©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - SURA MATHS (TAMIL ENGLISH)

APPLICATIONS OF VECTORA ALGEBRA

Exercise 61

1. Prove by vector method that median to the base of an isoscels triangle is perpendicular to the base.

- Watch Video Solution

2. Prove by vector method that an angle in a semi-circle is a right angle.
3. Prove by vector method that the diagonals of a rhombus bisect each other at right angles.

- Watch Video Solution

4. Using vector method, prove that if the diagonals of a parallelogram are equal, then it is a rectangle.

- Watch Video Solution

5. Prove by vector method that the area of the quadrilateral $A B C D$ having diagonals AC and is $\frac{1}{2}|\overline{A C} \times \overline{B D}|$

- Watch Video Solution

6. Prove by vector method that the parallelograms on the same base and between the same parallels are equal in area.
7. If G is the centroid of a
$\Delta A B C$, Prove that $($ area of $\Delta G A B)=($ area of $\Delta G B C)=(\operatorname{ar} \epsilon$

- Watch Video Solution

8. Using vector method, prove $\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$.

- Watch Video Solution

9. Prove by vector method that $\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$.

- Watch Video Solution

10. A particle acted on by constant forces
$8 \hat{i}+2 \hat{j}-6 \hat{k}$ and $6 \hat{i}+2 \hat{j}-2 \hat{k}$ is displaced from the point $(1,2,3)$ to
the point $(5,4,1)$.
Find the total work done by the forces.

- Watch Video Solution

11. Forces of magnitude $5 \sqrt{2}$ and $10 \sqrt{2}$ units acting in the directions $3 \hat{i}+4 \hat{j}+5 k$ and $10 \hat{j}+6 \hat{j}-8 \hat{k}$, respectively, act on a particle which is displaced from the point with position vector $4 \hat{i}-3 \hat{j}-2 \hat{k}$ to the with position vector $6 \hat{i}+\hat{j}-3 \hat{k}$. Find the work done by the forces.

- Watch Video Solution

12. Find the magnidude and direction cosines of the torque of a force represented by $3 \hat{i}+4 \hat{j}-5 \hat{k}$ about the point with position vector $2 \hat{i}-3 \hat{j}+4 \hat{k}$ acting through a point whose position vector is $4 \hat{i}+2 \hat{j}-3 \hat{k}$.

- Watch Video Solution

13. Find the torque of the resultant of the three forces represented by $-3 \hat{i}+6 \hat{j}-3 \hat{k}, 4 \hat{i}-10 \hat{j}+12 \hat{k}$ and $4 \hat{i}+7 \hat{j}$ acting at the point with position vector $8 \hat{i}-6 \hat{j}-4 \hat{k}$, about the point with position vector $18 \hat{i}-3 \hat{j}-9 \hat{k}$.

- Watch Video Solution

Exercise 62

1.

$\vec{a}=\vec{i}+2 \hat{j}+3 \hat{k}, \vec{b}=2 \hat{i}+\hat{j}-2 \hat{k}, \vec{c}=3 \hat{i}+\widehat{2 j}+\hat{k}$, find $\vec{a} \cdot(\vec{b}$

- Watch Video Solution

2. Find the volume of the parallelepiped whose coterminous edges are

represented by	the	vector
$-6 \hat{i}+14 \hat{j}+10 \hat{k}, 14 \hat{i}-10 \hat{j}-6 \hat{k}$,	and $2 \hat{i}+4 \hat{j}-2 \hat{k}$.	

3. The volume of the parallelepiped whose coterminus edges are $7 \hat{i}+\lambda \hat{j}-3 \hat{k}, \hat{i}+2 \hat{j}-\hat{k}-3 \hat{i}+7 \hat{j}+5 \hat{k}$ is 90 cubic units. Find the value of λ.

- Watch Video Solution

4. If $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar vectors represented by concurrent edges of a parallelepiped of volume 4 cubic units, find the value of $(\vec{a}+\vec{b}) \cdot(\vec{b} \times \vec{c})+(\vec{b}+\vec{c}) \cdot(\vec{c} \times \vec{a})+(\vec{c}+\vec{a}) \cdot(\vec{a} \times$

- Watch Video Solution

5. Find the altitude of a parallelepiped determined by the vectors $\vec{a}=-2 \hat{i}+5 \hat{j}+3 \hat{k} \quad \vec{b}=\hat{i}+3 \hat{j}-2 \hat{k}$ and $\vec{c}=-3 \hat{i}+\hat{j}+4 \hat{k}$ if the base is taken as the parallelogram determined by \vec{b} and \vec{c}.
6. Determine whether the three vectors $2 \hat{i}+3 \hat{j}+\hat{k}, \hat{i}-2 \hat{j}+2 \hat{k}$ and $3 \hat{i}+\hat{j}+3 \hat{k}$ are coplanar.

- Watch Video Solution

7. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$. " If "c_(1)=1 and c_(2)=2" find "c_(3)" such that "vec(a), vec(b) and vec(c)" are coplanar. "'

- Watch Video Solution

8. If $\vec{a}=\hat{i}+\hat{i}+\hat{k} . \vec{b}=\hat{i}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$. "
"c_(1)=1andc_(2)=2" find "c_(3)" such that "vec(a),vec(b)andvec(c)" are coplanar. " depends on neither x nor y .

- Watch Video Solution

9. If the vectors $a \hat{i}+a \hat{j}+c \hat{k}, \hat{i}+\hat{j}$ andchat(i$)+c h a t(\mathrm{j})+\mathrm{bhat}(\mathrm{k})^{\prime}$ are coplanar, prove that c is the geometric mean of a and b.

- Watch Video Solution

10. Let $\vec{a}, \vec{b}, \vec{c}$ be three non-zero vectors such that \vec{c} is a unit vector perpendicular to both \vec{a} and \vec{c}. If the angle between
\vec{a} and \vec{c} is $\frac{\pi}{6}$, show that $[\vec{a}, \vec{b}, \vec{c}]^{2}=\frac{1}{4}|\vec{a}|^{2}|\vec{b}|^{2}$.

- Watch Video Solution

Exercise 63

1.

$\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}, \vec{b}=2 \hat{i}+\hat{j}-2 \hat{k}, \vec{c}=3 \hat{i}+2 \hat{j}+\hat{k}, \quad$ find (i) $\quad(\vec{a} \times$

- Watch Video Solution

2.

