©゙"doubtnut

India's Number 1 Education App

MATHS

BOOKS - SURA MATHS (TAMIL ENGLISH)

ORDINARY DIFFERENTIAL EQUATIONS

Exercise 101

1. Determine its order, degree (if exists)
$\frac{d y}{d x}+x y=\cot x$

D Watch Video Solution
2. Determine its order, degree (if exists)
$\left(\frac{d^{3} y}{d x^{3}}\right)^{\frac{2}{3}}-3 \frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+4=0$

- Watch Video Solution

3. Determine its order, degree (if exists)
$\left(\frac{d^{2} y}{d x^{2}}\right)^{2}=x \sin \left(\frac{d^{2} y}{d x^{2}}\right)$

D Watch Video Solution

4. Determine its order, degree (if exists)
$\sqrt{\frac{d y}{d x}}-4 \frac{d y}{d x}-7 x=0$

- Watch Video Solution

5. Determine its order, degree (if exists)
$y\left(\frac{d y}{d x}\right)=\frac{x}{\left(\frac{d y}{d x}\right)+\left(\frac{d y}{d x}\right)^{3}}$

- Watch Video Solution

6. Determine its order, degree (if exists)
$x^{2} \frac{d^{2} y}{d x^{2}}+\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{1}{2}}=0$
7. Determine its order, degree (if exists)
$\left(\frac{d^{2} y}{d x^{2}}\right)^{3}=\sqrt{1+\left(\frac{d y}{d x}\right)}$

D Watch Video Solution

8. Determine its order, degree (if exists)
$\frac{d^{2} y}{d x^{2}}=x y+\cos \left(\frac{d y}{d x}\right)$

- Watch Video Solution

9. Determine its order, degree (if exists)
$\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+\int y d x=x^{3}$

- Watch Video Solution

10. Determine its order, degree (if exists)
$x=e^{x y\left(\frac{d y}{d x}\right)}$

- Watch Video Solution

Exercise 102

1. Express each of the following physical statements

in the form of differential equation.
(i) Radium decays at a rate proportional to the amount Q present.

- Watch Video Solution

2. Express each of the following physical statements in the form of differential equation.
(ii) The population P of a city increases at a rate proportional to the product of population and to the difference between 5,00,000 and the population.

Watch Video Solution

3. Express each of the following physical statements in the form of differential equation.
(iii) For a certain substance, the rate of change of vapor pressure P with respect to temperature T is proportional to the vapor pressure and inversely proportional to the square of the temperature.

- Watch Video Solution

4. Express each of the following physical statements in the form of differential equation.
(iv) A saving amount pays 8% interest per year, compounded continuously. In addition, the income
from another investment is credited to the amount continuoulsy at the rate of Rs. 400 per year.

- Watch Video Solution

5. Assume that a spherical rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.

- Watch Video Solution

1. Find the differential equation of the family of (i) all non- vertical lines in a plane

- Watch Video Solution

2. Form the differential equation of all straight lines
touching the circle $x^{2}+y^{2}=r^{2}$.

- Watch Video Solution

3. Find the differential equation of the family of
circles passing through the origin and having their
centres on the x - axis.
4. Find the differential equation of the family of all the parabolas with latus rectum $4 a$ and whose axes are parallel to the x -axis.

- Watch Video Solution

5. Find the differential equation of the family of parabolas with vertex at $(0,-1)$ and having axis along the y-axis.
6. Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin.

D Watch Video Solution

7. Find the differential equation corresponding to the family of curves represented by the equation $y=A e^{8 x}+B e^{-8 x}$, where A and B are arbitrary constants.
8. Find the differential equation of the curve represented by $x y=a e^{x}+b e^{-x}+x^{2}$.

D Watch Video Solution

Exercise 104

1. Show that each of the following expressions is a solution of the corresponding given differential equation.
(i) $y=2 x^{2} ; x y^{\prime}=2 y$
2. Show that each of the following expressions is a solution of the corresponding given differential equation.
(ii) $y=a e^{x}+b e^{-x} ; y^{\prime \prime}-y=0$

D Watch Video Solution

3. Find value of m so that the function $y=e^{m x}$ is a solution of the given differential equation.

$$
y^{\prime}+2 y=0
$$

4. Find value of m so that the function $y=e^{m x}$ is a solution of the given differential equation.

$$
y^{\prime \prime}-5 y^{\prime}+6 y=0
$$

D Watch Video Solution

5. The slope of the tangent to the curve at any point is the reciprocal of four times the ordinate at that point. The curve passes through (2,5). Find the equation of the curve.

