

MATHS

BOOKS - SURA MATHS (TAMIL ENGLISH)

REAL NUMBERS

Exercise 21

1. Which arrow best shows the position of $\frac{11}{3}$ on

the number line?

2. Find any three rational numbers between $\frac{-7}{11}$ and $\frac{2}{11}$

Watch Video Solution

3. Find any five rational numbers between $\frac{1}{4}$ and

4. Find any five rational numbers between 0.1 and 0.11

5. Find any five rational numbers between -1 and

-2

Exercise 2 2

1. Express the following rational numbers into decimal and state the kind of decimal expansion.

$$\frac{2}{7}$$

2. Express the following rational numbers into decimal and state the kind of decimal expansion.

$$-5\frac{3}{11}$$

3. Express the following rational numbers into decimal and state the kind of decimal expansion.

Watch Video Solution

4. Express the following rational numbers into decimal and state the kind of decimal expansion. 327

 $\frac{327}{200}$

5. Express $\frac{1}{13}$ in decimal form . Find the length of the period of decimals .

Watch Video Solution

6. Express the rational number $\frac{1}{33}$ in recurring decimal form by using the recurring decimal expansion of $\frac{1}{11}$. Hence write $\frac{71}{33}$ in recurring decimal form.

7. Express the following decimal expression into rational numbers.

 $0.\overline{24}$

Watch Video Solution

- 8. Express the following decimal expression into rational numbers.
- $2. \overline{327}$

9. Express the following decimal expression into rational numbers

-5.132

Watch Video Solution

10. Express the following decimal expression into rational numbers.

 $3.1\overline{7}$

11. Express the following decimal expression into rational numbers.

 $17. \ \overline{215}$

Watch Video Solution

12. Express the following decimal expression into rational numbers.

-21.2137

13. Without actual division, find which of the following rational numbers have terminating decimal expansion.

 $\frac{7}{128}$

Watch Video Solution

14. Without actual division, find which of the following rational numbers have terminating decimal expansion.

 $\frac{21}{15}$

15. Without actual division, find which of the following rational numbers have terminating decimal expansion.

$$4\frac{9}{35}$$

Watch Video Solution

16. Without actual division, find which of the following rational numbers have terminating decimal expansion.

 $\frac{219}{2200}$

Exercise 2 3

1. Represent the following irrational numbers on the number line.

 $\sqrt{3}$

2. Represent the following irrational numbers on the number line.

 $\sqrt{4.7}$

3. Represent the following irrational numbers on the number line.

$$\sqrt{6.5}$$

4. Find any two irrational numbers between 0.3010011000111....and 0.3020020002.....

watch video Solution

5. Find any two irrational numbers between $\frac{6}{7}$ and $\frac{12}{13}$

6. Find any two irrational numbers between $\sqrt{2}$ and $\sqrt{3}$

7. Find any two rational numbers between

2.2360679 and 2.236505500

Watch Video Solution

Exercise 2 4

1. Represent the following numbers on the number line.

5.348

- 2. Represent the following numbers on the
- $6.~ar{4}$ upto 3 decimal places.

- **3.** Represent the following numbers on the number line.
- $4.\overline{73}$ upto 4 decimal places.

1. Write the following in the form of 5^n :

625

2. Write the following in the form of 5^n :

 $\frac{1}{5}$

3. Write the following in the form of 5^n :

$$\sqrt{5}$$

Watch Video Solution

4. Write the following in the form of 5^n :

$$\sqrt{125}$$

Watch Video Solution

5. Write the following in the form of 4^n :

6. Write the following in the form of 4^n :

8

7. Write the following in the form of 4^n :

32

8. Find the value of $(49)^{\frac{1}{2}}$

Watch Video Solution

9. Find the value of $(243)^{\frac{2}{5}}$

Watch Video Solution

10. Find the value of $9^{\frac{-3}{2}}$

11. Find the value of $\left(\frac{64}{125}\right)^{\frac{-2}{3}}$

- **12.** Use a fractional index to write : $\sqrt{5}$
 - Watch Video Solution

- **13.** Use a fractional index to write : $\sqrt[2]{7}$
 - Watch Video Solution