\vec{a}, prove that $\hat{i} \times(\vec{a} \times \vec{i})+\hat{j} \times(\vec{a} \times \vec{j})+\hat{k} \times(\vec{a} \times \hat{k})=2 \vec{a}$

- Watch Video Solution

3. prove that $[\vec{a}-\vec{b}, \vec{b}-\vec{c} \vec{c}-\vec{a}]=0$

- Watch Video Solution

4. If $\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}, \vec{b}=3 \hat{i}+5 \hat{j}+2 \hat{k}, \vec{c}=-\hat{i}-2 \hat{j}+3 \hat{k}$,
$(\vec{a} \times \vec{b}) \times \vec{c}=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{b} \cdot \vec{c}) \vec{a}$

- Watch Video Solution

5. If $\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}, \vec{b}=3 \hat{i}+5 \hat{j}+2 \hat{k}, \vec{c}=-\hat{i}-2 \hat{j}+3 \hat{k}$,
$\vec{a}(\vec{a} \times \vec{b})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$

- Watch Video Solution

6.

$\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}, \vec{b}=-\hat{i}+2 \hat{j}-4 \hat{k}, \vec{c}=\hat{i}+\hat{j}+\hat{k}$ then find the of

- Watch Video Solution

7. If $\vec{a}, \vec{b}, \vec{c}$ are coplanar vectors, show that
$(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\overrightarrow{0}$

- Watch Video Solution

8.

$\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=2 \hat{i}-\hat{j}+\hat{k}, \vec{c}=3 \hat{i}+2 \hat{j}+\hat{k}$ and $\vec{a} \times(\vec{b} \times \vec{c}$ find the values fo $1, \mathrm{~m}, \mathrm{n}$.

- Watch Video Solution

9. If $\hat{a}, \hat{b}, \hat{c}$ are three unit vectors such that \hat{b} and \hat{c} are non-parallel and $\widehat{a} \times(\hat{b} \times \hat{c})=\frac{1}{2} \hat{b}$, find the angle between \vec{a} and \vec{c}.

- Watch Video Solution

Exercise 64

1. Find the non-parametric form of vector equation and Cartesian equations of the straight line passing through the point with position vector $4 \hat{i}+3 \hat{j}-7 \hat{k}$ and parallel to the vector $2 \hat{i}-6 \hat{j}+7 \hat{k}$.

- Watch Video Solution

2. Find the parametric form of vector equation and Cartesian equtions of the straight line passing through the point $(-2,3,4)$ and parallel to the straight line $\frac{x-1}{-4}=\frac{y+3}{5}=\frac{8-z}{-6}$
3. Find the point where the straight line passes through $(6,7,4)$ and $(8,4,9)$ cut the $x z$ and $y z$ planes.

- Watch Video Solution

4. Find the direction cosines of the straight line passing through the points $(5,6,7)$ and $(7,9,13)$. Also, find the parametric form of vector equation and Cartesian equtions of the straight line passing through two given points.

- Watch Video Solution

5. Find the acute angle between the following lines.

$$
\begin{aligned}
\vec{r} & =(4 \hat{i}-\hat{j})+t(\hat{i}+2 \hat{j}-2 \hat{k}) \\
\vec{r} & =(\hat{i}-2 \hat{j}+4 \hat{k})+s(-\hat{i}-2 \hat{j}+2 \hat{k})
\end{aligned}
$$

6. Find the acute angle between the following lines.
$\frac{x+4}{3}=\frac{y-7}{4}=\frac{z+5}{5}, \vec{r}=4 \hat{k}+t(2 \hat{i}+\hat{j}+\hat{k})$

- Watch Video Solution

7. Find the acute angle between the following lines.
$2 x=3 y=-z$ and $6 x=-y=-4 z$

- Watch Video Solution

8. The
vertices
of
$\triangle A B C$ are $A(7,2,1), B(6,0,3)$, and $C(4,2,4)$. Find $\angle A B C$.

- Watch Video Solution

9. If the straight line joining the points $(2,1,4)$ and $(a-1,4,-1)$ is parallel to the line joining the points $(0,2, b-1)$ and $(5,3,-2)$, find
the values of a and b.

- Watch Video Solution

10.

If
the
straight
lines
$\frac{x-5}{5 m}=\frac{2-y}{5}=\frac{1-z}{-1}$ and $x=\frac{2 y+1}{4 m}=\frac{1-z}{-3}$
perpendicular to each other, find the value of m.

- Watch Video Solution

11. Show that the points $(2,3,4),(-1,4,5)$ and $(8,1,2)$ are collinear.

- Watch Video Solution

Exercise 65

1. Find the parametric form of vector equation and Cartesian equations of a straight line passing through $(5,2,8)$ and is perpendicular to the

- Watch Video Solution

$$
\begin{array}{ccc}
\text { 2. } & \text { Show that } & \text { the } \\
\vec{r}=(6 \hat{i}+\hat{j}+2 \hat{k})+s(\hat{i}+2 \hat{j}-3 \hat{k}) \text {, and } \vec{r}=(3 \hat{i}+2 \hat{j}-2 \hat{k})+t(2
\end{array}
$$ are skew lines and hence find the shortest distance between them.

- Watch Video Solution

3. If the two lines $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-m}{2}=z$ intersect at a point, find the value of m.

- Watch Video Solution

4.

Show
that
the
lines
$\frac{x-3}{3}=\frac{y-3}{-1}, z-1=0$ and $\frac{x-6}{2}=\frac{z-1}{3}, y-2=0$ intersect.
Also find the point of intersection.'

- Watch Video Solution

5. Show that the straight lines $x+1=2 y=-12 z$ and $x=y+2=6 z-6$ are skew and hence find the shortest distance between them.

(D) Watch Video Solution

6. Find the parametric form of vector eqution of the straight line passing through $(-1,2,1)$ and paralle to the straight line $\vec{r}=(2 \hat{i}+3 \hat{j}-\hat{k})+t(\hat{i}-2 \hat{j}+\hat{k})$ and lines find the shortest distance between the lines.

- Watch Video Solution

7. Find the foot of the perpendicular drawn from the point $(5,4,2)$ to the line $\frac{x+1}{2}=\frac{y-3}{3}=\frac{z-1}{-1}$. Also, find the eqution of the perpendicular.

(D) Watch Video Solution

Exercise 66

1. Find a parametric form of vector equation of a plane which is at a distance of 7 units from the origin having $3,-4,5$ as direction ratios of a normal to it .

- Watch Video Solution

2. Find the direction cosines of the normal to the plane $12 x+3 y-4 z=65$. Also, find the non-parametric form of vector equation of a plane and the length of the perpendicular to the plane from the origin.

- Watch Video Solution

3. Find the vector and Cartesian equations of the plane passing through the point with position vector $2 \hat{i}+6 \hat{j}+3 \hat{k}$ and normal to the vector $\hat{i}+3 \hat{j}+5 \hat{k}$.

