©゙’doubtnut

India's Number 1 Education App

MATHS

BOOKS - SURA MATHS (TAMIL

ENGLISH)

TWO DIMENSIONAL ANALYTICAL

GEOMETRY - II

Exercise 51

1. Obtain the equation of the circles with radius 5 cm and touching x-axis at the origin in general form.

- Watch Video Solution

2. Find the equation of the circlue with centre
$(2,-1)$ and passing through the point $(3,6)$ in
standard form.

D Watch Video Solution
3. Find the equation of circles that touch both the axes and pass through ($-4,-2$) in general form.

- Watch Video Solution

4. find the equation of the circle with centre
$(2,3)$ and passing through the intersection of the lines $3 x-2 y-1=0$ and $4 x+y-27=0$..
5. Obtain the equation of the circle for which
$(3,4)$ and $(2,-7)$ are the ends of a diameter.

- Watch Video Solution

6. Find the equation of the circle through the points (1,0), (-1,0) and (0,1)

D Watch Video Solution

7. A circle of area 9π square units has two of its diameters along the lines $x+y=5$ and $x-y=1$
. Find the equation of the circle.

D Watch Video Solution

8. If $y=2 \sqrt{2} x+c$ is a tangent to the circle
$x^{2}+y^{2}=16$, find the value of c.

D Watch Video Solution

9. Find the equation of the tengent and

$$
\begin{aligned}
& \text { normal to } \quad \text { the } \\
& x^{2}+y^{2}-6 x+6 y-8=0 a t(2,2)
\end{aligned}
$$

10. Determine whether the points ($-2,1$),(0,0)
and ($-4,-3$) lie outside, on or inside the circle
$x^{2}+y^{2}-5 x+2 y-5=0$

- Watch Video Solution

11. Find centre and radius of the following circles.
(i) $x^{2}+(y+2)^{2}=0$
(ii) $x^{2}+y^{2}+6 x-4 y+4=0$
(iii) $x^{2}+y^{2}-x+2 y-3=0$
(iv) $2 x^{2}+2 y^{2}-6 x+4 y+2=0$

D Watch Video Solution

12.

If
the
equation
$3 x^{2}+(3-p) x y+q y^{2}-2 p x=8 p q$
represents a circle, find p and q. Also determine the centre and radius of the centre.

1. Find the equation of the parabola in each of the case given below :
(i) Focus $(4,0)$ and direction $x=-4$.
(ii) passes through ($2,-3$) and symmetric about
y-axis.
(iii) vertex ($1,-2$) and forus (4,-2)
(iv) end points of latus rectun ($4,-8$) and (4,8)

D Watch Video Solution

2. Find the equation of the ellipse in each of the cases given below :
(i) foci $(-+3,0), e=\frac{1}{2}$
(ii) foci $(0,-+4)$ and end points of major axis are $(0-+5)$
(iii) length of lagtus rectum 8, eccentricity $=\frac{3}{5}$ and major axis on x-axis .
(iv) length of latus rectum 4, distance between foci $4 \sqrt{2}$ and major axis as y-axis.
3. Find the equation of the hyperbola in each of the cases given below :
(i) foci $(-+2,0)$ eccentricity $=\frac{3}{2}$
(ii) Centre (2,1) one of the foci $(8,1)$ and corresponding directrix $x=4$.
(iii) Passing through ($5,-2$) and length of the transverse axis along x axis and of length 8 units.

D Watch Video Solution

4. Find the vertex , focus , equation of directrix, and length of latus rectam of the following :
(i) $y^{2}=16 x$ (ii) $x^{2}=24 y$
(iii) $y^{2}=-8 x$ (iv) $x^{2}-2 x+8 y+17=0$
(v) $y^{2}-4 y-8 x+12=0$

- Watch Video Solution

5. Identify the type of conic and find centre, foci, vertices and directries of each of the following :
$\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$
(ii) $\frac{x^{2}}{3}+\frac{y^{2}}{10}=1$
(iii) $\frac{x^{2}}{25}-\frac{y^{2}}{144}=1$
(iv) $\frac{y^{2}}{16}-\frac{x^{2}}{9}=1$

- Watch Video Solution

6. Prove that the length of the latusrection of
the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $\frac{2 b^{2}}{a}$

D Watch Video Solution
7. show that the absolute value of the focal distances of any point P on the hyperbola in the length of its transverse axis.