- Watch Video Solution

6. Show that $y=e^{-x}+m x+n$ is a solution of
the differential equation $e^{x} \frac{d^{2} y}{d x^{2}}-1=0$.

- Watch Video Solution

7. Show that $y=a x+\frac{b}{x}, x \neq 0$ is a solution of the differential equation $x^{2} y^{\prime \prime}+x y^{\prime}-y=0$.

- Watch Video Solution

8. Show what $y=a e^{-3 x}+b$, where a and b are arbitary constants, is a solution of the differential
equation $\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}=0$

D Watch Video Solution

9. Show that the differential equation representing the family of curves $y^{2}=2 a\left(x+a^{\frac{2}{3}}\right)$ where a is positive parameter,

$$
\left(y^{2}-2 x y \frac{d y}{d x}\right)^{3}=8\left(y \frac{d y}{d x}\right)^{5}
$$

- Watch Video Solution

10. Show that $y=a \cos b x$ is a solution of the differential equation $\frac{d^{2} y}{d x^{2}}+b^{2} y=0$.
11. If F is the constant force generated by the motor of an automobiles of mass M , its velocity V is given by $M \frac{d V}{d t}=F-k V$, where k is a constant. Express V in terms of t given that $\mathrm{V}=0$ when $\mathrm{t}=0$.

- Watch Video Solution

2. The velocity v , of a parachute falling vertically satisfies the equation $v \frac{d v}{d x}=g\left(1-\frac{v^{2}}{k^{2}}\right)$, where g and k are constants. If v and x are both initially zero, find v in terms of x.

- Watch Video Solution

3. Find the equation of the curve whose slope is $\frac{y-1}{x^{2}+x}$ and which passes through the point $(1,0)$.

- Watch Video Solution

4. Solve the differential equations :
$\frac{d y}{d x}=\sqrt{\frac{1-y^{2}}{1-x^{2}}}$

D Watch Video Solution

5. Solve the differential equations :
$y d x+\left(1+x^{2}\right) \tan ^{-1} x d y=0$

- Watch Video Solution

6. Solve the differential equations :
$\sin . \frac{d y}{d x}=a, y(0)=1$
7. Solve the differential equations:
$\frac{d y}{d x}=e^{x+y}+x^{3} e^{y}$

- Watch Video Solution

8. Solve the differential equations :
$\left(e^{y}+1\right) \cos x d x+e^{y} \sin x d y=0$

- Watch Video Solution

9. Solve the differential equations :
$(y d x-x d y) \cot \left(\frac{x}{y}\right)=n y^{2} d x$

- Watch Video Solution

10. Solve the differential equations:
$\frac{d y}{d x}-x \sqrt{25-x^{2}}=0$

- Watch Video Solution

11. Solve the differential equations:
$x \cos y d y=e^{x}(x \log x+1) d x$

Watch Video Solution

12. Solve the differential equations:
$\tan y \cdot \frac{d y}{d x}=\cos (x+y)+\cos (x-y)$

- Watch Video Solution

13. Solve the differential equations :
$\frac{d y}{d x}=\tan ^{2}(x+y)$

- Watch Video Solution

1. Solve the differential equations :

$\left[x+y \cos \left(\frac{y}{x}\right)\right] d x=x \cos \left(\frac{y}{x}\right) d y$

D Watch Video Solution

2. Solve the differential equations:
$\left(x^{3}+y^{3}\right) d y-x^{2} y d x=0$

- Watch Video Solution

3. Solve the differential equations:
$y e^{\frac{x}{y}} d x=\left(x e^{\frac{x}{y}}+y\right) d y$
4. Solve the differential equations :
$2 x y d x+\left(x^{2}+2 y^{2}\right) d y=0$

- Watch Video Solution

5. Solve the differential equations :
$\left(y^{2}-2 x y\right) d x=\left(x^{2}-2 x y\right) d y$

- Watch Video Solution

6. Solve the following differential equations :
$x \frac{d y}{d x}=y-x \cos ^{2}\left(\frac{y}{x}\right)$

D Watch Video Solution

7. $\left(1+3 e^{\frac{y}{x}}\right) d y+3 e^{\frac{y}{x}}\left(1-\frac{y}{x}\right) d x=0$, given that $y=0$ and $x=1$

- Watch Video Solution

8. $\left(x^{2}+y^{2}\right) d y=x y d x$. It is given that $y(1)=1$ and $y\left(x_{0}\right)=e$. Find the vale of x_{0}.