- Watch Video Solution

4. A plane passes through the point $(1,1,2)$ - and the normal to the plane of magnitude $3 \sqrt{3}$ makes equal acute angles with the coordinate axes. Find the equation of the plane.

- Watch Video Solution

5. Find the intercept cut off by the plane $\vec{r}=(6 \hat{i}+4 \hat{j}-3 \hat{k})=12$ on the coordinate axes.

- Watch Video Solution

6. If a plane meets the coordinate axes at A, B, C such that the centroid of the triangle ABC is the point (u, v, w), find the eqution of the plane.

- Watch Video Solution

Exercise 67

1. Find the non-parametric form of vector equation, and Cartesian eqution of the plane passing through the point $(2,3,6)$ and parallel to the straight lines
$\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-3}{1}$ and $\frac{x+3}{2}=\frac{y-3}{-5}=\frac{z+1}{-3}$.

- Watch Video Solution

2. Find the parametric form of vector equation, and Cartesian equations of the plane passing through the points $(2,2,1),(9,3,6)$ and perpendicular to the plane $2 x+6 y+6 z=9$.
3. Find the parametric form vector eqution and Cartesian equations of the plane passing through the points $(2,2,1),(1,-2,3)$ and parallel to the straight line passing through the points $(2,1,-3)$ and $(-1,5,-8)$.

- Watch Video Solution

4. Find the non-parametric form of vector equation and Cartesian equation of the plane passing through the point $(1,-2,4)$ and perpendicular to the plane $x+2 y-3 z=11$ and parallel to the line $\frac{x+7}{3}=\frac{y+3}{-1}=\frac{z}{1}$.

- Watch Video Solution

5. Find the parametric form of vector equation, and Cartesian equations
$\vec{r}=(\hat{i}-\hat{j}+3 \hat{k})+t(2 \hat{i}-\hat{j}+4 \hat{k})$ and perpendicular to plane $\vec{r} \cdot(\hat{i}$

- Watch Video Solution

6. Find the parametric vector, non-parametric vector and Cartesian form of the equations of the plane passing through the three non-collinear points ${ }^{`}(3,6,-2),(-1,-2,6)$ and $(6,4,-2)$.

- Watch Video Solution

7. Find the non-parametric form of vector equation, and Cartesian equations of the plane

$$
\vec{r}=(6 \hat{i}-\hat{j}+\hat{k})+s(-\hat{i}+2 \hat{j}+\hat{k})+t(-5 \hat{j}-4 \hat{j}-5 \hat{k})
$$

- Watch Video Solution

1. Show that the straight lines $\vec{r}=(5 \hat{i}+7 \hat{j}-3 \hat{k})+s(4 \hat{i}+4 \hat{j}-5 \hat{k})$ and $\vec{r}=(8 \hat{i}+4 \hat{j}+5 \hat{k})+t('$ are coplanar. Find the vector equation of the plane in which they lie.

- Watch Video Solution

$\begin{array}{ccc}\text { 2. } & \text { Show } & \text { that } \\ \frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{3}\end{array}$ and $\frac{x-1}{-3}=\frac{y-4}{2}=\frac{z-5}{1} \quad \begin{aligned} & \text { are }\end{aligned}$ coplanar. Also, find the plane containing these lines.

- Watch Video Solution

3. the straight
lines
$\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{m^{2}}$ and $\frac{x-3}{1}=\frac{y-2}{m^{2}}=\frac{z-1}{2}$
coplanar, find the distinct real values of m.

- Watch Video Solution

$\frac{x-1}{2}=\frac{y+1}{\lambda}=\frac{z}{2}$ and $\frac{x+1}{5}=\frac{y+1}{2}=\frac{z}{\lambda}$ are coplanar, find λ and equations of the planes containing theses two lines.

- Watch Video Solution

Exercise 69

1. Find the equation of the plane passing through the line of intersection of the
planes
$\vec{r} \cdot(2 \hat{i}-7 \hat{j}+4 \hat{k})=3$ and $3 x-5 y+4 z+11=0, \quad$ and the point

- Watch Video Solution

2. Find the equation of the plane passing thruogh the line of intersection of the planes $x+2 y+3 z=2$ and $x-y+z=3$, and at a distance $\frac{2}{\sqrt{3}}$ from point $(3,1,-1)$.

> 3. Find the angle between the line
> $\vec{r}=(2 \hat{i}-\hat{j}+\hat{k})+t(6 \hat{i}+2 \hat{j}-2 \hat{k})$ and the plane $\vec{r} \cdot(6 \hat{i}+3 \hat{j}+2 \hat{k}$

- Watch Video Solution

4. Find the angle between the planes
$\vec{r} \cdot(\hat{i}+\hat{j}-2 \hat{k})=3$ and $2 x-2 y+z=2$

- Watch Video Solution

5. Find the equation of the plane which passes through the point $(3,4,-1)$ and is parallel to the plane $2 x-3 y+5 z+7=0$. Also, find the distance between the two planes.

- Watch Video Solution

6. Find the length of the perpendicular from the point $(1,-2,3)$ to the plane $\mathrm{x}-\mathrm{y}+\mathrm{z}=5$.

- Watch Video Solution

7. Find the point intersection of the line $x-1=\frac{y}{2}=z+1$ with the plane $2 x-y+2 z=2$. Also, find the angle between the line and the plane.

- Watch Video Solution

8. Find the coordinates of the foot of the perpendicular and length of the perpendicular from the point $(4,3,2)$ to the plane $x+2 y+3 z=2$.

> Exercise 610 Choose The Correct Or The Most Suitable Answer From The Given Four Alternative

1. If \vec{a} and \vec{b} are parallel vectors, then $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$ is equal to
A. 2
B. -1
C. 1
D. 0

Answer:

- Watch Video Solution

2. If a vector $\vec{\alpha}$ lies in the plane of $\vec{\beta}$ and $\vec{\gamma}$, then
A. $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}]=1$
B. $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}]=-1$
c. $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}]=0$
D. $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}]=-2$

- Watch Video Solution

3. If $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}, \vec{a}=0$, then the value of $[\vec{a}, \vec{b}, \vec{c}]$ is
A. $|\vec{a}||\vec{b}||\vec{c}|$
B. $\frac{1}{3}|\vec{a}||\vec{b}||\vec{c}|$
C. 1
D. -1