- Watch Video Solution

8. Identify the type of conic and find centre,
foci, vertices, and directices of each of the following:

$$
\frac{(x+3)^{2}}{225}-\frac{(y-4)^{2}}{64}=1
$$

- Watch Video Solution

1. Identify the type of conic section for each of the equations
2. $2 x^{2}-y^{2}=7$
3. $3 x^{2}+3 y^{2}-4 x+3 y+10=0$
4. $3 x^{2}+2 y^{2}=14$
5. $x^{2}+y^{2}+x-y=0$
6. $11 x^{2}-25 y^{2}-44 x+50 y-256=0$
7. $y^{2}+4 x+3 y+4=0$
8. Find the equations of the two tangents that
can be drawn from $(5,2)$ to the ellispse $2 x^{2}+7 y^{2}=14$

D Watch Video Solution

2. Find the equations of tangents to the
hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{64}=1$ which are parallelto
$10 x-3 y+9=0$
3. Show that the line $x-y+4=0$ is a tangents to the ellipse $x^{2}+3 y^{2}=12$. Also find the coordinates of the points of contact.

D Watch Video Solution

4. Find the equation of th tangen to the
parabola $y^{2}=16 x$ perpendicular to
$2 x+2 y+3=0$
5. Find the equation of the tangent at $t=2$ to
the parabola $y^{2}=8 x$.

D Watch Video Solution

6. Find the equations of the tangent and normal to hyperbola
$12 x^{2}-9 y^{2}=108$ at $\theta=\frac{\pi}{3}$.

D Watch Video Solution

7. Prove that the point of intersection of the tangents at t_{1} and t_{2} on the parabola $y^{2}=4 a x$ is $($ at $1 \mathrm{t} 2, \mathrm{a}(\mathrm{t} 1+\mathrm{t} 2))$

D Watch Video Solution

8. if the normal at the point t_{1} on the parabola $y^{2}=4 a x$ meets the parabola again in the point t_{2} then prove that $t_{2}=-\left(t_{1}+\frac{2}{t_{1}}\right)$
9. A bridge has a parabolic arch that is 10 m
high in the centre and 30 m wide at the bottom. Find the height of the arch 6 m from the centre, on either sides.

D Watch Video Solution

2. A tunnel through a mountain for a four lane highway is to have a elliptical opening. The total width of the highway (not the opening)
is to be 16 m , and the height at the edge of the road must be sufficient for a truck 4 m high to clear if the highest point of the opening is to be 5 m approximately. How wide must the opening be?

D Watch Video Solution

3. At a water fountain , water attains a maximum height of 4 m at horizontal distance of 0.5 m from its origin. If the path of water is
a parabola, find the height of water at a
horizontal distance of 0.75 m from the point or origin.

D Watch Video Solution

4. An engineer designs a satellite dish with a parabolic cross section. The dish is 5 m wide at
the opening, and the focus is placed 1.2 m
from the vertex.
(a) Position a coordinate system with the origin at the vertex and the x-axis on the parabola 's axis of symmetry and find an
equation of the parabola.
(b) find the depth of the satellite dish at the vertex.

D Watch Video Solution

5. Parabolic cable of a 60 m portion of the roadbed of a suspension bridge are positioned as shown below. Vertical Cables are to be spaced every 6 m along this portion of the roadbed. Calculate the lengths of first two of these vertical cables from the vertex.
6. Cross section of a Nuclear cooling towar is in the shape of a hyperbola with equation $\frac{x^{2}}{30^{2}}-\frac{y^{2}}{44^{2}}=1$. The towar is 150 m tall and the distance from the top of the towar to the centre of the hyperbola is half the distance from the base of the towar to the centre of the hyperbola. Find the diameter of the top and base of the tower.
7. A rod of length 1.2 m moves with its ends always touching the coordinate axes. The locus of a point Pon the rod, which is 0.3 m from the end in contact with x-axis is an ellipse. Find the eccentricity.

