đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MCGROW HILL EDUCATION PHYSICS (HINGLISH)

ELECTRIC CURRENT

Elementary Questions

1. When a body is negatively charged by
friction, it means
A. the body has acquired excess of electrons
B. the body has acquired excess of protons
C. the body has lost some electrons
D. the body has lost some neutrons

Answer: A

D Watch Video Solution

2. An electric charge on a body produces
A. a magnetic field only
B. an electric field only
C. both electric and magnetic field
D. neither electric nor magnetic field

Answer: B

D Watch Video Solution
3. There is no flow of current between two charged bodies when connected because
A. they have the same quantity of charge
B. they have the same potential
C. they have the same capacity
D. they have the same ratio of potential per unit charge

Answer: B

- Watch Video Solution

4. If a charged body attracts another body, the charge on the other body
A. must be negative
B. must be positive
C. must be zero
D. may be negative or positive or zero

Answer: D
(Watch Video Solution

5. Electromotive force represents

A. force
B. energy
C. energy per unit charge
D. current

Answer: C
(Watch Video Solution
6. The unit of e.m.f is
A. dyne
B. volt
C. ampere
D. ampere

Answer: B

D Watch Video Solution

7. Number of kilowatt-hours = $\frac{\text { volt } \times \text { ampere } \times}{1000}$
A. time in seconds
B. time in minutes
C. time in hours
D. time in days

Answer: C

D Watch Video Solution
8. The commonly used safety fuse wire is made of
A. copper
B. lead
C. nickel
D. an alloy of tin and lead

Answer: D

D Watch Video Solution

9. Kilowatt hour is the unit of

A. power
B. energy
C. impulse
D. force

Answer: B

- Watch Video Solution

10. 1 kWH is equal to
A. $3.6 \times 10^{6} M J$
B. $3.6 \times 10^{5} \mathrm{MJ}$
C. $3.6 \times 10^{2} M J$
D. $3.6 M J$

Answer: D

D Watch Video Solution

11. Electron volt is the unit of
A. energy
B. potential difference
C. charge
D. charge to mass

Answer: A

D Watch Video Solution

12. One million electron volt $(1 M e V)$ is equal to
A. $1.6 \times 10^{-19} J$
B. $1.6 \times 10^{-14} J$
C. $1.6 \times 10^{-13} J$

D. $1.6 \times 10^{13} \mathrm{~J}$

Answer: C

D Watch Video Solution

13. If a person has five resistors each of value
$1 / 5 \mathrm{ohm}$, then the maximum resistance he can
obtain by connecting them is (A) 1 ohm (B) 5
ohm (C) 10 ohm (D) 25 ohm
A. 1Ω
B. 5Ω
C. $\frac{1}{2} \Omega$
D. $\frac{2}{5} \Omega$

Answer: A

- Watch Video Solution

14. What is the minimum resistance the one can obtain by connecting all the five resistances each of $1 / 5 \Omega$
A. $\frac{1}{10} \Omega$
B. $\frac{1}{5} \Omega$
C. $\frac{1}{50} \Omega$
D. $\frac{1}{25} \Omega$

Answer: D

D Watch Video Solution

15. Materials wich allow larger currents to fow through them are called
A. insulatous
B. conductors
C. semiconductors
D. alloys

Answer: B

D Watch Video Solution
16. If I is a current through a wire and e is the
change of electron, then the number of electrons in t seconds will be given by
A. $\frac{I e}{t}$
B. Ite
C. e / It
D. $I t / e$

Answer: D

D Watch Video Solution

17. Conventionally, the direction of the current is taken as
A. the direction of flow of negative charge
B. the direction of flow of atoms
C. the direction of flow of molecules
D. the direction of flow of positive charge

Answer: D

D View Text Solution

18. How will the reading in the ammeter A of

Fig. 6.39 be affected if another identical bulb
Q is connected in parallel to P as shows. The
voltage in the mains is maintained at a constant value.

A. the reading will be reduced to one-half.
B. the reading will not be affected.
C. the reading will be double the previous
value.
D. the reading wil be increased four-fold.

