©゙" doubtnut

 India's Number 1 Education App
MATHS

BOOKS - MCGROW HILL EDUCATION MATHS

(HINGLISH)

THEORY OF QUADRATIC EQUATION

Illustrative Example

1. If one of the roots of the real quadratic equation is
$(2-\sqrt{3})$, the equation is
2. If α and β are the roots of $4 x^{2}+3 x+7=0$, the
value of $\frac{1}{\alpha^{3}}+\frac{1}{\beta^{3}}$ is

D Watch Video Solution

3. if α and β are the roots of the equation $a x^{2}+b x+c=0$ then the equation whose roots are $\frac{1}{\alpha+\beta}, \frac{1}{\alpha}+\frac{1}{\beta}$ is equal to

D Watch Video Solution
4. If $\alpha \neq \beta$ but $\alpha^{2}=5 \alpha-3, \beta^{2}=5 \beta-3$, then find the equation whose roots are $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$.

D Watch Video Solution

5. Two candidates attempt to solve a quadratic equation of the form $a x^{2}+b x+c=0$. One starts
with a wrong value of b and find the roots to be 2 and
6. The other starts with the wrong values of c and find
the roots to be $+2,-9$. The correct roots of the equation are

D View Text Solution

6. If one root of $5 x^{2}+13 x+k=0$ be the reciprocal of the other root then the value of k is

D Watch Video Solution

7. . For what value of m will the equation $\frac{x^{2}-b x}{a x-c}=\frac{m-1}{m+1}$ have roots equal in magnitude but opposite in sign?

Watch Video Solution

8. If one root of the equation $a x^{2}+b x+c=0$ is the square of the other, then

Watch Video Solution

9. The set of values of p for which the roots of the equation $3 x^{2}+2 x+p(p-1)=0$ are of opposite signs is :

(D) Watch Video Solution

10. If $\left(x^{2}-3 x+2\right)$ is a factor of $x^{4}-p x^{2}+q=0$, then the values of p and q are
11. The roots of the equation
$(b-c) x^{2}+(c-a) x+(a-b)=0$

- Watch Video Solution

12. If the ratio of the roots of $x^{2}+p x+q=0$ be equal to the ratio of the roots of $x^{2}+l x+m=0$, then

D Watch Video Solution

Multiple Choice Questions

1. If α and β are the roots of the equation $x^{2}+x+1=0$, the equation whose roots are α^{19} and β^{7} is
A. $x^{2}-x-1=0$
B. $x^{2}-x+1=0$
C. $x^{2}+x-1=0$
D. $x^{2}+x+1=0$

Answer: D

2. if α and β are the roots of $a x^{2}+b x+c=0$ then
the value of $\left\{\frac{1}{a \alpha+b}+\frac{1}{a \beta+b}\right\}$ is
A. $\frac{a}{b c}$
B. $\frac{b}{a c}$
C. $\frac{c}{a b}$
D. None

Answer: B
3. If α and β are the roots equation $a x^{2}-2 b x+c=0$, then $\alpha^{3} \beta^{3}+\alpha^{2} \beta^{3}+\alpha^{3} \beta^{2}=$
(A) $\frac{c^{2}}{a^{3}}(c+2 b)$
(B) $\frac{c^{2}}{c^{3}}(c-2 b)$
(C) $b \frac{c^{2}}{a^{3}}$
(D) none of
these
A. $\frac{c^{2}(c+2 b)}{a^{3}}$
B. $\frac{b c^{2}}{a^{3}}$
C. $\frac{c^{2}}{a^{3}}$
D. None

Answer: A
4. Ramesh and Mahesh solve an equation. In solving

Ramesh commits a mistake in constant term and find the roots are 8 and 2 . Mahesh commits a mistake in the coefficient of x and find the roots -9 and -1 . The corret roots are
A. $-8,2$
B. 9,1
C. 9,-1
D. $-8,-2$

Answer: B
5. If 8,2 are roots of the equation $x^{2}+a x+\beta$ and 3,3 are roots of $x^{2}+\alpha x+b=0$ then roots of the equation $x^{2}+a x+b=0$ are
A. 8,-1
B. $-9,2$
C. $-8,-2$
D. 9,1

Answer: D

6. Q. Two students while solving a quadratic equation in x, one copied the constant term incorrectly and got the roots as 3 and 2. The other copied the constant term and coefficient of x^{2} as -6 and 1 respectively.

