A. Every constant function is an increasing
function.
B. Every constant function is a decreasing
function.
C. Every identify function is an increasing
function.
D. Every polynomial function is continuous

Answer:

- Watch Video Solution

21. Identify the false statement
A. All the stationary numbers are critical
numbers.
B. At the stationary point, the first derivative is zero.
C. At critical numbers, the first derivative does not exist.
D. All the critical numbers are stationary
numbers.

Answer:

22. A particle moves in a line so that so that $x=\sqrt{t}$. Show that the acceleration is negative and proportional to the cube of the velocity.

- Watch Video Solution

23. A man 2 m high walks at a uniform speed of $5 \mathrm{~km} / \mathrm{hr}$ away from a lamp post 6 m high.

Find the rate at which the length of his shadow increases?

D Watch Video Solution

24. At what point on the curve $y=x^{2}$ on $[-2$,

2] is the tangent parallel to X-axis?

- Watch Video Solution

25. Find the maximum and minimum values of
$f(x)=|x+3| \forall x \in \mathbb{R}$.

- Watch Video Solution

26. Find the intervals of increasing and decreasing function for $f(x)=x^{3}+2 x^{2}-1$.

- Watch Video Solution

27.

Prove that

$$
\frac{x}{1+x}<\log (1+x) \text { for } x>0 .
$$

- Watch Video Solution

28. Find the equation of normal to the cure $y=\sin ^{2} x \quad$ at $\quad\left(\frac{\pi}{3}, \frac{3}{4}\right)$.

D Watch Video Solution

> 29. Verify LMV theorem for
> $f(x)=x^{3}-2 x^{2}-x+3$ in $[0,1]$

- Watch Video Solution

30. The ends of a rod $A B$ which is 5 m long moves along two grooves OX, OY which at the right angles. If A moves at a constant speed of 1 $\frac{1}{2} m / \mathrm{sec}$, what is the speed of B, when it is $4 m$ from O ?

D Watch Video Solution

31. A ball is thrown vertically upwards, moves
according to the law $s=13.8 t-4.9 t^{2}$ where s is in metres and t is in seconds.
(i) Find the acceleration at $\mathrm{t}=1$
(ii) Find velocity at $\mathrm{t}=1$
(iii) Find the maximum height reached by the ball?

- Watch Video Solution

32. If Rolle's theorem holds for
$f(x)=x^{3}+b x^{2}+a x+5$ on $[1,3]$ with
$c=\left(2+\frac{1}{\sqrt{3}}\right)$ find the values of a and b.
33. Find the angle of intersection of the curves
$2 y^{2}=x^{3}$ and $y^{2}=32 x$.

- Watch Video Solution

34. Prove that the semi-vertical angle of a cone of maximum volume and of given slant height is $\tan ^{-1}(\sqrt{2})$.

- Watch Video Solution

35. Show that the curves
 $4 x=y^{2}$ and $4 x y=k$ cut at right angles if $k^{2}=512$.

D Watch Video Solution