14. Use a fractional index to write : $(\sqrt[3]{49})^5$

Watch Video Solution

15. Use a fractional index to write : $\left(\frac{1}{\sqrt[3]{100}}\right)^{6}$

Watch Video Solution

16. Find the 5^{th} root of 32

17. Find the 5^{th} root of 243

Watch Video Solution

18. Find the 5^{th} root of 100000

Watch Video Solution

19. Find the 5^{th} root of $\frac{1024}{3125}$

1. Simplify the following using addition and subtraction properties of surds :

$$5\sqrt{3} + 18\sqrt{3} - 2\sqrt{3}$$

2. Simplify the following using addition and subtraction properties of surds :

$$4\sqrt[3]{5} + 2\sqrt[3]{5} - 3\sqrt[3]{5}$$

3. Simplify the following using addition and subtraction properties of surds :

$$3\sqrt{75} + 5\sqrt{48} - \sqrt{243}$$

Watch Video Solution

4. Simplify the following using addition and subtraction properties of surds :

$$5\sqrt[3]{40} + 2\sqrt[3]{625} - 3\sqrt[3]{320}$$

5. Simplify the following using multiplication and division properties of surds :

$$\sqrt{3} imes \sqrt{5} imes \sqrt{2}$$

Watch Video Solution

6. Simplify the following using multiplication and division properties of surds :

$$\sqrt{35} + \sqrt{7}$$

7. Simplify the following using multiplication and division properties of surds:

$$\sqrt[3]{27} imes \sqrt[3]{8} imes \sqrt[3]{125}$$

Watch Video Solution

8. Simplify the following using multiplication and division properties of surds:

$$\left(7\sqrt{a}-5\sqrt{b}
ight)\left(7\sqrt{a}+5\sqrt{b}
ight)$$

9. Simplify the following using multiplication and division properties of surds:

$$\frac{\sqrt{\frac{225}{729}} - \sqrt{\frac{25}{144}}}{\sqrt{\frac{16}{81}}}$$

Watch Video Solution

10. If $\sqrt{2} = 1.414, \sqrt{3} = 1.732, \sqrt{5} = 2.236, \sqrt{10} = 3.162$

, then find the values of the following correct to 3 places of decimals.

$$\sqrt{40} - \sqrt{20}$$

11. If
$$\sqrt{2}=1.414, \sqrt{3}=1.732, \sqrt{5}=2.236, \sqrt{10}=3.162$$

, then find the values of the following correct to 3 places of decimals .