- Watch Video Solution

8. Assume that water issuing from the end of a horizontal pipe. 7.5 m above the ground describes a parabolic path. The vertex of the
parabolic path. The vertex of the parabolic path is at the end of the pipe. At a position 2.5 m below the line of the pipe. At a position 2.5 m below the line of the pipe, the flow of water has curved outward 3 m beyond the vertical line through the end of the pipe. How far beyond this vertical line will the water strike the ground?

D Watch Video Solution

9. On lighting a rocket cracker it gets projected in a parabolic path and reaches a maximum height of 4 m when it is 6 m away from the point of projection. Finally it reaches the ground 12 m away from the starting point.

Find the angle of projection.

D Watch Video Solution

10. Points A and B are 10 km apart and it is
determined from the sound of an explosion
heard at those points at different times that the location of the explosion is 6 km closer to

A than B. Show that the location of the explosion is restricted to a particular curve and find an equation of it.

- Watch Video Solution

Exercise 56

1. The equation of the circle passing through
$(1,5)$ and (4,1) and touching y-axis is
$x^{2}+y^{2}-5 x-6 y+9+\lambda(4 x+3 y-19)=0$
where λ is equal to
A. $0,-\frac{40}{9}$
B. 0
C. $\frac{40}{9}$
D. $\frac{-40}{9}$

Answer: A
(Watch Video Solution
2. The eccentricity of the yhyperbola whose
latus rectum is 8 and conjugate axis is equal to half the distance between the foci is
A. $\frac{4}{3}$
B. $\frac{4}{\sqrt{3}}$
C. $\frac{2}{\sqrt{3}}$
D. $\frac{3}{2}$

Answer: C

- Watch Video Solution

3. The circle $x^{2}+y^{2}=4 x+8 y+5$ intersects
the line $3 x-4 y=m$ at two distinct points if

$$
\begin{aligned}
& \text { A. } 15<m<65 \\
& \text { B. } 35<m<85 \\
& \text { C. }-85<m<-35 \\
& \text { D. }-35<m>15
\end{aligned}
$$

Answer: D

D Watch Video Solution

4. The length of the diameter of the circle which touches the x-axis at the point $(1,0)$ and passes through the point $(2,3)$

> A. $\frac{6}{5}$
> B. $\frac{5}{3}$
> C. $\frac{10}{3}$
> D. $\frac{3}{5}$

Answer: C

5. The radius of the circle

$$
3 x^{2}+b y^{2}+4 b x-6 b y+b^{2}=0
$$

A. 1
B. 3
C. $\sqrt{10}$
D. $\sqrt{11}$

Answer: C

D Watch Video Solution
6. The centre of the circle inscribed in a square
formed by the lines $x^{2}-8 x+12=0$ and $y^{2}-14+45=0$ is
A. $(4,7)$
B. $(7,4)$
C. $(9,4)$
D. $(4,9)$

Answer: A

D Watch Video Solution
7. The equation of the normal to the circle $x^{2}+y^{2}-2 x-2 y+1=0$ which is parallel to the lines $2 x+4 y=3$ is
A. $x+2 y=3$
B. $x+2 y+3=0$
C. $2 x+4 y+3=0$
D. $x-2 y+3=0$

Answer: A

D Watch Video Solution
8. If $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be any point on $16 x^{2}+25 y^{2}=400$
with foci $F_{1}(3,0)$ and $F_{2}(-3,0)$ then
$P F_{1}+P F_{2}$ is
A. 8
B. 6
C. 10
D. 12

Answer: C

- Watch Video Solution

9. The radius of the circle passing through the
point $(6,2)$ two of whose diameter are $x+y=6$
and $x+2 y=4$ is
A. 10
B. $2 \sqrt{5}$
C. 6
D. 4

Answer: B

D Watch Video Solution
10. The area of quardrilateral formed with foci

$$
\begin{aligned}
& \text { of } \\
& \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \text { and } \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1 \text { is }
\end{aligned}
$$

