©゙ doubtnut

India's Number 1 Education App

MATHS

BOOKS - MCGROW HILL EDUCATION MATHS (HINGLISH)

APPLICATIONS OF DERIVATIVES

Illustration

1. Find the rate of change of volume of a sphere with respect to its radius when $\mathrm{r}=4 \mathrm{~cm}$

- Watch Video Solution

2. A particle moves along the curve $12 y=x^{3}$. . Which coordinate changes at faster rate at $x=10$?
3. A point move in a straight line so that its distance from the start in t sec is equal to $s=\frac{1}{4} t^{4}-4 t^{3}+16 t^{2}$. What will be acceleration and at what times is its velocity equal to zero?

- Watch Video Solution

4. A body whose mass is 3 kg performs rectilinear motion according to the formula $s=1+t+t^{2}$, where s is measured the kinetic energy $\frac{1}{2} m v^{2}$ and t in second.
Determine the kinetic energy $\frac{1}{2} m v^{2}$ of the body in 5 sec after its start.

- Watch Video Solution

5. Find the increment and differential of the function, $f(x)=2 x^{2}-3 x+2$ when x changes to 1.99 from 2.
6. Derive the equation of tangent and normal at $\left(x_{0}, y_{0}\right)$ of the curve $y=\log x$

- Watch Video Solution

7. Verify Rolles theorem for function $f(x)=4^{\sin x}$ on $[0, \pi]$

- Watch Video Solution

8. The number of values of k for which the equation $x^{3}-3 x+k=0$ has two distinct roots lying in the interval $(0,1)$ is three (b) two (c) infinitely many (d) zero

- Watch Video Solution

9. The function $y=\sqrt{2 x-x^{2}}$ (A) increases in (0,2) (B) increases in (0 , 1) but decreases in (1,2) (C) Decreases in (0,2) (D) Increases in (1,2) but decreases in $(0,1)$

- Watch Video Solution

10. Find the interval of monotonicity of $y=\frac{1-x+x^{2}}{1+x+x^{2}}$

- Watch Video Solution

11. Find the extrema of $y=2 x^{3}-3 x^{2}$. Y is differentiable function and $y^{\prime}=6 x^{2}-6 x=6 x(x-1)$

- Watch Video Solution

12. Find the greatest and least value of $y=x^{3}-3 x^{2}+6 x-2$ on
$[-1,1] \quad y \quad$ is differentiable function of x and
$y^{\prime}(x)=3 x^{2}-6 x+6=3\left(x^{2}-2 x+2\right)=3(x-1)^{2}>0$.

- Watch Video Solution

Solved Examples Concept Based Single Correct Answer Type Questions

1. The approximate value of $\cos 31^{\circ}$ is (Take $1^{\circ}=0.0174$)
A. 0.52
B. 0.851
C. 0.641
D. 0.681

Answer: B

Watch Video Solution
2. The tangent at $A(2,4)$ on the curve $y=x^{3}-2 x^{2}+4$ cuts the x axis at T then length of $A T$ is
A. $(2,0)$
B. $\left(\frac{7}{2}, 0\right)$
C. $\left(\frac{11}{9}, 0\right)$
D. $\left(\frac{14}{9}, 0\right)$

Answer: D

- Watch Video Solution

3. The slope of the tangent to the curve $x=t^{2}+3 t-8, y=2 t^{2}-2 t-5$ at the point $(2,-1)$, is
A. $2 / 3$
B. $6 / 7$
C. $4 / 5$
D. $3 / 2$

Answer: B

- Watch Video Solution

4. The interval in which $y=\frac{1}{4 x^{3}-9 x^{2}+6 x}$ is increasing is
A. $(-\infty, \infty)$
B. $(0,1 / 2)$
C. $(1 / 2,1)$
D. $(1, \infty)$

Answer: C

5. $y=x-\log (1+x)$ increasing in
A. 1
B. 0
C. -1
D. $\frac{1}{2}$

Answer: B

- Watch Video Solution

6. A covered box of volume $72 \mathrm{~cm}^{3}$ and the base sides in a ratio of $1: 2$
is to be made. The length all sides so that the total surface area is the least possible is
A. $2,4,9$
B. 8,3,3
C. 6,6,2
D. 6,3,4

Answer: D

- Watch Video Solution

7. A point on the curve $y=x^{3}-3 x+5$ at which the tangent line is parallel to $y=-2 x$ is
A. $(1,3)$
B. $(0,5)$
C. $\left(\frac{1}{\sqrt{3}}, 5-\frac{8 \sqrt{3}}{9}\right)$
D. $\left(\frac{1}{\sqrt{2}}, 0\right)$