Answer: A::B::C

D Watch Video Solution

4. If $\vec{a}, \vec{b}, \vec{c}$ are three unit vectors such that \vec{a} is perpendicular to \vec{b}, and is parallel to \vec{c} then $\vec{a} \times(\vec{b} \times \vec{c})$ is equal to
A. \vec{a}
B. \vec{b}
C. \vec{c}
D. $\overrightarrow{0}$

Answer: B::C

- Watch Video Solution

5. If $[\vec{a}, \vec{b}, \vec{c}]=1$, then the value of
$\vec{a} \cdot(\vec{b} \times \vec{c}) \quad \vec{b} \cdot(\vec{c} \times \vec{a}) \quad \vec{c}(\vec{a} \times \vec{b})$
$\overline{(\vec{c} \times \vec{a}) \cdot \vec{a}}+\frac{}{(\vec{a} \times \vec{b}) \cdot \vec{c}}+\frac{}{(\vec{c} \times \vec{b}) \cdot \vec{a}}$ is
A. 1
B. -1
C. 2
D. 3

- Watch Video Solution

6. The volume of the parallelepiped with its edges represented by the vectors $\hat{i}+\hat{j}, \hat{i}+2 \hat{j}, \hat{i}+\hat{j}+\pi \hat{k}$ is
A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$
C. π
D. $\frac{\pi}{4}$

Answer:

D Watch Video Solution

7. If \vec{a} and \vec{b} are unit vectors such
$[\vec{a}, \vec{b}, \vec{a} \times \vec{b}]=\frac{\pi}{4}$, then the angle between \vec{a} and \vec{b} is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer:

- Watch Video Solution

8.

$$
\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+\hat{j}, \vec{c}=\hat{i} \text { and }(\vec{a} \times \vec{b}) \times \vec{c}=\lambda \vec{a}+\mu \vec{b}
$$ then the value of $\lambda+\mu$ is

A. 0
B. 1
C. 6
D. 3

D Watch Video Solution

9. If $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar, non-zero vectors such that $[\vec{a}, \vec{b}, \vec{c}]=3, \operatorname{then}\{[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}]\}^{2}$ is equal to
A. 81
B. 9
C. 27
D. 18

Answer: A

- Watch Video Solution

10. If $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{b+c}{\sqrt{2}}$, then the angle between \vec{a} and \vec{b} is
A. $\frac{\pi}{2}$
B. $\frac{3 \pi}{4}$
C. $\frac{\pi}{4}$
D. π

Answer: C::D

D Watch Video Solution

11. If the volume of the parallelpiped with $\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{c} \times \vec{a}$ as coterminous edges is 8 cubic units, then the volume of the parallelepiped with $(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c}),(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})$ and $(\vec{c} \times \vec{a}) \times(\vec{a}$ as coterminous edges is,
A. 8 cubic units
B. 512 cubic units
C. 64 cubic units
D. 24 cubic units

Answer: B::C::D

- Watch Video Solution

12. Consider the vectors, $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ such that $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\overrightarrow{0}$ Let P_{1} and P_{2} be the planes determined by the pairs of vectors, \vec{a}, \vec{b} and \vec{c}, \vec{d} respectively. Then the angle between P_{1} and P_{2} is
A. 0°
B. 45°
C. 60°
D. 90°

Answer:

13. If $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \times \vec{b}) \times \vec{c}$, where $\vec{a}, \vec{b} \vec{c}$ are any three vectors such that $\vec{b} \cdot \vec{c} \neq 0$ and $\vec{a} \cdot \vec{b} \neq 0$, then \vec{a} and \vec{c} are
A. perpendicular
B. parallel
C. inclined at an angle $\frac{\pi}{3}$
D. inclined at an angle $\frac{\pi}{6}$

Answer: A::B::C::D

- Watch Video Solution

14. If $\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-5 \hat{k}, \vec{c}=3 \hat{i}+5 \hat{j}-\hat{k}$, then a vector perpendicular to \vec{a} and lies in the plane containing \vec{b} and \vec{c} is

$$
\text { A. }-17 \hat{i}+21 \hat{j}-97 \hat{k}
$$

B. $17 \hat{i}+21 \hat{j}-97 \hat{k}$
C. $-17 \hat{i}-21 \hat{j}+97 \hat{k}$
D. $-17 \hat{i}-21 \hat{j}-97 \hat{k}$

Answer: A: B

- Watch Video Solution

$$
\begin{aligned}
& \text { 15. The } \begin{array}{c}
\text { angle } \\
\frac{x-2}{3}=\frac{y+1}{-2}, z=2 \text { between } \\
\text { and } \frac{x-1}{1}=\frac{2 y+3}{3}, \frac{z+5}{2} \text { is }
\end{array} \text { the lines }
\end{aligned}
$$

A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: B

$\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$ lies in the plane $x+3 y-a z+\beta=0$ then
is
A. $(-5,5)$
B. $(-6,7)$
C. $(5,-5)$
D. $(6-7)$

Answer:

- Watch Video Solution

17. The angle between the lines
$\vec{r}=(\hat{i}+2 \hat{j}-3 \hat{k})+t(2 \hat{i}+\hat{j}-2 \hat{k})$ and the plane $\vec{r} \cdot(\hat{i}+\hat{j})+4=$
is
A. 0°
B. 30°
C. 45°
D. 90°

Answer: D

- Watch Video Solution

18. The coordinates of the point where the line $\vec{r}=(6 i-j-3 k)+t(-i+4 k)$ meets the plane $\vec{r} \cdot(\hat{i}+\hat{j}-\hat{k})=3$ are
A. $(1,2,-6)$
B. $(7,-1,-7)$
C. $(1,2,-6)$
D. $(5,-1,1)$
19. Distance from the origin to the plane $3 x-6 y+2 z+7=0$ is
A. 0
B. 1
C. 2
D. 3

Answer: A

- Watch Video Solution

20. The distance between the planes $x+2 y+3 z+7=0$ and $2 x+4 y+6 z+$ $7=0$ is
A. $\frac{\sqrt{7}}{2 \sqrt{2}}$
B. $\frac{7}{2 \sqrt{14}}$
C. $\frac{\sqrt{7}}{2}$
D. $\frac{7}{2 \sqrt{2}}$

Answer: B

- Watch Video Solution

21. If direction cosines of a line are $\frac{1}{c}, \frac{1}{c}, \frac{1}{c}$, then.
A. $c= \pm 3$
B. $c= \pm \sqrt{3}$
C. $c>0$
D. $0<c<1$

Answer: C

22. The vector equation $\vec{r}=(\hat{i}-2 \hat{j}-\hat{k})+t(6 \hat{j}-\hat{k})$ represents a straight line passing through the points
A. $(0,6,-1)$ and $(1,-2,-1)$
B. $(0,6,-1)$ and $(-1,-4,-2)$
C. (1, - 2, - 1) and ($1,4,-2$)
D. $(1,-2,-1)$ and $(0,-6,1)$