A. $4\left(a^{2}+b^{2}\right)$
B. $2\left(a^{2}+b^{2}\right)$
C. $a^{2}+b^{2}$
D. $\frac{1}{2}\left(a^{2}+b^{2}\right)$

Answer: B
11. If the normals of the paralbola $y^{\wedge} 2=4 x$ drawn at the end points of its latus rectum are tangents to the circle $(x-3)^{\wedge}(2)+(y+2)^{\wedge}(2)=$ $r^{\wedge}(2)$ then the value of $r^{\wedge}(2)$ is
A. 2
B. 3
C. 1
D. 4

Answer: A
12. If $x+y=k$ is a normal to the parabola $y^{2}=12 x$ then the value of k is
A. 3
B. -1
C. 1
D. 9

Answer: D

- Watch Video Solution

13. The ellipse $E_{1}: \frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ is inscribed in
a rectangle R whose sides are parallel to the coordinate axes. Another ellipse E_{2} passing
through the point $(0,4)$ circumscribes the rectangle R. The eccentricity of the ellispe is
A. $\frac{\sqrt{2}}{2}$
B. $\frac{\sqrt{3}}{2}$
C. $\frac{1}{2}$
D. $\frac{3}{4}$

Answer: C

- Watch Video Solution

14. Tangents are drawn to the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{4}$ parallel to the straight line $2 x-y=1$.

One of the points of contact of tangents on
the hyperbola is `
A. $\left(\frac{9}{2 \sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$
B. $\left(\frac{-9}{2 \sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
c. $\left(\frac{9}{2 \sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
D. $(3 \sqrt{3},-2 \sqrt{2})$

Answer: C

D Watch Video Solution

15. The equation of the circle passing through
the foci ellispe $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ having centre at $(0,3)$ is

$$
\text { A. } x^{2}+y^{2}-6 y-7=0
$$

$$
\begin{aligned}
& \text { B. } x^{2}+y^{2}-6 y+7=0 \\
& \text { C. } x^{2}+y^{2}-6 y-5=0 \\
& \text { D. } x^{2}+y^{2}-6 y+5=0
\end{aligned}
$$

Answer: A

D Watch Video Solution

16. Let C be the circle with centre at (1,1) and
radius $=1$. If T is the circle centered at $(0, y)$ passing through the origin and touching the
circle C externally. Then the radius of T is equal
to

$$
\begin{aligned}
& \text { A. } \frac{\sqrt{3}}{\sqrt{2}} \\
& \text { B. } \frac{\sqrt{3}}{2} \\
& \text { C. } \frac{1}{2} \\
& \text { D. } \frac{1}{4}
\end{aligned}
$$

Answer: D
(Watch Video Solution
17. Consider an ellispe whose centre is of the origin and its major axis is along x-axis. If its eccentiricity is $\frac{3}{5}$ and the distance between its foci is 6 , then the area of the quadrilateral insricbed in the ellipse with diagonals as major and minor axis of the ellipse is
A. 8
B. 32
C. 80
D. 40

Answer: D

- Watch Video Solution

18. Area of the greatest rectangle inscribed in
the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is
A. 2 ab
B. $a b$
C. $\sqrt{a b}$
D. $\frac{a}{b}$

D Watch Video Solution

19. An ellipse has $O B$, as semi minor axis, F and
F^{\prime} its foci and the angle $F B F^{\prime}$ is a right angle.
Then the eccentricity of the ellipse is:

$$
\begin{aligned}
& \text { A. } \frac{1}{\sqrt{2}} \\
& \text { B. } \frac{1}{2} \\
& \text { C. } \frac{1}{4} \\
& \text { D. } \frac{1}{\sqrt{3}}
\end{aligned}
$$

D Watch Video Solution

20. The eccentricity of the ellispse

$$
(x-3)^{2}+(y-4)^{2}=\frac{y^{2}}{9} \text { is }
$$

A. $\frac{\sqrt{3}}{2}$
B. $\frac{1}{3}$
C. $\frac{1}{3 \sqrt{2}}$
D. $\frac{1}{\sqrt{3}}$

Answer: B

- Watch Video Solution

21. If the two tangents drawn from a point P to
the parabola $y^{2}=4 x$ are at right angles then
the locus of P is
A. $2 x+1=0$
B. $x=-1$
C. $2 x-1=0$
D. $x=1$