Watch Video Solution

Exercise 107 Solve The Following Linear Differential Equations

1. $\cos x \frac{d y}{d x}+y \sin x=1$

D View Text Solution
2. $\left(1-x^{2}\right) \frac{d y}{d x}-x y=1$

- Watch Video Solution

3. $\frac{d y}{d x}+\frac{y}{x}=\sin x$
(D) Watch Video Solution
4. $\left(x^{2}+1\right) \frac{d y}{d x}+2 x y=\sqrt{x^{2}+4}$
(Watch Video Solution
5. $\left(2 x-10 y^{3}\right) d y+y d x=0$

- Watch Video Solution

6. $x \sin x \frac{d y}{d x}+(x \cos x+\sin x) y=\sin x$

- Watch Video Solution

7. $\left(y-e^{\sin ^{-1} x}\right) \frac{d y}{d x}+\sqrt{1-x^{2}}=0$.

(D) Watch Video Solution

8. $\frac{d y}{d x}+\frac{y}{(1-x) \sqrt{x}}=1-\sqrt{x}$.

- Watch Video Solution

9. $\left(1+x+x y^{2}\right) \frac{d y}{d x}+\left(y+y^{3}\right)=0$

- Watch Video Solution

10. $\frac{d y}{d x}+\frac{y}{x \log x}=\frac{\sin 2 x}{\log x}$
(-) Watch Video Solution
11. $(x+a) \frac{d y}{d x}-2 y=(x+a)^{4}$

- Watch Video Solution

12. $\frac{d y}{d x}=\frac{\sin ^{2} x}{1+x^{3}}-\frac{3 x^{2}}{1+x^{3}} y$

- Watch Video Solution

13. $x \frac{d y}{d x}+y=x \log x$

- Watch Video Solution

14. $x \frac{d y}{d x}+2 y-x^{2} \log x=0$

- Watch Video Solution

Exercise 107

1. $\frac{d y}{d x}+\frac{3 y}{x}=\frac{1}{x^{2}}$, given that $\mathrm{y}=2$ when $\mathrm{x}=1$.

- Watch Video Solution

Exercise 108

1. The rate of increase in the number of bacteria in
a certain bacteria culture is proportional to the number present. Given that the number triples in 5
hours, find how many bacteria will be present after
2. Find the population of a city at any time t, given that the rate of increase of population is proportional to the population at that instant and that in a period of 40 years the population increased from 3,00,000 to 4,00,000.

- Watch Video Solution

3. The equation of electromotive force for an electric circuit containing resistance and self inductance is $E=R i+L \frac{d i}{d t}$, where E is the
electromotive force is given to the circuit, R the resistance and L, the coefficient of induction. Find the current i at time t when $\mathrm{E}=0$.

D Watch Video Solution

4. The engine of a motor boat moving at $10 \mathrm{~m} / \mathrm{s}$ is shut off. Given that the restardation at any subsequent time (aftere shutting off the engine) equal to the velocity at that time. Find the velocity after 2 seconds of switching off the engine.
5. Suppose a person deposits 10,000 Indian rupees in a bank account at the rate of 5% per annum compounded continuously. How much money will be in his bank account 18 months later?

- Watch Video Solution

6. Assume that the rate at which radioactive nuclei decay is proportioanl to the number of such nuclei that are present in a given sample. In a certain sample 10% of the original number of radioactive nuclei have undergone disintegration in a period of

100 years. What percentage of the original radioactive nuclei will remain after 1000 years.?

- Watch Video Solution

7. Water at temperature $100^{\circ} \mathrm{C}$ cools in 10 minutes to $80^{\circ} \mathrm{C}$ in a room temperature of $25^{\circ} \mathrm{C}$.