Answer: C

- Watch Video Solution

8. The difference between the greatest and the least values of the function $f(x)=\sin 2 x-x$ on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
A. $\frac{\pi}{2}$
B. 1
C. 2
D. $-\frac{\pi}{2}$

Answer: A

- Watch Video Solution

9. The point of inflection of $y=x^{3}-5 x^{2}+3 x-5$ is
A. $\frac{1}{2}$
B. $\frac{3}{4}$
C. $\frac{7}{4}$
D. $\frac{5}{3}$

Answer: D

- Watch Video Solution

10. The rate of change of the function $f(x)=3 x^{5}-5 x^{3}+5 x-7$ is minimum when
A. $\frac{3}{4}$
B. $\frac{5}{4}$
C. $\frac{2}{3}$
D. $\frac{3}{2}$

Answer: B

- Watch Video Solution

Solved Examples Level 1 Single Correct Answer Type Questions

1. A spherical balloon is expanding. If the radius in increasing at the rate of 2 inches per minute the rate at which the volume increases (in cubic inches per minute) when the radius is 5 inches is
A. 100π
B. 1000π
C. 2000π
D. 500π

Answer: C

- Watch Video Solution

2. An object is moving in the clockwise direction around the unit circle $x^{2}+y^{2}=1$. As it passes through the point $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$, its y coordinate is decreasing at the rate of 3 unit per second. The rate at which the x-coordinate changes at this point is (in unit per second)
A. 2
B. $3 \sqrt{3}$
C. $\sqrt{3}$
D. $2 \sqrt{3}$

Answer: B

- Watch Video Solution

3. An approximate value of $\cos 40^{\circ}$ is
A. 0.7688
B. 0.7071
C. 0.7117
D. 0.7

Answer: A
4. The value of x for which the tangents to the curves $y=x \cos x, y=(\sin x) / x$ are parallel to the axis of x are roots of (respectively)
A. $\sin x=x, \tan x=x$
B. $\cot x=x, \sec x=x$
C. $\cot x=x, \tan x=x$
D. $\tan x=x, \cot x=x$

Answer: C

- Watch Video Solution

5. The length of the subtangent to the ellipse $x=a \cos t, y=b \sin t$ at $t=\pi / 4$ is
A. a
B. b
C. $b / \sqrt{2}$
D. $a / \sqrt{2}$

Answer: D

- Watch Video Solution

6. Find the angle of intersection of $y=a^{x} a n d y=b^{x}$
A. $\frac{\log a b}{1+\log a b}$
B. $\frac{\log a / b}{1+(\log a)(\log b)}$
C. $\frac{\log a b}{1+(\log a)(\log b)}$
D. none of these

Answer: B

7. For the parabola $y^{2}=16 x$, the ratio of the length of the subtangent to the abscissa is
A. 2:1
B. 1:1
C. $x: y$
D. $x^{2}: y$

Answer: A

- Watch Video Solution

8. If the tangent to the curve $x^{3}-y^{2}=0$ at $\left(m^{2},-m^{2}\right)$ is parallel to
$y=-\frac{1}{m} x-2 m^{3}$, then the value of m^{3} is
A. $(1 / 3)$
B. $1 / 6$
C. $2 / 3$
D. $-2 / 3$

Answer: C

(D) Watch Video Solution

9. The function $y=\frac{a x+b}{(x-1)(x-4)}$ has turning point at $P(2,1)$. Then find the value of a and b.
A. $c=2, d=0$
B. $c=1, d=0$
C. $c=1, d=-1$
D. $c=1, d=1$

Answer: B

10. The distance between the origin and the normal to the curve $y=e^{2 x}+x^{2}$ at $x=0$ is
A. $1 / \sqrt{5}$
B. $2 / \sqrt{5}$
C. $3 / \sqrt{5}$
D. $2 / \sqrt{3}$

Answer: B

- Watch Video Solution

11. The function $\mathrm{f}(\mathrm{x})=(\sin x)+[\cos x], 0<x \leq \pi / 2$
A. is continuous on $(0, \pi / 2)$
B. is strictly decreasing in $(0, \pi / 2)$
C. is stricitly increasing in $(0, \pi / 2)$
D. has global maximum value 2

Answer: A

- View Text Solution

12. if f is an increasing function and g is a decreasing function on an interval I such that fog exists then
A. $f o g$ is a decreasing function
B. g of is an increasing function
C. fog is an increasing function
D. none of these