 $\sqrt{300} + \sqrt{90} - \sqrt{8}$

12. Arrange surds in descending order :

 $\sqrt[3]{5}, \sqrt[9]{4}, \sqrt[6]{3}$

13. Arrange surds in descending order:

$$\sqrt[2]{\sqrt[3]{5}}, \sqrt[3]{\sqrt[4]{7}}, \sqrt{\sqrt{3}}$$

14. Can you get a pure surd when you find the sum of two surds

Justify each answer with an example

15. Can you get a pure surd when you find the difference of two surds

Justify each answer with an example

Watch Video Solution

16. Can you get a pure surd when you find the product of two surds

Justify each answer with an example

17. Can you get a pure surd when you find the quotient of two surds Justify each answer with an example

Watch Video Solution

18. Can you get a rational number when you compute the sum of two surds

Justify each answer with an example

19. Can you get a rational number when you compute the difference of two surds. Justify each answer with an example

Watch Video Solution

20. Can you get a rational number when you compute the product of two surds Justify each answer with an example

21. Can you get a rational number when you compute the quotient of two surds

Justify each answer with an example

Watch Video Solution

Exercise 2 7

1. Rationalise the denominator

$$\frac{1}{\sqrt{50}}$$

2. Rationalise the denominator

$$\frac{5}{3\sqrt{5}}$$

Watch Video Solution

3. Rationalise the denominator

$$\frac{\sqrt{75}}{\sqrt{18}}$$

4. Rationalise the denominator

3(sqrt5)/sqrt6`

Watch Video Solution

5. Rationalise the denominator and simplify

$$\frac{\sqrt{48}+\sqrt{32}}{\sqrt{27}-\sqrt{18}}$$

6. Rationalise the denominator and simplify

$$\frac{5\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}}$$

Watch Video Solution

7. Rationalise the denominator and simplify

$$\frac{2\sqrt{6}-\sqrt{5}}{3\sqrt{5}-2\sqrt{6}}$$

8. Rationalise the denominator and simplify

$$\frac{\sqrt{5}}{\sqrt{6}+2}-\frac{\sqrt{5}}{\sqrt{6}-2}$$

Watch Video Solution

9. Find the value of a and b if

$$\frac{\sqrt{7}-2}{\sqrt{7}+2}=a\sqrt{7}+b$$

10. If $x=\sqrt{5}+2$, then find the value of $x^2+rac{1}{r^2}$

Watch Video Solution

11. Given $\sqrt{2}$ =1.414, find the value of $\frac{8-5\sqrt{2}}{3-2\sqrt{2}}$ (to

3 places of decimals).

1. Represent the following numbers in the scientific notation :

569430000000

2. Represent the following numbers in the scientific notation :

2000.57

3. Represent the following numbers in the scientific notation :

0.0000006000

4. Represent the following numbers in the scientific notation :

0.0009000002

5. Write the following numbers in decimal form :

 3.459×10^{6}

Watch Video Solution

6. Write the following numbers in decimal form :

 5.678×10^4

Watch Video Solution

7. Write the following numbers in decimal form:

 1.00005×10^{-5}

8. Write the following numbers in decimal form :

$$2.530009 \times 10^{-7}$$

9. Write the following numbers in scientific notation:

$$(300000)^2 \times (20000)^4$$

10. Write the following numbers in scientific

notation:

$$\frac{\left(0.000001\right)^{11}}{\left(0.005\right)^{3}}$$

11. Write the following numbers in scientific notation:

$$(0.00003)^6 \times (0.00005)^4$$

$$(0.009)^3 \times (0.05)^2$$

12. Represent the following information in scientific notation :

The world population is nearly 7000,000,000.

Watch Video Solution

13. Represent the following information in scientific notation :

One light year means the distance 9460528400000000 km.

14. Represent the following information in scientific notation :

Watch Video Solution

15. Simplify :

$$\left(2.75 imes 10^7
ight) + \left(1.23 imes 10^8
ight)$$

16. Simplify:

$$\left(1.598 imes 10^{17}
ight) - \left(4.58 imes 10^{15}
ight)$$

Watch Video Solution

17. Simplify :

$$\left(1.02 imes 10^{10}
ight) imes \left(1.20 imes 10^{-3}
ight)$$

Watch Video Solution

18. Simplify:

$$\left(8.41 imes 10^4
ight) \div \left(4.3 imes 10^5
ight)$$

Exercise 2 9

- **1.** If n is a natural number then \sqrt{n} is
 - A. always a natural number
 - B. always an irrational number.
 - C. always a rational number
 - D. may be rational or irrational.

Answer: D

- 2. Which of the following is not true?
 - A. Every rational number is a real number.
 - B. Every integer is a rational number.
 - C. Every real number is an irrational number.
 - D. Every natural number is whole number.

Answer: C

3. Which one of the following , regarding sum of two irrational number , is true ?

A. always an irrational number

B. may be a rational or irrational number

C. always a rational number

D. always an integer.

Answer: B

4. Which one of the following has a terminating decimal expansion ?

A.
$$\frac{5}{64}$$

B.
$$\frac{8}{9}$$

c.
$$\frac{14}{15}$$

D.
$$\frac{1}{12}$$

Answer: A

5. Which one of the following is an irrational number?

A.
$$\sqrt{25}$$

A.
$$\sqrt{25}$$
B. $\frac{\sqrt{9}}{4}$

c.
$$\frac{7}{11}$$

D.
$$\pi$$

Answer: D

6. An irrational number between 2 and 2.5 is

- A. $\sqrt{11}$
- B. $\sqrt{5}$
- $\mathrm{C.}\,\sqrt{2.5}$
- D. $\sqrt{8}$

Answer: B

7. The smallest rational number by which $\frac{1}{3}$ should be multiplied so that its decimal expansion terminates after one place of decimal is