Answer: B

D Watch Video Solution

22. The circle passing through (1,-2) and touching the axis of x at $(3,0)$ passing through
the point
A. $(-5,2)$
B. $(2,-5)$
C. $(5,-2)$
D. $(-2,5)$

Answer: C

- Watch Video Solution

23. The locus of a point whose distance from
$(-2,0)$ is $\frac{2}{3}$ times its distance from the
line $x=\frac{-9}{2}$ is
A. a parabola
B. a hyperbola
C. an ellipse
D. a circle

Answer: C

- Watch Video Solution

24. The values of m for which the lines $y=m x+$
$2 \sqrt{5}$ touches the hyperbola $16 x^{2}-9 y^{2}=144$
are the roots of $x^{2}-(a+b) x-4=0$ then
the value of $(a+b)$ is
A. 2
B. 4
C. 0

D. -2

Answer: C

D Watch Video Solution

25. If the coordinates at one end of a diameter of the circle $x^{2}+y^{2}-8 x-4 y+c=0$ are
$(11,2)$ the coordinates of the other end are
A. $(-5,2)$
B. $(2,-5)$
C. $(5,-2)$
D. $(-2,5)$

Answer: A

- Watch Video Solution

Additional Questions Mcq

1. If $(0,4)$ and $(0,2)$ are the vertex and focus of
a parabola then its equation is
A. $x^{2}+8 y=32$
B. $y^{2}+8 x=32$
C. $x^{2}-8 y=32$
D. $y^{2}-8 x=32$

Answer: A

D Watch Video Solution
2. The equation of the directrix of the parabola
$y^{2}+4 y+4 x+2=0$ is
A. $x=-1$
B. $x=1$
C. $x=\frac{-3}{2}$
D. $x=\frac{3}{2}$

Answer: D

D Watch Video Solution

3. Equation of tangent at $(-4,-4)$ on $x^{2}=-4 y$
is
A. $2 x-y+4=0$
B. $2 x+y-4=0$
C. $2 x-y-12=0$
D. $2 x+y+4=0$

Answer: A

D Watch Video Solution

4. $y^{2}-2 x-2 y+5=0$ is a
A. circle
B. parabola
C. ellipse
D. hyperbola

Answer: A

- Watch Video Solution

5. If a parabolic reflector is 20 cm in diameter and 5 cm deep, then its focus is
A. $(0,5)$
B. $(5,0)$
C. $(10,0)$
D. $(0,10)$

Answer: B

- Watch Video Solution

6. The eccenticity of the ellipse
$9 x^{2}+5 y^{2}-30 y=0$ is
A. $\frac{1}{3}$
B. $\frac{2}{3}$
C. $\frac{3}{4}$
D. None of these

Answer: B

D Watch Video Solution

7. The length of the latus rectum of the ellipse $\frac{x^{2}}{49}+\frac{y^{2}}{36}=1$ is
A. $\frac{98}{6}$
B. $\frac{72}{7}$
C. $\frac{72}{7}$
D. $\frac{98}{12}$

Answer: B

D Watch Video Solution
8. If the distance between the foci is 2 and the distance between the directrices is 5 , then the equation of the ellipse is
A. $6 x^{2}+10 y^{2}=5$
B. $6 x^{2}+10 y^{2}=15$
C. $x^{2}+3 y^{2}=10$
D. none

Answer: B

D Watch Video Solution

9. In are ellispe , the distance between its foci is 6 and its minor axis is 8 , then e is
A. $\frac{4}{5}$
B. $\frac{1}{\sqrt{52}}$
C. $\frac{3}{5}$
D. $\frac{1}{2}$

Answer: C

- Watch Video Solution

10.