Find
(i) The temperature of water after 20 minutes

$$
\left[\log _{e} \cdot \frac{11}{15}=-0.3101, \log _{e} 5=1.609\right]
$$

- Watch Video Solution

8. Water at temperature $100^{\circ} \mathrm{C}$ cools in 10 minutes
to $80^{\circ} \mathrm{C}$ in a room temperature of $25^{\circ} \mathrm{C}$.
Find
(i) The temperature of water after 20 minutes
(ii) The time when the temperature is $40^{\circ} \mathrm{C}$

$$
\left[\log _{e} \frac{11}{15}=-0.3101, \log _{e} 5=1.6094\right]
$$

- Watch Video Solution

9. At 10.00 A.M. a woman took a cup of hot instant
coffe from her microwave oven and placed it on a nearby Kitchen counter to cool. At this instant the
temperature of the coffee was $180^{\circ} \mathrm{F}$, and 10
minutes later it was $160^{\circ} \mathrm{F}$. Assume that constant temperature of the kitchen was $70^{\circ} \mathrm{F}$.
(i) What was the temperature of the coffee at 10.15
A.M. ?

- Watch Video Solution

10. At 10.00 A.M. a woman took a cup of hot instant coffe from her microwave oven and placed it on a nearby Kitchen counter to cool. At this instant the temperature of the coffee was $180^{\circ} \mathrm{F}$, and 10 minutes later it was $160^{\circ} \mathrm{F}$. Assume that constant temperature of the kitchen was $70^{\circ} \mathrm{F}$.

The woman likes to drink coffe when its
temperature is between $130^{\circ} \mathrm{F}$ and $140^{\circ} \mathrm{F}$. between what time should she have drunk the coffee?

D Watch Video Solution

11. A pot of boiling water at $100^{\circ} \mathrm{C}$ is removed from a stove at time $t=0$ and left to cool in the kitchen.

After 5 minutes, the water temperature has decreased to $80^{\circ} C$, and another 5 minutes later it has dropped to $65^{\circ} \mathrm{C}$. Determine the temperature of the kitchen.
12. A tank initially contains 50 litres of pure water.

Starting at time $\mathrm{t}=0$ a brine containing with 2 grams of dissolved salt per litre flows into the tank at the rate of 3 litres per minutes. The mixture is kept uniform by stirring and the well - stirred mixture simultaneously flows out of the tank at the
same rate. Find the amount of salt present in the tank at any time $t>0$.

- Watch Video Solution

1. The order and degree of the differential equation $\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{\frac{1}{3}}+x^{\frac{1}{4}}=0$ are respectively.
A. 2,3
B. 3,3
C. 2,6
D. 2,4

Answer:
2. The differential equation representing the family
of curves $y=A \cos (x+B)$, where A and B are parameters, is

$$
\begin{aligned}
& \text { A. } \frac{d^{2} y}{d x^{2}}-y=0 \\
& \text { B. } \frac{d^{2} y}{d x^{2}}+y=0 \\
& \text { C. } \frac{d^{2} y}{d x^{2}}=0 \\
& \text { D. } \frac{d^{2} x}{d y^{2}}=0
\end{aligned}
$$

Answer:

3. The order and degree of the different equation $\sqrt{\sin x}(d x+d y)=\sqrt{\cos x}(d x-d y)$ is
A. 1,2
B. 2,2
C. 1,1
D. 2,1

Answer:

- Watch Video Solution

4. The differential equation of the family of curves
$y=A e^{x}+b e^{-x}$, where A and B are arbitrary
constant is

$$
\begin{aligned}
& \text { A. } \frac{d^{2} y}{d x^{2}}+y=0 \\
& \text { B. } \frac{d^{2} y}{d x^{2}}=0 \\
& \text { C. } \frac{d y}{d x}+y=0 \\
& \text { D. } \frac{d y}{d x}-y=0
\end{aligned}
$$

Answer:
5. The general solution of the differential equation $\frac{d y}{d x}=\frac{y}{x}$ is
A. $x y=k$
B. $y=k \log x$
C. $y=k x$
D. $\log y=k x$

Answer:

D Watch Video Solution
6. The solution of the differential equation
$2 x \frac{d y}{d x}-y=3$ represents
A. straight lines
B. circles
C. parabola
D. ellipse

Answer:

- Watch Video Solution

7. The solution of $\frac{d y}{d x}+p(x) y=0$ is
A. $y=c e^{\int p x}$
B. $y=c e^{-\int p d x}$
C. $x=c e^{-\int p d y}$
D. $x c e^{\int p d y}$