A.
$$\frac{1}{10}$$

3.
$$\frac{3}{10}$$

C. 3

D. 30

Answer: C

8. if
$$\dfrac{1}{7}=0$$
. $\overline{142857}$ then the value of $\dfrac{5}{7}$ is

A. 0.
$$\overline{142857}$$

B. 0.
$$\overline{714285}$$

C. 0.
$$\overline{571428}$$

Answer: B

9. Find the odd one out of the following

A.
$$\sqrt{32} imes \sqrt{2}$$

B.
$$\frac{\sqrt{27}}{\sqrt{3}}$$

C.
$$\sqrt{72} \times \sqrt{8}$$

D.
$$\frac{\sqrt{54}}{\sqrt{18}}$$

Answer: D

- A. $0.6\overline{87}$
- $\mathsf{B.}\ 0.\ \overline{68}$
- $\mathsf{C.}\ 0.6\bar{8}$
- $\mathsf{D}.\,0.68\bar{7}$

Answer: A

- 11. Which of the followig statement is false?
 - A. The square root of 25 is 5 or -5

B.
$$\sqrt{25}=5$$

$$\mathsf{C.} - \sqrt{25} = \ -5$$

D.
$$\sqrt{25}=~\pm~5$$

Answer: D

Watch Video Solution

12. Which one of the following is not a rational number?

A.
$$\sqrt{\frac{8}{18}}$$

B.
$$\frac{\iota}{3}$$

$$\mathsf{C.}\,\sqrt{0.01}$$

D.
$$\sqrt{13}$$

Answer: D

13.
$$\sqrt{27} + \sqrt{12}$$
=

A.
$$\sqrt{39}$$

B.
$$5\sqrt{6}$$

$$\mathsf{C.}\,5\sqrt{3}$$

D.
$$3\sqrt{5}$$

Answer: C

Watch Video Solution

14. If
$$\sqrt{80}=k\sqrt{5}$$
 then k=

A. 2

B. 4

C. 8

D. 16

Answer: B

Watch Video Solution

15.
$$4\sqrt{7} \times 2\sqrt{3}$$
=

A.
$$6\sqrt{10}$$

B.
$$8\sqrt{21}$$

$$\mathsf{C.}\,8\sqrt{10}$$

D.
$$6\sqrt{21}$$

Answer: B

16. When written with a rational denominator, the expression $\frac{2\sqrt{3}}{3\sqrt{2}}$ can be simplified as

A.
$$\frac{\sqrt{2}}{3}$$

B.
$$\frac{\sqrt{3}}{2}$$

$$\mathsf{C.}\,\frac{\sqrt{6}}{3}$$

D.
$$\frac{2}{3}$$

Answer: C

17. When $\left(2\sqrt{5}-\sqrt{2}\right)^2$ is simplified , we get

A.
$$4\sqrt{5}+2\sqrt{2}$$

B.
$$22-4\sqrt{10}$$

c.
$$8 - 4\sqrt{10}$$

D.
$$2\sqrt{10} - 2$$

Answer: B

$$\lambda. \; \frac{10^3}{3^3}$$

B.
$$\frac{10^5}{3^5}$$

C.
$$\frac{10^2}{3^2}$$
D. $\frac{10^6}{3^6}$

Answer: D

19. If
$$\sqrt{9^x}=\sqrt[3]{9^2}$$
 then $x=$

A.
$$\frac{2}{3}$$

B.
$$\frac{4}{3}$$

C.
$$\frac{1}{3}$$
D. $\frac{5}{3}$

D.
$$\frac{5}{3}$$

Answer: B

Watch Video Solution

20. The length of breadth of a rectangular plot are $5 imes 10^5$ and $4 imes 10^4$ metres respectively. Its area is

A.
$$9 imes 10^1 m^2$$

B. $9 imes 10^9 m^2$

C. $2 imes 10^{10} m^2$

D. $20 imes10^{20}m^2$

Answer: C

Watch Video Solution

Additional Questions And Answers

1. Find out two rational numbers between $\frac{1}{4}$ and

 $\frac{3}{4}$

2. Is zero a rational numbers ? Give reasons for you answer .

3. Express the following decimal expansion is the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$.

0.75

4. Express the following decimal expansion is the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$. 0.625

Watch Video Solution

5. Express the following decimal expansion is the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$.

0.5625

6. Express the following decimal expansion is the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$. 0.28