Answer: A::B::D

- Watch Video Solution

23. If the distance of the point $(1,1,1)$ from the origin is half of its distance from the plane $x+y+z+k=0$, then the value of k are
A. ± 3
B. ± 6
C. $-3,9$

D. $3,-9$

Answer: C

- Watch Video Solution

24. If the planes $\vec{r} \cdot(2 \hat{i}-\lambda \hat{j}+\hat{k})=3$ and $\vec{r}(4 \hat{i}+\hat{j}-\mu \hat{k})=5$ are parallel, then the value of λ and μ are
A. $\frac{1}{2},-2$
B. $-\frac{1}{2}, 2$
C. $-\frac{1}{2},-2$
D. $\frac{1}{2}, 2$

Answer: A::B

- Watch Video Solution

25. If the length of the perpendicular from the origin to the plane $2 x+3 y+\lambda z=1, \lambda>0$ is $\frac{1}{5}$ then the value of is λ is
A. $2 \sqrt{3}$
B. $3 \sqrt{2}$
C. 0
D. 1

Answer: B::C

- Watch Video Solution

Additional Questions Choose The Correct Or The Most Suitable Answer From The Given Four Alternatives

1. The vector, $2 \hat{i}+\hat{j}+2 \hat{k}, \hat{i}+\lambda \hat{j}-\hat{k} t$ and $2 \hat{i}-\lambda \hat{k}$ are co-planar if A. $\lambda=-2$
B. $\lambda=1+\sqrt{3}$
C. $\lambda=1-\sqrt{3}$
D. $\lambda=-2,1 \pm \sqrt{3}$

Answer: A::B::C::D

- View Text Solution

2. Let \vec{a}, \vec{b} and \vec{c} be three non-coplanar vectors and let $\vec{p}, \vec{q}, \vec{r}$ be the vectors defined by the relations $\vec{p}=\frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b} \vec{c}]}, \vec{q}=\frac{\vec{c} \times \vec{a}}{[\vec{a} \vec{b} \vec{c}]}, \vec{r}=\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b} \vec{c}]}$ Then the value of
A. 0
B. 1
C. 2
D. 3

Answer: C

- Watch Video Solution

3. The number of vectors of unit length perpedicular to the vectors $(\hat{i}+\hat{j})$ and $(\hat{j}+\hat{k})$ is
A. 1
B. 2
C. 3
D. ∞

Answer: B

- Watch Video Solution

4.

$\vec{d}=\vec{a} \times(\vec{b} \times \vec{c})+\vec{b} \times(\vec{c} \times \vec{a})+\vec{c} \times(\vec{a} \times \vec{b})$, then
A. $|\vec{d}|=1$
B. $\vec{d}=\vec{a}+\vec{b}+\vec{c}$
C. $d=0$
D. a, b, c are coplanar

Answer: D

- Watch Video Solution

5. If \vec{a} and \vec{b} are two unit vectors, then the vectors $(\vec{a}+\vec{b}) \times(\vec{a} \times \vec{b})$ is parallel to the vector
A. $\vec{a}-\vec{b}$
B. $\vec{a}+\vec{b}$
C. $2 \vec{a}-\vec{b}$
D. $2 \vec{a}+\vec{b}$

Watch Video Solution

6. The area of the parallelogram having diagonals $\vec{a}=3 \hat{i}+\hat{j}-2 \hat{k}$ and $\vec{b}=\hat{i}-3 \hat{j}+4 k$ is
A. 4
B. $2 \sqrt{3}$
C. $4 \sqrt{3}$
D. $5 \sqrt{3}$

Answer: C

- Watch Video Solution

7. If \vec{a}, \vec{b} and \vec{c} are any three vectors, then $\vec{a} \times(\vec{b} \times \vec{c})=\vec{a} \times(\vec{b} \times \vec{c})$ if and only if
A. \vec{b}, \vec{c} are collinear
B. \vec{a} and \vec{c} are collinear
C. \vec{a} and \vec{b} are collinear
D. none

Answer: A::C::D

- View Text Solution

8. The volume of the parallelepiped whose sides are given by $\overline{O A}=2 \hat{i}-3 \hat{j}, \overline{O B}=\hat{i}+\hat{j}-\hat{k}$ and $\overline{O C}=3 \hat{i}-\hat{k}$ is
A. $\frac{4}{13}$
B. 4
C. $\frac{2}{7}$
D. $\frac{4}{9}$

Answer: D

9. If $|\vec{a}|=|\vec{b}|=1$ such that $\vec{a}+2 \vec{b}$ and $5 \vec{a}-4 \vec{b} \quad$ are perpendicular to each other, then the angle between \vec{a} and \vec{b} is
A. 45°
B. 60°
C. $\cos ^{-1} \frac{1}{3}$
D. $\cos ^{-1} \frac{2}{7}$

Answer:

- Watch Video Solution

10. The angle between the vector $3 \hat{i}+4 \hat{j}+5 \hat{k}$ and the z-axis is
A. 30°
B. 60°
C. 45°
D. 90°

Answer: D

- Watch Video Solution

11. A vector $\overrightarrow{O P}$ makes 60° and 45° with the positive direction of the x and y axes respectively. Then the angle between $\overrightarrow{O P}$ and the z-axis is
A. 75°
B. 60°
C. 45°
D. 3

Answer:

12.

$\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}, \vec{c}=3 \hat{i}+\hat{j}$ then $\vec{a}+t \vec{b}$ will be perpendicular to \vec{c} only when $\mathrm{t}=$
A. 5
B. 4
C. 8
D. $\frac{7}{3}$

Answer: C

- Watch Video Solution

13. If θ is the between the vector \vec{a} and \vec{b}, then $\sin \theta$ is
A. $\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$
B. $\frac{|\vec{a} \times \vec{b}|}{\vec{a} \cdot \vec{b}}$
C. $\sqrt{\left(1-\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}\right)^{2}\right.}$
D. 0

Answer: A::B::C

- Watch Video Solution

14. If the vectors $\hat{i}+\hat{j}+2 \hat{k},-\hat{i}+2 \hat{k}$ and $2 \hat{i}+x \hat{j}-y \hat{k}$ are mutually orthogonal, then the values of x, y, z are
A. $(10,4,1)$
B. $(-10,4,1)$
C. $\left(-10,-4, \frac{1}{2}\right)$
D. $\left(-10,4, \frac{1}{2}\right)$

Answer: A::B::D

15. If $\vec{a}=|\vec{a}| \vec{e}$ then $\vec{e} \cdot \vec{e}$ is
A. 0
B.e
C. 1
D. $\overrightarrow{0}$

Answer: A

- Watch Video Solution

16. The value of $|\vec{a}+\vec{b}|^{2}+|\vec{a}-\vec{b}|^{2}$ is
A. $2\left(|\vec{a}|^{2}+|\vec{b}|^{2}\right)$
B. $4 \vec{a} \cdot \vec{b}$
C. $2\left(|\vec{a}|^{2}-|\vec{b}|^{2}\right)$
D. $4|\vec{a}|^{2}-|\vec{b}|^{2}$

- Watch Video Solution

17.