Answer: C

D Watch Video Solution

19. In the circuit shown below, the ammeter A
reads 5 A and the voltmeter V reads 20 V The
correct value of resistance R is

A. exactlt 4Ω.

B. slightly greater than 4Ω

C. slightly less than 4Ω

D. zero

Answer: B

D Watch Video Solution

20. The force between two parallel wires carrying currents has been used to define
A. ampere
B. coulomb
C. volt
D. watt

Answer: A

- Watch Video Solution

21. The unit of specific resistance is
A. ohm
B. ohm

C. ohm-metre

D. ohm per metre

Answer: C

D Watch Video Solution

22. The slope of voltage (V) versus current (I) is
called

A. resistance

B. conductance

C. resistivity
D. conductivity

Answer: A

D Watch Video Solution
23. The voltage V and current I v graphs for a conductor at two different temperatures
T_{1} and T_{2} are shown in the figure. The relation between T_{1} and T_{2} is

CI
A. $T_{1}=T_{2}$
B. $T_{1}>T_{2}$
C. $T_{1}<T_{2}$
D. nothing can be decided

Answer: B

D Watch Video Solution
24. The current in a metllic conductor is plotted against voltage at two different
temperatures T_{1} and T_{2}. Which is correct

A. $T_{1}=T_{2}$
B. $T_{1}>T_{2}$
C. $T_{1}<T_{2}$
D. nothing can be decided

Answer: C

- Watch Video Solution

25. What is the current (I) in the circuit ?

A. ${ }^{1} / 2 \mathrm{~A}$
B. $2 A$
C. $\frac{3}{2} A$
D. none of these

Answer: B

- Watch Video Solution

26. The resistance of germanium
with
rise in temperature.
A. increases
B. decreases

C. remains the same

D. first increases then decreases

Answer: B

- Watch Video Solution

27. A suitble unit for expressing electric field
strength is
A. V / C
B. C / m^{2}
C. $A m$
D. N / C

Answer: D

- Watch Video Solution

28. The effective resistance of a circuit containing resistances in parallel is
A. equal to the sum of the individual
B. smaller than any of the individual resistances
C. greater than any of the individual resistances
D. sometimes greater and sometimes
smaller than the individual resistances

Answer: B

D Watch Video Solution

29. Electric intensity is a quantity and its
units are
A. a scalar quantity
B. a vector quantity
C. neither scalar nor vector

D. sometimes scalar and sometimes vector

Answer: B

D Watch Video Solution
30. Electric potential is a Quantity and
its units are
A. a scalar quantity
B. a vector quantity
C. neither scalar nor vector
D. sometimes scalar and sometimes vector

Answer: A

D Watch Video Solution
31. Choose the only vector amongst the following:
A. electric potential
B. e.m.f.
C. electrical energy
D. electrostatic force

Answer: D
(D) Watch Video Solution

32. One ohm is equal to

A. $10^{6} M \omega$
B. $10^{9} M \omega$
C. $10^{-6} M \Omega$
D. none of these

Answer: C
(Watch Video Solution
33. When the temperature of a metallic conductor is increased, its resistance
A. increaaes
B. decreases
C. remains the same with rise
D. first increases then decreases

Answer: A
(Watch Video Solution
34. The resistance of carbon with rise in the temperature.
A. increases
B. decreases
C. remains the same
D. first increases then decreases

Answer: B

D Watch Video Solution
35. The resistance of a semiconductor material
(germainum or silicon) \qquad with rise in
temperature.
A. increase
B. decreases
C. remain the same
D. first increases then decreases

Answer: B

D Watch Video Solution

36. Units of conductance are

A. ohm

B. henry
C. mho

D. moles/litre

Answer: C
37. In Coulomb's law, the constant of proportionality K has the units
A. N
B. $N m^{2}$
C. $N C^{2} / m^{2}$
D. $N m^{2} / C^{2}$

Answer: D
(Watch Video Solution
38. In coulomb's law,the magnitude of K in $N m^{2} / C^{2}$ is
A. 9×10^{5}
B. 9×10^{11}
C. 9×10^{3}
D. none of these

Answer: B

D Watch Video Solution

39.1 volt equals

A. 1 J

B. $1 \mathrm{C} / \mathrm{J}$
C. $1 \mathrm{~J} / \mathrm{C}$
D. none of these

Answer: C
40. A graph is plotted between the potential difference (applied across the ends of a conductor) and the current (following through
the conductor). The graph is a straight line
A. having intercepts on both axes
B. having an intercept on the X-axis
C. having in intercept on the Y-axis
D. none of these