Watch Video Solution

7. Convert $\overline{0.9}$ to a rational number.

Watch Video Solution

8. Classify the following number as rational or irrational .

9. Classify the following number as rational or irrational .

$$\sqrt{81}$$

10. Classify the following number as rational or irrational .

0.0625

11. Classify the following number as rational or irrational.

 $0.8\bar{3}$

12. Find the decimal expansion of $\sqrt{3}$

13. Find any 4 irrational numbers between $\frac{1}{4}$ and 1

Watch Video Solution

14. Visualise $6.7\overline{3}$ on the number line , upto 4 decimal places.

Watch Video Solution

15. Find whether x and y are rational or irrational in the following:

$$x = a + b, y = a - b$$

Watch Video Solution

(i) $a = 2 + \sqrt{3}, b = 2 - \sqrt{3},$

16. Find whether x and y are rational or irrational in the following:

(ii)
$$a = \sqrt{2} + 7, b = \sqrt{2} - 7$$

$$x = a + b, y = a - b$$

18. Evaluate :
$$\left(\frac{1}{9}\right)^{-3}$$

19. Evaluate :
$$(0.01)^{-2}$$

21. Find the value of $729^{\frac{-5}{6}}$

22. Use a fractional index to write : $\left(5\sqrt{125}\right)^7$

23. Use a fractional index to write : $\sqrt[3]{7}$

24. Can you reduce the following numbers to surds of same order .

$$\sqrt{5}$$

25. Can you reduce the following numbers to surds of same order .

$$\sqrt[3]{5}$$

26. Can you reduce the following numbers to surds of same order .

27. Express the surds in the simplest form

$$\sqrt{27}$$

28. Express the surds in the simplest form

$$\sqrt[3]{128}$$

29. Show that $\sqrt[3]{2} > \sqrt[5]{3}$

30. Express the following surds in its simplest form $\sqrt[4]{324}$

31. Simplify $\sqrt{63}-\sqrt{175}+\sqrt{28}$

32. Arrange in ascending order : $\sqrt[3]{2}$, $\sqrt[2]{4}$, $\sqrt[4]{3}$

33. Subtract $6\sqrt{7}$ from $9\sqrt{7}$.ls the answer rational or irrational?

Watch Video Solution

34. Simplify :
$$\sqrt{44}+\sqrt{99}-\sqrt{275}$$

35. Compute and give the answer in the simplest

form :
$$3\sqrt{162} imes 7\sqrt{50} imes 6\sqrt{98}$$

36. Write the scientific notation $(60000000)^4$

37. Write the scientific notation : $(0.00000004)^3$

38. Write the scientific notation : $(500000)^2 \times (3000)^3$

39. Write the scientific notation : $(6000000)^3 \div (0.00003)^2$

Watch Video Solution

40. A number having non-terminating and recurring decimal expansion is

A. an integer

B. a rational number

C. an irrational number

D. a whole number

Watch Video Solution

41. If a number has a non-terminating and non-recurring decimal expansion, then it is

A. a rational number

B. a natural number

C. an irrational number

D. an integer

Answer: 3

42. Decimal form of
$$\frac{-3}{4}$$
 is

$$A. - 0.75$$

$$B. - 0.50$$

$$C. -0.25$$

$$D. -0.125$$

43. Which one of the following has a terminating decimal expansion ?

- A. $\frac{5}{32}$
- $\mathsf{B.}\,\frac{7}{9}$
- c. $\frac{8}{15}$
- D. $\frac{1}{12}$