$\vec{p} \times \vec{q}=2 \hat{i}+3 \hat{j}, \vec{r} \times \vec{s}=3 \hat{j}+2 \hat{k}$, then $\vec{p} \cdot(\vec{q} \times(\vec{r} \times \vec{s}))$ is
A. 9
B. 6
C. 2
D. 5

Answer:

18. If the work done by a force $\bar{F}=\hat{i}+m \hat{j}+\hat{k}$ in moving the point of application from $(1,1,1)$ to $(3,3,3)$ along a straight is 12 units, then m is
A. 5
B. 2
C. 4
D. 6

Answer:

- Watch Video Solution

19. The two planes $3 x+3 y-3 z-1=0$ and $x+y-z+5=0$ are
A. mutually perpendicular
B. parallel
C. inclined at 45°
D. inclined at 30

Answer: A::B::C::D

- Watch Video Solution

20.

The
straight
lines
$\frac{x-3}{2}=\frac{y+5}{4}=\frac{z-1}{-13}$ and $\frac{x+1}{3}=\frac{y-4}{5}=\frac{z+2}{2}$ are
A. parallel
B. perpendicular
C. inclined at 45°
D. none

Answer: A::C::D

- Watch Video Solution

21. For what value of (\vec{a}) will the straight lines $\frac{x+2}{2}=\frac{y}{-3}=\frac{z-1}{4}$ and $\frac{x-3}{a}=\frac{y-1}{4}=\frac{z-7}{a}$ be perpendicular?
A. 1
B. 2
C. 3
D. -3

Answer: B

- Watch Video Solution

22. If $[\vec{a}, \vec{b}, \vec{c}]=3$ and $|\vec{c}|=1$ then $|(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})|$ is
A. 1
B. 3
C. 6
D. 9

Answer: C

- View Text Solution

23. If $\lambda \hat{i}+2 \lambda \hat{j}+2 \lambda \hat{k}$ is a unit vector, then the value of λ is
A. $\pm \frac{1}{3}$
B. $\pm \frac{1}{4}$
C. $\pm \frac{1}{9}$
D. $\frac{1}{2}$

Answer: A::C

24.

\vec{a}, \vec{b} and $\vec{c},(\vec{a}+\vec{b}) \cdot(\vec{b}+\vec{c}) \times(\vec{c}+\vec{a})$ is
A. 0
B. $[\vec{a}, \vec{b}, \vec{c}]$
C. $2[\vec{a}, \vec{b}, \vec{c}]$
D. $[\vec{a}, \vec{b}, \vec{c}]^{2}$

Answer: A::B::C

- Watch Video Solution

25. If the vector $a \hat{i}+\hat{j}+\hat{k}, \hat{i}+b \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}+c \hat{k}(a \neq b \neq c \neq 1)$
are coplanar, then $\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}=$
A. 0
B. 1
C. 2
D. $\frac{a b c}{(1-a)(1-b)(1-c)}$

Answer: A

- Watch Video Solution

Additional Questions li Fill In The Blanks

1. The angle between the planes $2 x+y-z=9$ and $x+2 y+z=7$ is
A. $\cos ^{-1}(5 / 6)$
B. $\cos ^{-1}(5 / 36)$
C. $\cos ^{-1}(1 / 2)$
D. $\cos ^{-1}(1 / 12)$

Answer: A::B::C

2. The unit normal vector to the plane $2 x+3 y+4 z=5$ is \qquad
A. $\frac{2}{\sqrt{29}} \hat{j}+\frac{3}{\sqrt{29}} \hat{j}+\frac{4}{\sqrt{29}} \hat{k}$
B. $\frac{2}{\sqrt{29}} \hat{j}-\frac{3}{\sqrt{29}} \hat{j}+\frac{4}{\sqrt{29}} \hat{k}$
C. $\frac{2}{\sqrt{29}} \hat{j}-\frac{3}{\sqrt{29}} \hat{j}-\frac{4}{\sqrt{29}} \hat{k}$
D. $\frac{2}{5} \hat{j}+\frac{3}{5} \hat{j}+\frac{4}{5} \hat{k}$

Answer: A::B::C::D

- Watch Video Solution

3. The work done by the force $\bar{F}=\hat{i}+\hat{j}+\hat{k}$ acting on a particle, if the particle is displaced from $A(3,3,3)$ to the point $\mathrm{B}(4,4,4)^{\prime}$ is units.
A. 2
B. 3
C. 4
D. 7

Answer: C

- Watch Video Solution

4. The angle between the vectors $\hat{i}-\hat{j}$ and $\hat{j}-\hat{k}$ is \qquad
A. $\frac{\pi}{3}$
B. $\frac{-2 \pi}{3}$
C. $\frac{-\pi}{3}$
D. $\frac{2 \pi}{3}$

Answer: B::C

5. The unit normal vector to the plane $2 x-y+2 z=5$ are
A. $2 \hat{i}-\hat{j}+2 \hat{k}$
B. $\frac{1}{3}(2 \hat{i}-\hat{j}+2 \hat{k})$
C. $-\frac{1}{3}(2 \hat{i}-\hat{j}+2 \hat{k})$
D. $\pm \frac{1}{3}(2 \hat{i}-\hat{j}+2 \hat{k})$

Answer: A::B::C

- Watch Video Solution

6. The distance from the origin to he plane $\vec{r}(2 \hat{i}-\hat{j}+5 \hat{k})=7$ is
A. $\frac{7}{\sqrt{30}}$
B. $\frac{\sqrt{30}}{7}$
C. $\frac{30}{7}$
D. $\frac{7}{30}$

Answer: C

 $|\vec{a}+\vec{b}+\vec{c}|$ is
A. 3
B. 9
C. $3 \sqrt{3}$
D. $\sqrt{3}$

Answer: C

- Watch Video Solution

8.