The
equation
$7 x^{2}-6 \sqrt{3} x y+13 y^{2}-4 \sqrt{3}-4 y-12=0$
represents
A. parabola
B. ellipse
C. hyperbola
D. rectangular hyperbola

Answer: B

D Watch Video Solution
11. The distance between the foci of a hyperbola is 16 and $e=\sqrt{2}$. Its equation is
A. $x^{2}-y^{2}=32$
B. $y^{2}-x^{2}=32$
C. $x^{2}-y^{2}=16$
D. $y^{2}-x^{2}=16$

Answer: C

D Watch Video Solution

12. If the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ and the hyperbola $\frac{x^{2}}{144}-\frac{y^{2}}{81}=\frac{1}{25} \quad$ coincide
then b^{2} is
A. 1
B. 5
C. 7
D. 9

Answer: C

- Watch Video Solution

13. When the eccentricity of a ellipse becomes

zero, then it becomes a
A. straight line
B. circle
C. point
D. parabola

Answer: B
(D) Watch Video Solution
14. The director circle of the ellispe $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$
A. $x^{2}+y^{2}=4$
B. $x^{2}+y^{2}=9$
C. $x^{2}+y^{2}=45$
D. $x^{2}+y^{2}=14$

Answer: D

D Watch Video Solution
15. The auxiliary circle of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$
A. $x^{2}+y^{2}=25$
B. $x^{2}+y^{2}=16$
C. $x^{2}+y^{2}=41$
D. $x^{2}+y^{2}=5$

Answer: A

- Watch Video Solution

16. The length of the diameter of a circle with centre (1,2) and passing through $(5,5)$ is
A. 5
B. $\sqrt{45}$
C. 10
D. $\sqrt{50}$

Answer: C

D Watch Video Solution
17. If $(1,-3)$ is the centre of the circle $x^{2}+y^{2}+a x+b y+9=0$ its radius is
A. $\sqrt{10}$
B. 1
C. 5
D. $\sqrt{19}$

Answer: B

D Watch Video Solution
18. If $y=2 x+c$ is a tangent to the circel $x^{2}+y^{2}=5$, then c is
A. -+5
B. $-+\sqrt{5}$
C. $-+5 \sqrt{2}$
D. $-+2 \sqrt{5}$

Answer: A

D Watch Video Solution

1. The line $y=m x+1$ is a tangent to the parabola $y^{2}=4 x$ if $\mathrm{m}=$ \qquad
A. 1
B. 2
C. 3
D. 4

Answer: A

D Watch Video Solution
2. The angle between the tangent drawn from
$(1,4)$ to the parabola $y^{2}=4 x$ is

> A. $\frac{\pi}{2}$
> B. $\frac{\pi}{3}$
> C. $\frac{\pi}{4}$
> D. $\frac{\pi}{5}$

Answer: B

3. If an ellispe $5 x^{2}+7 y^{2}=11$ the point (4,-3)

lies _____ the ellipse
A. on
B. outside
C. inside
D. none

Answer: B

D Watch Video Solution
4. If e_{1}, e_{2} are eccentricities of the ellispe $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad$ and the hyperbola
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ then

$$
\text { A. } e_{1}^{2}-e_{2^{2}=1}
$$

B. $e_{1}^{2}+e_{2}^{2}=1$
C. $e_{1}^{2}-e_{2}^{2}=2$
D. $e_{1}^{2}+e_{2}^{2}=2$

Answer: D

5. The number of normals to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ from an external point is
A. 2
B. 4
C. 6
D. 5

Answer: B

D Watch Video Solution
6. The point of contact of $y^{2}=4 \mathrm{ax}$ and the tangent $y=m x+c$ is
A. $\left(\frac{2 a}{m^{2}}, \frac{a}{m}\right)$
B. $\left(\frac{a}{m^{2}}, \frac{2 a}{m}\right)$
C. $\left(\frac{a}{m}, \frac{2 a}{m^{2}}\right)$
D. $\left(\frac{-a}{m^{2}}, \frac{-2 a}{m}\right)$

Answer: B

D Watch Video Solution

7. If $B . B^{1}$ are the ends of minor axis, F_{1}, F_{2} are foci of the ellispe $\frac{x^{2}}{8}+\frac{y^{2}}{4}=1$ then area of $F_{1} B F_{2} B^{1}$ is
A. 16
B. 8
C. $16 \sqrt{2}$
D. $32 \sqrt{2}$