Answer: D

41. In order to measure current in a resistance present in a cirucit, the ammeter is connected
A. in series
B. in parallel
C. in series or parallel
D. nothing can be decided

Answer: A
42. Good conductors have many loosely bound
A. atoms
B. protons
C. molecules
D. electrons

Answer: D

- Watch Video Solution

43. In our house all electric devices operate on

220 V. It implies that

A. they are connected in parallel
B. they are connected in series
C. they all have currents of equal values
D. they all have the same resistance

Answer: A

- Watch Video Solution

44. What is the total resistance across A and B
in the circuit shown in

A. 1Ω
B. 2Ω
С. 1.5Ω
D. none of these

Answer: B

- Watch Video Solution

45. What constitutes current in a metal wire?
A. Electrons
B. Protons
C. Atoms

D. Molecules

46. The fluxed resistance is called

A. reeostat

B. resistor

C. key

D. switch

Answer: B
47. The variable resistance is called
A. resistor
B. reeostat
C. open switch
D. none of these

Answer: B
48. A person connects four $\frac{1}{4} \Omega$ cells in series but one cell has its terminal reversed. The external resistance is 1Ω. If each cell has an emf of 1.5 V , the currenet folowing is
A. $\frac{4}{3} A$
B. $\frac{3}{4} \mathrm{~A}$
C. $1.5 A$
D. zero

Answer: C

49. The equivalent resistance between P and Q
will be

A. 7Ω
B. 2Ω

5
C. $\frac{-}{3} \Omega$
D. 1Ω

Answer: D

D Watch Video Solution

50. If a wire of resistance 1Ω is stretched to double its length, then the resistnance will become
A. $\frac{1}{2} \Omega$
B. 2Ω
C. $\frac{1}{4} \Omega$
D. 4Ω

Answer: D

- Watch Video Solution

51. Which switchin the circuit when closed wil produce short-circuiting ?

A. A
B. B
C. C
D. None of the above

Answer: A

D Watch Video Solution
52. Seven identical lamps of resistance 220Ω each are connected to a 220 V line as shown in

Then the reading in the ammeter will be

A. $\frac{1}{10} A$
B. $\frac{2}{5} A$
C. $\frac{3}{10} A$
D. none of these

Answer: D

53. What is the resistance between A and B in

the following circuit

A. 1Ω
B. 2Ω
C. $\frac{1}{2} \Omega$
D. $\frac{3}{2} \Omega$

- Watch Video Solution

Three identical bulbs P, Q and R are connected to a battery as shown in the figure. When the circuit is closed.
A. R will be bright, but Q and P dim
B. P, Q and R, all will be equally bright

C. Q and R will immediately burn out

D. P will be bright, but Q and R dim

Answer: D

D Watch Video Solution

55. An electric current is always accompained by a magnetic field', was discovered by
A. Oersted
B. Maxwell

C. Faraday

D. Ohm

Answer: A
(D) Watch Video Solution
56. What is the resistance between P and Q ?

A. $\frac{3}{4} \Omega$
B. $\frac{4}{3} \Omega$
C. $\frac{16}{3} \Omega$
D. Infinity

Answer: C

D Watch Video Solution

57. The conductance expressed in

A. ohm
B. $(o h m)^{-1}$
C. volt

$$
\text { D. }(o h m \cdot m)^{-1}
$$

A. ohm m
B. ohmm ${ }^{-1}$
C. $o h m m^{2}$
D. $(o h m)^{-1}$

Answer: A

59. The reciprocal of resistity of a conductor is

A. conductance
B. capacitance
C. conductivity
D. none of these

Answer: C

60. Good conductors have many loosely bound

A. atoms
B. molecules
C. protons

D. electrons

Answer: D

61. One ampere equals

A. $10^{6} \mu \mathrm{~A}$
B. $10^{-6} \mu A$
C. $10^{-3} \mu A$
D. 10 A

Answer: A
62. How many electrons consitute a currenet of one microampere?