Let
$\vec{u}, \vec{v}, \vec{w}$ be vectors such that $\vec{u}+\vec{v}+\vec{w}=\overrightarrow{0}$. If abvec $(\mathrm{u})=3$, absve
is \qquad
A. 25
B. -25
C. 5
D. $\sqrt{5}$

Answer: B

- Watch Video Solution

9. The length of the \perp^{r} from the origin to plane $\vec{r} \cdot(3 \hat{i}+4 \hat{j}+12 \hat{k})=26$ is
A. 2
B. $\frac{1}{2}$
C. 26
D. $\frac{26}{169}$

Answer: A::B

10. If $|\vec{a} \times \vec{b}|=\vec{a} \cdot \vec{b}$, then angle between the vector \vec{a} and \vec{b} is
A. $\frac{\pi}{4}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{2}$

Answer: D

- Watch Video Solution

11. The value of $|\vec{a}+\hat{i}|^{2}+|\vec{a}+\vec{j}|^{2}+|\vec{a}+\vec{k}|^{2}$ if $|a|=1$ is
A. 0
B. 1
C. -1

D. 3

Answer: B

- View Text Solution

12. If $\vec{a}, \vec{b}, \vec{c}$ are the non-coplanar vectors, then $\frac{\vec{a} \cdot \vec{b} \times \vec{c}}{\vec{c} \times \vec{a} \cdot \vec{b}}+\frac{\vec{b} \cdot \vec{a} \times \vec{c}}{\vec{c} \cdot \vec{a} \times \vec{b}}=$
A. 0
B. 1
C. -1
D. $\frac{\vec{a} \cdot \vec{b} \times \vec{c}}{\vec{b} \times \vec{c} \cdot \vec{c}}$

Answer:

13.

$\vec{d}=\lambda(\vec{a} \times \vec{b})+\mu(\vec{b} \times \vec{c})+\omega(\vec{c} \times \vec{a})$ and $|\vec{c} \times \vec{a}|=\frac{1}{8}$ the is \qquad
A. 0
B. 1
C. 8
D. $8 \vec{d} \cdot(\vec{a}+\vec{b}+\vec{c})$

Answer: A::B::C::D

D Watch Video Solution

14. The area of the parallelogram having diagonals $\vec{a}=3 \hat{i}+\hat{j}-2 \hat{k}$ and $\vec{b}=\hat{i}-3 \hat{j}+4 k$ is
A. 4
B. $2 \sqrt{3}$
C. $4 \sqrt{3}$
D. $5 \sqrt{3}$

Answer: C

- Watch Video Solution

15. Let \vec{a}, \vec{b}, and \vec{c} be three vectors having magnitudes $1,1,2$
respectively.
If $\vec{a} \times(\vec{a} \times \vec{c})+\vec{b}=0$, then the acute angle between \vec{a} and \vec{c} is \qquad
A. 0
B. $\frac{\pi}{3}$
C. '(pi)/(6)'
D. $\frac{2 \pi}{3}$

Answer: C::D

Additional Questions lif Choose The Odd Man Out

1. Choose the odd man out :
A. displacement
B. length
C. weight
D. velocity

Answer: C

- Watch Video Solution

2. For any non-zero vectors \vec{a} and $\vec{b} \vec{a} \times \vec{b}$ is
A. cross product of \vec{a} and \vec{b}
B. $|\vec{a}||\vec{b}| \sin \theta$
C. $|\vec{a}||\vec{b}| \sin \theta \widehat{n}$
D. $-(\vec{b} \times \vec{a}) \cdot \vec{a}$

Answer: A::B::C

- Watch Video Solution

3. For any non-zero vectors \vec{a}, \vec{b} and $\vec{c},(\vec{a} \times \vec{b}) \cdot \vec{c}$ is
A. $\vec{a} \cdot(\vec{b} \times \vec{c})$
B. $(\vec{b} \times \vec{c}) \cdot \vec{c}$
C. $(\vec{b} \times \vec{c}) \cdot \vec{a}$
D. $(\vec{c} \times \vec{a}) \cdot \vec{c}$

Answer: B::C

4. \vec{a}, \vec{b} and \vec{c} are said to be colpanar if
A. $[\vec{a}, \vec{b}, \vec{c}]=0$
B. $\vec{a}, \vec{b}, \vec{c}$ lie on the same plane
C. They are either parallel or intersecting
D. Skew lines

Answer:

- Watch Video Solution

5. The equation of the plane at a distance P from the origin and perpendicular to the unit normal vector \hat{d} is
A. $\vec{r} \cdot \vec{d}=p$
B. $\vec{r} \cdot \hat{d}=p$
c. $\vec{r} \cdot \vec{d}=q$ where $q=p|\vec{d}|$
D. $\vec{r} \cdot \frac{\vec{d}}{|\vec{d}|}=p$

Answer: C::D

- Watch Video Solution

Additional Questions Iv Choose The Incorrect Statement

1. For the line $\frac{x-6}{6}=\frac{y+4}{4}=\frac{z-4}{8}$,
A. $(6,-4,4)$ lies on the line
B. $(6,4,8)$ are its direction ratios
C. 6,4,8 are its direction cosines
D. 3,2,4 are its direction ratios

Answer: A::C::D

- Watch Video Solution

2. For the plane $\vec{r} \cdot(2 \hat{i}+3 \hat{j}+5 \hat{k})=3$
A. the normal vector is $2 \hat{i}+3 \hat{j}+5 \hat{k}$
B. the plane is \perp to the vector $2 \hat{i}+3 \hat{j}+5 \hat{k}$
C. cartesain equation is $2 x+3 y+5 z=3$
D. the plane is parallel to the vector $2 \hat{i}+3 \hat{j}+5 \hat{k}$

Answer: A::B::C::D

- Watch Video Solution

3. The point of inersection of the line $\vec{r}=(\hat{i}-\hat{k})+t(3 \hat{i}+2 \hat{j}+7 \hat{k})$ and the plane $\vec{r}=(\hat{i}+\hat{j}-\hat{k})=8$ is
A. $(8,6,22)$
B. $(3 t+1,2 t, 7 t-1)$ for some value of t
C. $(-8,-6,-22)$
D. $\frac{x-1}{3}=\frac{y-0}{2}=\frac{z+1}{7}=$ for some value of t

Answer: B

- View Text Solution

4. If a line makes $\alpha=45^{\circ}$,beta=60^(@) withpositivedirectionofa $\xi s x$ and y,thenthe \angle itmakeswiththez -a s (gamma) is
A. 60°
B. $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=1$
C. $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$
D. $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=2$

Answer: A: B

- View Text Solution

5. If $\overline{P R}=2 \hat{i}+\hat{j}+\hat{k}, \overline{Q S}=\hat{i}+3 \hat{j}+2 \hat{k}$, then the area of the quadrilateral $P Q R S$ is
A. $\frac{5 \sqrt{3}}{2}$
B. $\frac{1}{2}|\overline{P R} \times \overline{Q S}|$
C. $\frac{1}{2}(\overline{P R} \times \overline{Q S})$
D. $\frac{1}{2}\left|\begin{array}{lll}\hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 1 \\ -1 & 3 & 2\end{array}\right|$

Answer: A: B

- Watch Video Solution

Additional Questions 2 Marks

1.