Answer: 1

44. Which one of the following is an irrational number?

A.
$$\pi$$

B.
$$\sqrt{9}$$

c.
$$\frac{1}{4}$$

D.
$$\frac{1}{5}$$

Answer: 1

45. Which one of the following are irrational numbers?

(i)
$$\sqrt{2+\sqrt{3}}$$
 , (ii) $\sqrt{4+\sqrt{25}}$, (iii) $\sqrt[3]{5+\sqrt{7}}$, (iv) $\sqrt{8-\sqrt[3]{8}}$

- A. (ii),(iii), and (iv)
- B. (i), (ii) and (iv)
- C. (i),(ii) and (iii)
- D. (i),(iii) and (iv)

Answer: 4

46. Which of the following is not an irrational number?

- A. $\sqrt{2}$
- B. $\sqrt{5}$
- $\mathsf{C.}\,\sqrt{3}$
- D. $\sqrt{25}$

Answer: 4

47. In simple form , $\sqrt[3]{54}$ is ?

A.
$$3\sqrt[3]{2}$$

B.
$$\sqrt[3]{27}$$

C.
$$3\sqrt{2}$$

D.
$$\sqrt{3}$$

Answer: 1

A.
$$3\sqrt[3]{6}$$

B.
$$6\sqrt[3]{3}$$

C.
$$\sqrt[3]{216}$$

D.
$$\sqrt[6]{216}$$

49.
$$5\sqrt{21} imes 6\sqrt{10}$$

A.
$$30\sqrt{210}$$

B. 30

C. $\sqrt{210}$

D. $210\sqrt{30}$

Answer: 1

Watch Video Solution

Unit Test

1. Which one of the following, regarding sum of two irrational number, is true?

- A. always an irrational number
- B. may be a rational or irrational number
- C. always a rational number
- D. always an integer.

Watch Video Solution

2. Which one of the following is an irrational number?

A.
$$\sqrt{25}$$

B.
$$\sqrt{\frac{9}{4}}$$
 C. $\frac{7}{11}$

C.
$$\frac{1}{11}$$

D. π

Answer: 1

Watch Video Solution

3. if
$$\frac{1}{7}=0$$
. $\overline{142857}$ then the value of $\frac{5}{7}$ is

A. 0. $\overline{142857}$

B. 0. $\overline{714285}$

c. 0. $\overline{571428}$

D. 0.714285

Answer: 2

Watch Video Solution

4. When written with a rational denominator, the expression $\frac{2\sqrt{3}}{3\sqrt{2}}$ can be simplified as

A.
$$\dfrac{\sqrt{2}}{3}$$

$$B. \frac{\sqrt{3}}{2}$$

$$\sum \frac{\sqrt{6}}{3}$$

$$\mathsf{D.}\,\frac{2}{3}$$

5. If
$$\sqrt{9^x}=\sqrt[3]{9^2}$$
 then $x=$

A.
$$\frac{2}{3}$$

$$\mathsf{B.}\;\frac{4}{3}$$

$$\mathsf{C.}\,\frac{1}{3}$$

D.
$$\frac{5}{3}$$

Watch Video Solution

6. Simplify the following using addition and subtraction properties of surds :

$$5\sqrt{3} + 18\sqrt{3} - 2\sqrt{3}$$

7. Simplify the following using multiplication and division properties of surds :

$$\sqrt{3} imes \sqrt{5} imes \sqrt{2}$$

8. Find any two irrational number between $\frac{6}{7}$ and $\frac{12}{13}$

10. Find the value of $(243)^{2/5}$

11. Without actual division, find which of the following rational numbers have terminating decimal expansion.

 $\frac{7}{128}$

12. Which arrow best shows the position of $\frac{11}{3}$ on the number line ?

13. Express the following decimal expression into rational numbers.

 $2. \overline{327}$

15. Find any five rational numbers between 0.1 and 0.11

16. Represent $\sqrt{3}$ irrational numbers on the number line.

- **17.** Represent the following numbers on the number line.
- $4.\overline{73}$ upto 4 decimal places.

18. Arrange surds in descending order :

$$\sqrt[3]{5}, \sqrt[9]{4}, \sqrt[6]{3}$$

19. Arrange surds in descending order:

$$\sqrt[2]{\sqrt[3]{5}}, \sqrt[3]{\sqrt[4]{7}}, \sqrt{\sqrt{3}}$$