Answer:

- Watch Video Solution

8. The integrating factor of the differential equation $\frac{d y}{d x}+y=\frac{1+y}{x}$ is
A. $\frac{x}{e^{\lambda}}$
B. $\frac{e^{\lambda}}{x}$
C. λe^{x}
D. e^{x}

Answer:

- Watch Video Solution

9. The integrating factor of the differential equation $\frac{d y}{d x}+P(x) y=Q(x)$ is x , then $P(x)$
A. x
B. $\frac{x^{2}}{2}$
C. $\frac{1}{x}$
D. $\frac{1}{x^{2}}$

Answer:

- Watch Video Solution

10. The degree of the differential equation $y(x)=1+\frac{d y}{d x}+\frac{1}{1.2}\left(\frac{d y}{d x}\right)^{2}+\frac{1}{1.2 .3}\left(\frac{d y}{d x}\right)^{3}+\ldots$ is
A. 2
B. 3
C. 1
D. 4

Answer:

11. If p and q are the oder and degree of the differential
equation
$y \frac{d y}{d x}+x^{3}\left(\frac{d^{2} y}{d x^{2}}\right)+x y=\cos x$, when
A. $p<q$
B. $p=q$
C. $p>q$
D. p exists and q does not exist

Answer:
12. The solution of the differential equation $\frac{d y}{d x}+\frac{1}{\sqrt{1-x^{2}}}=0$ is

$$
\text { A. } y+\sin ^{-1} x=c
$$

B. $x+\sin ^{-1} y=0$
C. $y^{2}+2 \sin ^{-1} x=c$
D. $x^{2}+2 \sin ^{-1} y=0$

Answer:

13. The solution of the differential equation $\frac{d y}{d x}=2 x y$ is
A. $y=C e^{x^{2}}$
B. $y=2 x^{2}+c$
C. $y=C e^{-x^{2}}+C$
D. $y=x^{2}+C$

Answer:

- Watch Video Solution

14. The general solution of the differential equation $\log \left(\frac{d y}{d x}\right)=x+y$ is
A. $e^{x}+e^{y}=C$
B. $e^{x}+e^{-y}=C$
C. $e^{-x}+e^{y}=C$
D. $e^{-x}+e^{-y}=C$

Answer:

- Watch Video Solution

15. The solution of $\frac{d y}{d x}=2^{y-x}$ is

$$
\begin{aligned}
& \text { A. } 2^{x}+2^{y}=C \\
& \text { B. } 2^{x}-2^{y}=C \\
& \text { C. } \frac{1}{2^{x}}-\frac{1}{2^{y}}=C \\
& \text { D. } x+y=C
\end{aligned}
$$

Answer: C

- Watch Video Solution

16. The solution of the differential equation

$$
\frac{d y}{d x}=\frac{y}{x}+\frac{\phi\left(\frac{y}{x}\right)}{\phi^{\prime}\left(\frac{y}{x}\right)} \text { is }
$$

$$
\text { A. } x \phi\left(\frac{y}{x}\right)=k
$$

$$
\text { B. } \phi\left(\frac{y}{\times}\right)=k x
$$

$$
\text { C. } y \phi\left(\frac{y}{x}\right)=k
$$

$$
\text { D. } \phi\left(\frac{y}{x}\right)=k y
$$

Answer:

17. If $\sin x$ is the integrating factor of the linear differential equation $\frac{d y}{d x}+P y=Q$, then P is
A. $\log \sin x$
B. $\cos x$
C. $\tan x$
D. $\cot x$

Answer:

- Watch Video Solution

18. The number of arbitrary constants in the general solutions of order n and $n+1$ are respectively

$$
\begin{aligned}
& \text { A. } n-1, n \\
& \text { B. } n, n+1 \\
& \text { C. } n+1, n+2 \\
& \text { D. } n+1, n
\end{aligned}
$$

Answer: B
19. The number of arbitrary constants in the particular solution of a differential equation of third order is
A. 3
B. 2
C. 1
D. 0

Answer:

- Watch Video Solution

20. Integrating factor of the differential equation is

$$
\frac{d y}{d x}=\frac{x+y+1}{x+1} \text { is }
$$

A. $\frac{1}{x+1}$
B. $x+1$
C. $\frac{1}{\sqrt{x+1}}$
D. $\sqrt{x+1}$

Answer:

21. The population P in any year t is such that the rate of increase in the population is proportional to the population. Then

$$
\begin{aligned}
& \text { A. } P=C e^{k t} \\
& \text { B. } P=C e^{-k t} \\
& \text { С. } P=C k t \\
& \text { D. } P=C
\end{aligned}
$$

Answer:

22. P is the amount of certain substanc left in after
time t. If the rate of evaporation of the substance is
proportional to the amount remaining, then

$$
\begin{aligned}
& \text { A. } P=C e^{k t} \\
& \text { B. } P=C e^{-k e t} \\
& \text { C. } P t=C \\
& \text { D. } P=C
\end{aligned}
$$

Answer:

23. The slope at any point of a curve $y=f(x)$ is given by $\frac{d y}{d x}=3 x^{2}$ and it passes through $(-1,1)$
.Then the equation of the curve is

$$
\begin{aligned}
& \text { A. } y=x^{3}+2 \\
& \text { B. } y=3 x^{2}+4 \\
& \text { C. } y=3 x^{2}+4 \\
& \text { D. } y=x^{3}+5
\end{aligned}
$$

Answer:

1. If m, n are the order and degree of the differential
equation $\left[\frac{d^{4} y}{d x^{4}}+\frac{d^{2} y}{d x^{2}}\right]^{\frac{1}{2}}=a \frac{d^{2} y}{d x^{2}} \quad$ respectively, then the value of $4 m-n$ is
A. 15
B. 12
C. 14
D. 13
2. The order and degree of the differential equation $\left[x+y^{\prime}\right]^{2}=\left(y^{\prime}\right)^{2}$
A. 1,2
B. 1,1
C. 2,1
D. 2,2

Answer:

- Watch Video Solution

Government Exam Questions

1. Solve : $\frac{d y}{d x}+2 y \cot x=3 x^{2} \operatorname{cosec}^{2} x$.

- Watch Video Solution

2. From the differential equations by eliminating arbitrary constants given in bracket $Y=e^{3 x} \quad(C \cos 2 x+D \sin 2 x),\{\mathrm{C}, \mathrm{D}\}$.

- Watch Video Solution

3. Solve : $\frac{d y}{d x}+2 y \cot x=3 x^{2} \operatorname{cosec}^{2} x$.

Additional Questions

1. The order and degree of the differential equation $\left[\left(\frac{d^{2} y}{d x^{2}}\right)+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{1}{2}}=\frac{d^{3} y}{d x^{3}}$ are
A. 1,2
B. 2,1
C. 3,2
D. 2,3

- Watch Video Solution

2. The differential equation of the family of parabolas $y^{2}=4 a x$ is

$$
\begin{aligned}
& \text { A. } 2 y=x\left(\frac{d y}{d x}\right) \\
& \text { B. } y=2 x\left(\frac{d y}{d x}\right) \\
& \text { C. } y=2 x^{2}\left(\frac{d y}{d x}\right) \\
& \text { D. } y^{2}=2 x\left(\frac{d y}{d x}\right)
\end{aligned}
$$

- Watch Video Solution

3.

The
solution
$\sec ^{2} x \tan y d x+\sec ^{2} y \tan x d y=0$ is
A. $\tan x+\tan y=c$
B. $\sec x+\sec y=c$
C. $\tan x \tan y=c$
D. $\sec x-\sec y=c$

Answer:

4. The solution of $\left(x^{2}-a y\right) d x=\left(a x-y^{2}\right) d y$ is

$$
\begin{aligned}
& \text { A. } y=x^{2}+y^{2}-a(x+y) \\
& \text { B. } x^{2}-y^{2}+x-a y=0 \\
& \text { C. } x^{3}+y^{3}=3 a y x+c \\
& \text { D. }\left(x^{2}-a y\right)\left(a x-y^{2}\right)=0
\end{aligned}
$$

Answer:

D Watch Video Solution

5. The transformation $y=v x$ reduces

$$
\frac{d y}{d x}=\frac{x+y}{3 x} \text { to }
$$

A. $\frac{3 a v}{4 v+1}=\frac{d x}{x}$
B. $\frac{3 d v}{v+1}=\frac{d x}{x}$
C. $2 x \frac{d v}{d x}=v$
D. $\frac{3 d v}{1-2 v}=\frac{d x}{x}$