Answer: A

13. If a le $0 f(x)=e^{\wedge}(a x)+e^{\wedge}(-a x)^{\wedge}$ and $S=\{x: f(x)$ is monotonically increasing then S equals
A. $S=\{x: x>0\}$
B. $S=\{x: x<0\}$
C. $S=\{x: x>1\}$
D. $S=\{x: x<1\}$

Answer: B

- Watch Video Solution

14. Equation of the horizonatl tangent to the curve $y=e^{x}+e^{-x}$ is
A. $y=-2$
B. $y=-1$
C. $y=2$
D. none

Answer: C

- Watch Video Solution

15. If $f(x) \operatorname{and} g(x)$ be two function which are defined and differentiable for all $x \geq x_{0}$. If $f\left(x_{0}\right)=g\left(x_{0}\right) \operatorname{and}^{\prime}(x)>g^{\prime}(x)$ for all $f>x_{0}$, then prove that $f(x)>g(x)$ for all $x>x_{0}$.
A. $f(x)<g(x)$ for some $x>x_{0}$
B. $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})$ for some $x>x_{0}$
C. $f(x)>g(x)$ for all $x>x_{0}$
D. none of these

Answer: C

16. If $f(x)=2 x \cot ^{-1} x+\log \left(\sqrt{1+x^{2}}-x\right.$ then $\mathrm{f}(\mathrm{x})$
A. decreases on $(-\infty, \infty)$
B. decreases on $[0, \infty)$
C. neither decreases nor increases on $[0, \infty]$
D. increases on ($-\infty, \infty$)

Answer: D

- Watch Video Solution

17. The equation $x^{4}-7 x+2=0$ has
A. exactly two real and distinct solutions
B. has four real roots
C. no real root
D. all the four roots lie between 0 and 2

Answer: A

- Watch Video Solution

18. The maximum value of $x^{1 / x}$ is
A. $(1 / e)^{e}$
B. $e^{1 / e}$
C.e
D. $1 / e$

Answer: B

- Watch Video Solution

19. Let $P(x)=a_{0}+a_{1} x^{2}+a_{2} x^{4}++a_{n} x^{2 n}$ be a polynomial in a real
A. neither a maximum nor a minimum
B. only one maximum
C. only one minimum
D. none of these

Answer: C

- Watch Video Solution

20. $f(x)=\frac{x}{\sin x}$ and $g(x)=\frac{x}{\tan x}$, where $0<x \leq 1$ then in the interval
A. $f(x)$ and $g(x)$ are increasing functions
B. both $f(x)$ and $g(x)$ are decreasing functions
C. $f(x)$ is an increasing function
D. $g(x)$ is an increasing function

Answer: C

- Watch Video Solution

21. Examine the validity of Lagrange's mean value theorem for the function $f(x)=x^{2 / 3}$ in the interval $[-1,1]$.
A. $(0,0)$ is a point of maximum
B. $(0,0)$ is not a point of minimum
C. $(0,0)$ is a critical point
D. There is no crtical point

Answer: C

(D) Watch Video Solution

22. Let $f(x)=\frac{a x+b}{c x+d}(d a-c b \neq 0, c \neq 0)$ then $\mathrm{f}(\mathrm{x})$ has
A. a critical point
B. no point of inflection
C. a maximum
D. a minimum

Answer: B

(D) Watch Video Solution

23. If the only point of inflection of the function $f(x)-(x-a)^{m}(x-b)^{n}, m, n e N$ and $m \neq n$ is at $x=a$ then
A. $(a, 0),(b, 0)$ are the only critical points of f
B. there are $m+n$ critical points of f
C. there are exactly three critical points of f
D. none of these

- Watch Video Solution

24. A ball is dropped from a platform 19.6 m high. Its position function is
A. $x=-4.9 t^{2}+19.6(0 \leq t \leq 1)$
B. $x=-4.9 t^{2}+19.6(0 \leq t \leq 2)$
C. $x=-9.8 t^{2}+19.6(0 \leq t \leq 2)$
D. $x=-4.9+19.6(0 \leq t \leq 2)$

Answer: B

- Watch Video Solution

25. Let $\mathrm{f}(\mathrm{n})=20 n-n^{2}(n=1,2,3 \ldots)$, then
A. $f(n) \rightarrow \infty$ as $n \rightarrow \infty$
B. $f(n)$ has no maximum
C. The maximum value of $f(n)$ is greater than 200
D. none of these

Answer: D

- View Text Solution

26. plot the curve $y=[x]^{2}$
A. $(1,1)$
B. $(2,4)$
C. $(2 / 3,4 / 9)$
D. $(4 / 3,16 / 9)$
27. The smallest value of M such that $\left|x^{2}-3 x+2\right| \leq M$ for all x in $\left[1, \frac{5}{2}\right]$
A. $1 / 4$
B. $3 / 4$
C. $5 / 4$
D. $5 / 16$