$\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}$ find λ such the is perpendicular to \vec{c}.
2. A force of magnitude 6 units acting parallel to $2 \hat{i}-2 \hat{j}+\hat{k}$ displace the point of application from $(1,2,3)$ to $(5,3,7)$. Find the work done.

- Watch Video Solution

3. Find the area of the triangle whose vertices are $A(3,-1,2), B(1,-1,-3)$ and $C(4,-3,1)$.

- Watch Video Solution

4. Forces $2 \hat{i}+7 \hat{j}, 2 \hat{i}-5 \hat{j}+6 \hat{k},-\hat{i}+2 \hat{j}-\hat{k}$ act at a point P whose position vector is $\overrightarrow{4}-3 \hat{j}-2 \hat{k}$. Find the vector moment of the resultant of these forces acting at P about this Point Q whose position vector is $6 \hat{i}+\hat{j}-3 \hat{k}$

- Watch Video Solution

5. Find the Cartesian equation of a line passing through the points $A(2,-1,3)$ and $B(4,2,1)$

- Watch Video Solution

6. Find the parametric form of vector equation of a line passing through a point $(2,-1,3)$ and parallel to line $\vec{r}=(\hat{i}+\hat{j})+t(2 \hat{i}+\hat{j}-2 \hat{k})$

- Watch Video Solution

7. Find the parametric form of vector equation of the plane passing through the point $(1,-1,2)$ having $2,3,3$ as direction ratio of normal to the plane.

- Watch Video Solution

8. If the planes $\vec{r} \cdot(\hat{i}+2 \hat{j}+3 \hat{k})=7$ and $\vec{r} \cdot(\lambda \hat{i}+2 \hat{j}-7 \hat{k})=26$ are perpendicular. Find the value of λ.

(Watch Video Solution

9. Find the equation of the plane containing the line of intersection of the planes $x+y+z-6=0$ and $2 x+3 y+4 z+5=0$ and passing through the point $(1,1,1)$

- Watch Video Solution

10. If the planes $\vec{r} \cdot(\hat{i}+2 \hat{j}+3 \hat{k})=7$ and $\vec{r} \cdot(\lambda \hat{i}+2 \hat{j}-7 \hat{k})=26$ are perpendicular. Find the value of λ.

- Watch Video Solution

Additional Questions 3 Marks

1. Dot product of a vector with vector $3 \hat{i}-5 \hat{k}, 2 \hat{i}+7 \hat{j}$ and $\hat{i}+\hat{j}+\hat{k}$ are respectively $-1,6$ and 5 . Find the vector.
2. Find the Cartesian form of the equation of the plane $\vec{r}=(s-2 t) \hat{i}+(3-t) \hat{j}(2 s+t) \hat{k}$

- Watch Video Solution

3. Find the equation of the plane through the intersection of the planes $2 x-3 y+z-=0$ and $x-y+z+1=0$ and perpendicular to the plane $x+2 y-$ $3 z+6=0$.

- Watch Video Solution

4. Find the angle between the line
$\frac{x-2}{3}=\frac{y-1}{-1}=\frac{z-3}{2}$ and the plane $3 x+4 y+z+5=0$.

- Watch Video Solution

5.

$\vec{a}=\hat{i}-\hat{j}, \vec{b}=\hat{j}-\hat{k}, \vec{c}=\hat{k}-\hat{i}$ then find $[\vec{a}-\vec{b}, \vec{b}-\vec{c}, \vec{c}-\bar{a}$

- Watch Video Solution

6. Prove that $[\vec{a}+\vec{b}+\vec{c}, \vec{b}+\vec{c}, \vec{c}]=[\vec{a} \vec{b} \vec{c}]$

- Watch Video Solution

7. Prove by vector method, that in a right angled triangle the square of h the hypotenuse is equal to the sum of the square of the other two sides.

- Watch Video Solution

8.

$\vec{a}+\vec{b}+\vec{c}=0$, then show that $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$
9. Show that four points whose position vectors are given $6 \hat{i}-7 \hat{j} ; 16 \hat{i}-19 \hat{i}-4 \hat{k} ; 3 \hat{i}-6 \hat{k} ; 2 \hat{i}-5 \hat{j}+10 \hat{k}$ are co-planar

- Watch Video Solution

$$
\begin{array}{lcc}
\text { 10. } & \text { Show } & \text { that } \\
\frac{x-1}{3}=\frac{y+1}{2}=\frac{z-1}{5} \text { and } \frac{x+2}{4}=\frac{y-1}{3}=\frac{z+1}{-2} & \text { do } & \text { not }
\end{array}
$$

intersect.

- Watch Video Solution

Additional Questions 5 Marks

1. Show that the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ with position vector $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $3 \hat{i}-4 \hat{j}+4 \hat{k}$ respectively are the vector of a right angled triangle. Also, find the remaining angles of the triangle.
2.

ABCD
is
a
quadrilateral
with
$\overline{A B}=\bar{\alpha}$ and $\overline{A D}=\bar{\beta}$ and $\overline{A C}=2 \bar{\alpha}+3 \bar{\beta}$. If the area of the quadrilateral is λ times the area of the parallelogram with $\overline{A B}$ and $\overline{A D}$ as adjacent sides, then prove that $\lambda=\frac{5}{2}$

- Watch Video Solution

3. If $|\vec{A}|=\hat{i}+\hat{j}+\hat{k}$ and $|\vec{C}|=\hat{j}-\hat{k}$ are two given vector, then find a vector B satisfying the equation $\vec{A} \times \vec{B}=\vec{C}$ and $\vec{A} \cdot \vec{B}=3$

- Watch Video Solution

4. Find the shortest distance berween the following pairs of lines
$\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1}$ and $\frac{x-3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}$

- Watch Video Solution

5. Find the vector and Cartesian equations of the plane passing through the point $(1,1,-1)$ and perpendicular to the planes $\mathrm{x}+2 \mathrm{y}+3 \mathrm{z}-7=0$ and $2 x-3 y+4 z=0$

- Watch Video Solution