A. 6.25×10^{6}
B. 6.25×10^{12}
C. 6.25×10^{9}
D. 6.25×10^{15}

Answer: B
(Watch Video Solution
63. A suitable unit for expressing the strength of electric field is
A. V/C
B. C / m
C. N/C
D. C / N

Answer: C

D Watch Video Solution
64.1 volt equals

A. 1 joule

B. 1 jule per coulomb
C. 1 coulomb per metre

D. 1 newton per coulomb

Answer: B
65. $1 \mathrm{Vm}^{-1}$ equals
A. $1 N C^{-1}$
B. $1 N C^{-2}$
C. $1 \mathrm{Jm}^{-1}$
D. $1 \mathrm{Jm}^{-2}$

Answer: A
66. The reciprocal of resistance is conductance.

If the unit of resistance is ohm, the unit of conductance will be
A. ohm
B. volt
C. hmo
D. ohm metre ${ }^{-1}$

Answer: C

D Watch Video Solution

Higher Order Thinking Questions

1. With decreae in density of the material, the resistance of the conductor
A. increaes
B. decreases
C. remains the same
D. first increases then decreases

Answer: A

D View Text Solution
2. With decrease in temperature, resistivity of a conductor
A. increases
B. decreases
C. remains the same
D. first increases then decreases

Answer: A

3. If length of a metallic wire becomes n times,
its resistance becomes
A. n^{2} times
B. \sqrt{n} times
C. $\left(\frac{1}{\sqrt{n}}\right)$ times
D. $\left(\frac{1}{n^{2}}\right)$ times

Answer: A
(D) Watch Video Solution
4. If radius of a metallic wire becomes n times,
its resistance becomes
A. n^{2} times
B. $\left(\frac{1}{n^{2}}\right)$ times
C. n^{4} times
D. $\left(\frac{1}{n^{4}}\right)$ times

Answer: D

D Watch Video Solution
5. If area of cross-section of a metalic wire becomes n times, its resistance becomes
A. $\left(\frac{1}{n^{2}}\right)$ times
B. n^{2} times
C. n^{4} times
D. $\left(\frac{1}{n^{4}}\right)$ times

Answer: A

- Watch Video Solution

6. What happens to its resistivity when some impurity is added in a conductor?
A. Increaes
B. decreases
C. Remains the same
D. first increases then decreases

Answer: A

D View Text Solution
7. If a wire of resistacne R is fold n times so
that its length becomes $\left(\frac{1}{n}\right)^{t h}$ of its initial length, then its new resistance becomes
A. $n R$
B. $n^{2} R$
C. $\frac{R}{n}$
D. $\frac{R}{n^{2}}$

Answer: D
8. A conductor behaves as a superconductor
A. very high temperature
B. high temperature
C. room temperature
D. very low tempetature

Answer: D

- Watch Video Solution

9. A rectangular conducting cube (resistivity ρ
) has dimensions $l \times b \times h$. When current is
passed through the length side, the resistance offered by the cube is
A. $\frac{\rho l}{b h}$
B. $\frac{\rho b}{h l}$
C. $\frac{\rho h}{l b}$
D. $\rho \frac{l b}{h^{2}}$

Answer: A
10. If equivalent resistances of R_{1} and R_{2} in
series and parallel be r_{1} and r_{2} respectively,
then $\frac{R_{1}}{R_{2}}$ equals
A. $\frac{r_{1}}{r_{2}}$
B. $\frac{r_{1} r_{2}}{r_{1}+r_{2}}$
$r+\sqrt{r_{1}^{2}-4 r_{1} r_{2}}$
C.
$r_{1}+\sqrt{r_{1}^{2}+4 r_{1} r_{2}}$
$r+\sqrt{r_{1}^{2}-4 r_{1} r_{2}}$
D.

$$
r_{1}-\sqrt{r_{1}^{2}+4 r_{1} r_{2}}
$$

Answer: D

D Watch Video Solution

11. If an equilateral triangle is made of a uniform wire is resistance R, the equivalent resistance between the ends of sides is
A. $\frac{2 R}{3}$
B. $\frac{R}{3}$
C. $\frac{2 R}{9}$
D. $\frac{9 R}{2}$