The correct roots are :
A. $3,-2$
B. $-3,2$
C. $-6,-6$
D. $6,-1$

Answer: D

7. If $\alpha+\beta=3, \alpha^{3}+\beta^{3}=7$, then α and β are the roots of
A. $3 x^{2}+9 x+7=0$
B. $9 x^{2}-27 x+20=0$
C. $2 x^{2}-6 x+15=0$
D. None of these

Answer: B

D Watch Video Solution
8. If α, β are the roots of $a x^{2}+2 b x+c=0$ and $\alpha+\delta, \beta+\delta$ be those of $A x^{2}+2 B x+C=0$ then
prove that $\frac{b^{2}-a c}{B^{2}-A C}=\left(\frac{a}{A}\right)^{2}$
A. $\left(\frac{a}{A}\right)^{2}$
B. $\left(\frac{A}{a}\right)^{2}$
C. 0
D. 1

Answer: A
9. The condition that the roots of the equation $a x^{2}+b x+c=0$ be such that one root is n times the other is
A. $n a^{2}=b c(n+1)^{2}$
B. $n b^{2}=c a(n+1)^{2}$
C. $n c^{2}=a b(n+1)^{2}$
D. None of these

Answer: B

10. If the roots of the equation $a x^{2}+b x+c=0$ are in the ratio $m: n$ then
A. $m n a^{2}=(m+n) c^{2}$
B. $m n b^{2}=(m+n) a c$
C. $m n b^{2}=(m+n) 2 a c$
D. None of these

Answer: C
11. If one root of the equation $x^{2}-x-k=0$ be square of the other, then k is equals to
A. $2 \pm \sqrt{3}$
B. $3 \pm \sqrt{2}$
C. $2 \pm \sqrt{5}$
D. $5 \pm \sqrt{2}$

Answer: C
12. 35 . If the sum of the roots of $a x^{2}+b x+c=0$ be equal to sum of the squares, then- (A) $2 \mathrm{ac}=\mathrm{ab}+\mathrm{b} 2$ (B) 2ab-bc $+c 2 c$ (D) None of these (D) None of these
(C) $2 \mathrm{bc}-\mathrm{ac}+2$
A. $a b+b^{2}=2 a c$
B. $b c+c^{2}=2 a b$
C. $a c+c^{2}=2 b c$
D. None of these

Answer: A
13. If $\sin \theta$ and $\cos \theta$ are the roots of the equation

$$
\begin{align*}
& l x^{2}+m x+n=0, \text { then (A) } l^{2}-m^{2}+2 \ln =0 \tag{B}\\
& l^{2}+m^{2}+2 \ln =0 \\
& l^{2}+m^{2}-2 \ln =0
\end{align*}
$$

$$
\text { A. } l x^{2}-m^{2}+2 \ln =0
$$

$$
\text { B. } l^{2}+m^{2}+2 \ln =0
$$

$$
\text { C. } l^{2}-m^{2}-2 \ln =0
$$

$$
\text { D. } l^{2}+m^{2}-2 \ln =0
$$

Answer: A
14. If one root of the equation $i x^{2}-2(i+1) x+(2-i)=0$ is $2-\mathrm{i}$, then the other root is
A. $-i$
B. $2+i$
C. i
D. $2-i$

Answer: A

D Watch Video Solution
15. Find the number of real roots of the equation $(x-1)^{2}+(x-2)^{2}+(x-3)^{2}=0$.
A. 2
B. 1
C. 0
D. 3

Answer: C
16. if p and q are non zero constants, the equation $x^{2}+p x+q=0$ has roots α and β then the equation $q x^{2}+p x+1=0$ has roots
A. α and $\frac{1}{\beta}$
B. $\frac{1}{\alpha}$ and β
C. $\frac{1}{\alpha}$ and $\frac{1}{\beta}$
D. None of these

Answer: C

17. The inequality $|2 x-3|<1$ is valid when x lies in the interval
A. $(3,4)$
B. $(1,2)$
C. $(-1,2)$
D. $(-4,3)$

Answer: B

D Watch Video Solution
18. For the equation $3 x^{2}+p x+3=0, p>0$, if one of the root is square of the other, then p is equal to $\frac{1}{3}$ (b) 1 (c) 3 (d) $\frac{2}{3}$
A. $\frac{1}{3}$
B. 1
C. 3
D. $\frac{2}{3}$

Answer: C

19. If the ratio of the roots of $x^{2}+p x+q=0$ be equal to the ratio of the roots of $x^{2}+l x+m=0$, then
A. $p^{2} m=q^{2} l$
B. $p m^{2}=q^{2} l$
C. $p^{2} l=q^{2} m$
D. $p^{2} m=l^{2} q$

Answer: D

20. both roots of the equation

$$
(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0
$$

are
A. positive
B. negative
C. real
D. imaginary

Answer: C