Answer: B
8. The length of major and minor axes of

$$
4 x^{2}+3 y^{2}=12 \text { are }
$$

A. $4,2 \sqrt{3}$
B. $2, \sqrt{3}$
C. $2 \sqrt{3}, 4$
D. $\sqrt{3}, 2$

Answer: A
(Watch Video Solution
9. the tangent at any point P on the ellipe $\frac{x^{2}}{6}+\frac{y^{2}}{3}=1$ whose centre C meets the major axis at T and PN is the perpendicular to
the major axis. The CN CT =
A. $\sqrt{6}$
B. 3
C. $\sqrt{3}$
D. 6

Answer: D
10. The locus of the point of intersection of perpendicular tangents to the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$ is
A. $x^{2}+y^{2}=25$
B. $x^{2}+y^{2}=4$
C. $x^{2}+y^{2}=3$
D. $x^{2}+y^{2}=7$

Answer: D
11. If t_{1} and t_{2} are the extremities of any focal chord of $y^{2}=4 a x$ then $t_{1} t_{2}$ is
A. -1
B. 0
C. -+1
D. $\frac{1}{2}$

Answer: A

- Watch Video Solution

12. The locus of the foot of perpendicular from
the forcus on any tangent to $y^{2}=4 a x$ is

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}=a^{2}-b^{2} \\
& \text { B. } x^{2}+y^{2}=a^{2} \\
& \text { C. } x^{2}+y^{2}=a^{2}+b^{2} \\
& \text { D. } x=0
\end{aligned}
$$

Answer: D

13. The point of curve $y=2 x^{2}-6 x-4$ at which the tangent is parallel to x-axis is

$$
\begin{aligned}
& \text { А. }\left(\frac{5}{2}, \frac{-7}{12}\right) \\
& \text { В. }\left(\frac{-5}{2}, \frac{-17}{2}\right) \\
& \text { С. }\left(\frac{-5}{2}, \frac{17}{2}\right) \\
& \text { D. }\left(\frac{3}{2}, \frac{-17}{2}\right)
\end{aligned}
$$

Answer: D

14. The locus of the point of intersection of perependicular tangent of the parabola $y^{2}=4 a x$ is
A. latus rectum
B. directrix
C. tangent at the vertex
D. axis of the parabola

Answer: B

D Watch Video Solution

1. Choose the odd one out (1) $x=$ $a \cos \theta, y=a \sin \theta$
(2) θ
(3) $0 \geq \theta \geq 2 \pi$
(4) $(a \cos \theta, b \sin \theta)$

- Watch Video Solution

2. Choose the odd one out (1) $y^{2}=4 a x$
(2) $c=\frac{a}{m}$
(3) $c^{2}=a^{2\left(1+m^{2}\right)}$
(4) $\left(\frac{a}{m^{2}}, \frac{2 a}{m}\right)$

- Watch Video Solution

3. Choose the odd one out (1) Transverse axis
is parallel to x-axis
(2) Directrix are $\mathrm{x}=-+\frac{a}{e}$
(3) Cenre is $(0,0)$
(4) Transvervse axis parallel to y-axis
4. Choose the odd one out (1) Major axis paralle to x-axis
(2) $c^{2}=a^{2}-b^{2}$
(3) forward c units right and c units left of centre
(4) $c^{2}=a^{2}+b^{2}$

D Watch Video Solution

5. Choose the odd one out (1) Vertex (h,k)
(2) Equation of directrix is $x=h+a$
(3) Axis of symmetry is $y=k$
(4) Length of latus rectum $=4 a$

D Watch Video Solution

Additional Questions Choose The Incorrect

 Statement1. The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ reprsents the circle if
A. it is a second degree equation in x and y
B. co- efficient of $x^{2}=$ co- efficient of $y^{2} \neq 0$

C. co-efficient of $x=1$

D. co - efficient of $x y=0$

Answer: C

D Watch Video Solution

2. Condition for $y=m x+c$ to be a tangent to
the circle $x^{2}+y^{2}=a^{2}$ is
A. $c^{2}=a^{2}(1-m)^{2}$
B. $\frac{|C|}{\sqrt{1+m^{2}}}=a$
C. $\frac{|C|}{\sqrt{1+m^{2}}=}$ radius
D. $c=\frac{a}{m}$

Answer: B

D Watch Video Solution

3. In an ellispe $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$
A. Foci $(-+2,0)$
B. $a=9$
C. Vertrices $(-+3,0)$
D. $A A^{\prime}=6$