Answer: C

D Watch Video Solution

12. A resistor of 25 cm length and 4 ohm is stretched to a uniform wire of 50 cm length.

The resistance now is
A. 1Ω
B. 12Ω
C. 16Ω
D. 20Ω

Answer: C

- Watch Video Solution

13. A wire of resistance 1Ω is stretched so as to
change its diameter by 0.25%. The percentage change in its resistance is
A. 1.0%
B. 2.0%
C. 4.0%
D. 8.0%

Answer: A

D Watch Video Solution

14. The V-I graph for a good conductor makes
angle 42° with V-axis. Here V denotes voltage
and I denotes current. Then the resistance of
the conductor will be
A. $\sin 42^{\circ}$
B. $\cos 42^{\circ}$
C. $\tan 42^{\circ}$

D. $\cot 42^{\circ}$

Answer: D

D Watch Video Solution

15. If a variable resistance is connected to a
cell of constant e.m.f., then which one of the
following grphs represnets the relationship between current I and resistanc R?

Answer: D
(Watch Video Solution
16. When the switch S is closed in the given

circuit, the current passed through it is

A. $2 A$
B. $1 A$
C. $0.6 A$
D. zero

Answer: A

D Watch Video Solution

17. You are given three equal resistors. How many resistances can be obtained by joining them in series and parallel grouping ?
A. 2
B. 3
C. 4
D. 6

Answer: C

D Watch Video Solution

18. $A 8 \Omega$ resistance wire is bent through 180°
at its mid point and the two halves are twisted
together. Then the resistance is
A. 16Ω
B. 4Ω
C. 2Ω
D. 1Ω

D Watch Video Solution

19. The equivalent resistance of network of
three 4Ω resistors can not be
A. 12Ω
B. 1.33Ω
C. 6Ω
D. 4Ω

Answer: D

- Watch Video Solution

20. Six equal resistances, each 1Ω, are joined to form a network as showing figure Then the resistance between any two corners is

A. 0.5Ω
B. 2Ω
C. 1Ω
D. 1.5Ω

Answer: A

D Watch Video Solution

21. The resistance of the following circuit between P and Q is

A. 8Ω
B. 6Ω
C. 4Ω
D. 2Ω

Answer: C
(Watch Video Solution
22. The resistivity of a wire is ρ, its volume is
$3 m^{3}$ and resistance is 3Ω, then its length will
be

$$
\begin{aligned}
& \text { A. } \frac{3}{\rho} \\
& \text { B. } \frac{3}{\sqrt{\rho}} \\
& \text { C. } \frac{\sqrt{3}}{\rho} \\
& \text { D. } \frac{\rho}{\sqrt{3}}
\end{aligned}
$$

Answer: B

D Watch Video Solution
23. Variation of current passing through a conductor as the voltage applied across its ends is varied, as shown in figure. If the resistance is determined at the points $\mathrm{P}, \mathrm{Q}, \mathrm{T}$ and L. We find that

A. resistance at T and L are equal
B. resistance at Q is higher than at P

C. resistance at T is higher than at Q

D. None of the above

Answer: D

D Watch Video Solution

24. The effective resistance between points L and M is

A. $\frac{2 R}{3}$
B. $\frac{R}{3}$
C. $\frac{3 r}{5}$
D. $2 r$

Answer: A

25. E.m.f. of a cell is measured in

A. J
B. $J C^{-1}$
C. $N k g^{-1}$
D. $W m^{-2}$

Answer: B
26. What is unit for resistivity of a metal ?
A. ohm
B. $o h m \mathrm{~cm}^{-1}$
C. ohmcm^{-2}
D. ohmcm

Answer: D
27. A wire of resistance r is cut into m equal parts. These parts are then connected in parallel . The equivalent resistance of the combination will be
A. $m r$
B. r / m
C. m / r

$$
\text { D. } r / m^{2}
$$

Answer: d
28. The resistance will be least in a wire with

dimensions:

A. $\frac{L}{3}, 3 A$
B. $\frac{L}{2}, 2 A$
C. $3 L, A$
D. L, A

Answer: A
29. The effective resistance between P and Q in the given circuit is

A. $\frac{3 r}{2}$
B. $3 r$
C. $2 r$
D. $\frac{r}{2}$

Answer: D

- Watch Video Solution