Answer:

- Watch Video Solution

6. The I.F. of $\operatorname{cosec} \mathrm{x}=\frac{d y}{d x}+\frac{y \sec ^{2} x}{\operatorname{cosec} \mathrm{x}}=0$ is
A. $e^{\sec x}$
B. $e^{\tan x}$
C. $e^{\sec x \tan x}$
D. $e^{\sec ^{2} x}$

Answer:

- Watch Video Solution

7. The solution of $\frac{d y}{d x}+y \cot x=\sin 2 x$ is
A. $y \sin x=\frac{2}{3} \sin ^{3} x+c$
B. $y \sec x=\frac{x^{2}}{2}+c$
C. $y \sin x=c+x$
D. $2 y \sin x=\sin x-\frac{\sin 3 x}{3}+c$

Answer:

- Watch Video Solution

8. The I.F. of $y \log y \frac{d x}{d y}+x-\log y=0$ is
A. $\log (\log y)$
B. $\log y$
C. $\frac{1}{\log y}$
D. $\frac{1}{\log (\log y)}$

Answer:

9. The I.F of $\frac{d y}{d x}-y \tan x=\cos x$ is

A. $\sec x$
B. $\cos x$
C. $e^{\tan x}$
D. $\cot x$

Answer:

D Watch Video Solution
10. Form the differential equation satisfied by all the straight lines in $x y$ - plane.

- Watch Video Solution

11. A curve passing through the origin has its slope.
e^{x}. Find the equation of the curve.

- Watch Video Solution

12. Solve: $\frac{d y}{d x}=1+e^{x-y}$
13. Solve: $x \frac{d y}{d x}=x+y$

- Watch Video Solution

14. Solve: $\frac{d y}{d x}+y=e^{-x}$

- Watch Video Solution

15. Solve $\frac{d y}{d x}+\frac{y^{2}}{x^{2}}=\frac{y}{x}$
16. Form the differential equation for $y=e^{2 x}[A \cos 3 x-B \sin 3 x]$

- Watch Video Solution

17. Solve : $\frac{d y}{d x}=(4 x+y+1)^{2}$

- Watch Video Solution

18. Solve : $x \frac{d y}{d x}+2 y=x^{2}$.

o
 Watch Video Solution

19. Solve : $\frac{d y}{d x}+y=\cos x$

- Watch Video Solution

20. Solve : $\left(1+e^{2 x}\right) d y+\left(1+y^{2}\right) e^{x} d x=0$ when $y(0)=1$

- Watch Video Solution

21. A population grows at the rate of 2% per year.

How long does it take for the population to double?
22. The surface area of a balloon being infilated
changes at a constant rate. If initially, its radius 3 units and after 2 seconds it is 5 units, find the radius after t seconds.

- Watch Video Solution

23. The slope of the tangent at $p(x, y)$ on the curve is $-\left(\frac{y+3}{x+2}\right)$. If the curve passes through the origin, find the equation of the curve.
24. Solve : $\frac{d y}{d x}=(3 x+2 y+1)^{2}$

- Watch Video Solution

Additional Questions Fill In The Blanks

> 1. The order and degree of
> $y^{\prime}+\left(y^{\prime}\right)^{2}=\left(x+y^{\prime}\right)^{2}$ are
A. 1,1
B. 1,2
C. 2,1
D. 2,2

Answer:

- Watch Video Solution

2. The differential equation corresponding to $x y=c^{2}$ where c is an arbitrary constant is \qquad

$$
\begin{aligned}
& \text { A. } x y^{\prime \prime}+x=0 \\
& \text { В. } y^{\prime \prime}=0 \\
& \text { C. } x y^{\prime}+y=0
\end{aligned}
$$

D. $x y^{\prime \prime}-x=0$

Answer:

- Watch Video Solution

3. On finding the differential equation
corresponding to $y=e^{m x}$ where m is the arbitrary
constant, then m is \qquad .
A. $\frac{y}{y^{1}}$
B. $\frac{y^{1}}{y}$
C. y^{\prime}
D. y

Answer:

- Watch Video Solution

4. The population p of a certain bacteria decreases at a rate proportional to the population p . The differential equation corresponding to the above statement is \qquad .
A. $\frac{d p}{d t}=\frac{k}{p}$
B. $\frac{d p}{d t}=k t$
C. $\frac{d p}{d t}=k p$
D. $\frac{d p}{d t}-k p$

Answer:

- Watch Video Solution

5. The solution of $\log \left(\frac{d y}{d x}\right)=a x+b y$ is
A. $\frac{e^{a x}}{a}+\frac{e^{=-b y}}{b}+c=0$
B. $a e^{a x}-b e^{-b y}+c=0$
C. $a e^{x}+b e^{y}=k$
D. $b e^{a x}+a e^{-b y}=k$

Answer:

- Watch Video Solution

6. The general solution of $x \frac{d y}{d x}=y$ is
A. $y=c x$
B. $x^{2}+y^{2}=c$
C. $x^{2}-y^{2}=c$
D. $y=c^{x}$

Answer: A
7. The differential equation of $x^{2} y=k$ is

$$
\begin{aligned}
& \text { A. } x^{2} \frac{d y}{d x}=0 \\
& \text { B. } x^{2} \frac{d y}{d x}+y=0 \\
& \text { C. } x \frac{d y}{d x}+2 y=0 \\
& \text { D. } y \frac{d y}{d x}+2 x=0
\end{aligned}
$$

Answer:

8. Using $y=v x$, the differential equation $\frac{d y}{d x}=\frac{y}{x+\sqrt{x y}}$ is reduced to
A. $x(1+\sqrt{v}) d v=v \sqrt{v} d x$
B. $x(1-\sqrt{v}) d v=v \sqrt{v} d x$
C. $x(1+\sqrt{v}) d v=-v \sqrt{v} d x$
D. $v(1+\sqrt{v}) d x-v \sqrt{v} d v=0$

Answer:

9. The I.E. of $\left(1+y^{2}\right) d x=\left(\tan ^{-1} y-x\right) d y$ is
A. $e^{\tan ^{-1} y}$
B. $e^{\tan ^{-1} x}$
C. $\tan ^{-1} y$
D. $\tan ^{-1} x$

Answer:

- Watch Video Solution

10. The differential equation associated with the family of concentric circles having their centres at the origin is

$$
\begin{aligned}
& \text { A. } \frac{d y}{d x}=\frac{-x}{y} \\
& \text { B. } \frac{d y}{d x}=\frac{-y}{x} \\
& \text { C. } \frac{d y}{d x}=\frac{x}{y} \\
& \text { D. } \frac{d y}{d x}=\frac{y}{x}
\end{aligned}
$$

Answer:

Additional Questions Choose The Incorrect Answer

1. The differential equation obtained by eliminating
a and b from $y=a e^{3 x}+b e^{-3 x}$ is

$$
\begin{aligned}
& \text { A. } \frac{d^{2} y}{d x^{2}}-9 y \\
& \text { B. } \frac{d^{2} y}{d x^{2}}+9 y \\
& \text { C. } y^{\prime \prime}-9 y=0 \\
& \text { D. } y^{\prime}=3 a e^{3 x}-3 b e^{-3 x}
\end{aligned}
$$

Answer:

2. $y=c x-c^{2}$ is the general solution of the differential equation.

$$
\begin{aligned}
& \text { A. } y^{\prime}=c \\
& \text { B. } y=y^{\prime} x-\left(y^{\prime}\right)^{2} \\
& \text { C. } y^{\prime \prime}=0 \\
& \text { D. }\left(y^{\prime}\right)^{2}-x y^{\prime}+u=0
\end{aligned}
$$

Answer:

- Watch Video Solution

3. If $\cos x$ is an I.F. of $\frac{d y}{d x}+p y=Q$, then p
A. $\tan x$
B. $-\tan x$
C. $p=\frac{f^{1}(x)}{f(x)}$ where $f(x)=\cos x$
D. ${ }^{\prime}((\mathrm{d}) /(\mathrm{dx}))(\cos \mathrm{x})$

Answer:

D Watch Video Solution

4. Solution of $\frac{d x}{d y}+m x=0$ where $m<0$ is
A. $\frac{d x}{x}=-m d y$
B. $y=c e^{m x}$
C. $\log x=-m y+\log c$
D. $x=c e^{-m y}$

Answer:

- Watch Video Solution