Answer: B

D Watch Video Solution

4. For the parabola $y^{2}=-4 \sqrt{2} x$.Find odd one out
A. focus is $(\sqrt{2}, 0)$
B. vertex is $(0,0)$
C. focus is $(-\sqrt{2}, 0)$
D. directrix is $x=\sqrt{2}$

Answer: A

D Watch Video Solution

2 Marks

1. Find the equation of tangent to the circle $x^{2}+y^{2}+2 x-3 y-8=0 a t(2,3)$

D Watch Video Solution
2. Find the length of the tangent from $(2,-3)$ to
the circle $x^{2}+y^{2}-8 y-9 y+12=0$

D Watch Video Solution

3. Find the equation of the parabola with
vertex at the origin , passing through ($2,-3$) and symmetric about x-axis.
4. If a parabolic reflector is 24 cm in diameter and 6 cm deep, find its focus.

D Watch Video Solution

5. If the line $y=3 x+1$, touches the parabola $y^{2}=4 a x$, find the length of the latus rectum ?

D Watch Video Solution
6. Find the locus of a point which divides so
that the sum of its distances from ($-4,0$) and $(4,0)$ is 10 units.

- Watch Video Solution

7. For the ellipse $x^{2}+3 y^{2}=a^{2}$ find the
length of major and minor axis.

- Watch Video Solution

8. find the eccentricity of the ellipse with foci on x-axis if its latus be equal to one half f of its major axis.

- Watch Video Solution

9. Find the eccentricity of the hyperbola with
foci on the x-axis if the length of its conjugate
axis is $\left(\frac{3}{4}\right)^{\text {th }}$ of the length of its tranverse axis.
10. Find the equation of the hyperbola whose
vertices are $(0,-+7)$ and $e=\frac{4}{3}$

- Watch Video Solution

3 Marks

1. Find the circumference are area of the circle
$x^{2}+y^{2}-2 x+5 y+7=0$

D Watch Video Solution

2. find the value of p so that $3 x+4 y-p=0$ is a tangent to the circle $x^{2}+y^{2}-64=0$

D Watch Video Solution

3. Find the condition for the line $1 x+m y+n=0$
is a tangent to the circle $x^{2}+y^{2}=a^{2}$
4. Find the area of the triangle found by the
lines joining the vertex of the parabola $x^{2}-36 y$ to the ends of the latus rectum.

- Watch Video Solution

5. Find the equation of the ellipse whose $e=\frac{3}{4}$ foci on y-axis, centre at origin and passing through (6,4)

6. Find the equation of the ellispe whose latus

rectum is 5 and $e=\frac{2}{3}$

D Watch Video Solution

7. find the equation of the hyperbola whose conjugate axis is 5 and the distance between the foci is 13.

D Watch Video Solution

8. For the hyperbola $3 x^{2}-6 y^{2}=-18$ find the length of transverse and conjugate axes and eccentricity .

- Watch Video Solution

9. Find the value of c if $y=x+c$ is a tangent to
the hyperbola $9 x^{2}-16 y^{2}=144$

- Watch Video Solution

10. Show that the line $x+y+1=0$ touches the
hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{15}=1$ and find the coordinates of the point of contact.

(Watch Video Solution

5 Marks

1. An arch is in the form of a parabola with its
axis vertical. The arch is 10 m high and 5 cm
wide at the base. How is it 2 m from the vertex of the parabola?

D Watch Video Solution

2. An equilateral triangle is inscribed in the parabola $y^{2}=4 a x$ whose vertex is at the vertex of the parabola. Find the length of its side.
3. The guides of a railway bridge is a parabola with its vertex at the heighest point 15 m above the ends. If the span is 120 m , find the height of the bridge at 24 m from the middle point.

- Watch Video Solution

4. The foci a hyperbola coincides with the foci
of the ellispe $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$. Find the
equation of the hyperbola if its eccentricity is
5.

D Watch Video Solution

5. A kho - kho player in a practice sesssion while running realises that the sum of the distances from the two kho-kho poles from him is always 8 m . Find the equation of the path traced by him of the distances between the poles is 6 m .
\square