Answer: B

- Watch Video Solution

28. The no. of solutions of the equation $a^{f(x)}+g(x)=0$ where $\mathrm{a}>0$, and $g(x)$ has minimum value of $1 / 2$ is :-
A. one
B. two
C. infinitely many
D. zero

Answer: D

- Watch Video Solution

29. The minimum value of $f(x)=|3-x|+|2+x|+|5-x|$ is
A. 0
B. 7
C. 8
D. 10

Answer: B

30. $x(x-2)(x-4), 1 \leq x \leq 4$, will satisfy mean value theorem at
A. 1
B. 2
C. $5 / 2$
D. $7 / 2$

Answer: A

- Watch Video Solution

31. If $\sqrt{x}+\sqrt{y}=\sqrt{a}$ then $\frac{d y}{d x}=$?
A. 2 a
B. a
C. $a / 2$
D. \sqrt{a}

Answer: B

- Watch Video Solution

32. x and y be two variables such that $x>0$ and $x y=1$. Then the minimum value of $x+y$ is
A. 1
B. $1 / 2$
C. 2
D. $1 / 4$

Answer: C

(D) Watch Video Solution

33. if $f(x)=\left(\frac{\sin (x+\alpha)}{\sin (x+\beta), \alpha \neq \beta}\right.$ then $\mathrm{f}(\mathrm{x})$ has
A. $\beta-\alpha=k \pi$
B. $\beta-\alpha \neq k \pi$
C. $\beta-\alpha=2 k \pi$
D. none of the abve

Answer: B

- Watch Video Solution

34. The tangent to the curve $y=x^{3}-6 x^{2}+9 x+4,0 \leq x \leq 5$ has maximum slope at x which is equal to
A. 2
B. 3
C. 4
D. none of these

Answer: D

- Watch Video Solution

35. The values of parameter a for which the point of minimum of the function $f(x)=1+a^{2} x-x^{3} \quad$ satisfies the inequality
$\frac{x^{2}+x+2}{x^{2}+5 x+6}<0$ are
$(2 \sqrt{3}, 3 \sqrt{3})$
$-3 \sqrt{3},-2 \sqrt{3})$
$(-2 \sqrt{3}, 3 \sqrt{3})(\mathrm{d})(-2 \sqrt{2}, 2 \sqrt{3})$
A. an empty set
B. $(-3 \sqrt{3},-2 \sqrt{3})$
C. $(2 \sqrt{3}, 3 \sqrt{3})$
D. $(-3 \sqrt{3},-2 \sqrt{3}) \cup(2 \sqrt{3}, 3 \sqrt{3})$

Answer: C

36. Find the point of intersection of the tangents drawn to the curve $x^{2} y=1-y$ at the points where it is intersected by the curve $x y=1-y$.
A. $(0,-1)$
B. $(1,1)$
C. $(0,1)$
D. none of these

Answer: C

37. The equation of the tangent to the curve $y=(2 x-1) e^{2(1-x)}$ at the point of its maximum, is
A. $y=1$
B. $x=1$
C. $x+y=1$
D. $x-y=-1$

Answer: A

- Watch Video Solution

38. If the function $f(x)=x^{2}+\alpha / x$ has a local minimum at $\mathrm{x}=2$, then the value of α is

- Watch Video Solution

39. Three normals are drawn to the parabola $y^{2}=4 x$ from the point $(c, 0)$. These normals are real and distinct when
A. $c=0$
B. $c=1$
C. $c=2$
D. $\mathrm{c}=3$

Answer: D

- Watch Video Solution

40. The function $f(x)=[\log (x-1)]^{2}(x-1)^{2}$ has :
A. loca extremum at $x=1$
B. point of inflection at $x=1$
C. local extremum at $\mathrm{x}=2$
D. point of inflection at $x=2$

Answer: C

41. If $f(x)=\log x$ satisfies Lagrange's theorem on $[1, e]$ then value of $c \in(1, e)$ such that the tangent at c is parallel to line joining $(1, f(1))$ and $(e, f(e))$ is
A. $e-\frac{3}{2}$
B. $\frac{1+e}{2}$
C. $e-1$
D. $e-\frac{1}{2}$

Answer: C

- Watch Video Solution

42. The value of c for which the conclusion of Lagrange's theorem holds for the function $\mathrm{f}(\mathrm{x})=\sqrt{a^{2}-x^{2}}, a>1$ on the interval $[1, \mathrm{a}]$ is
A. $\frac{a(a+1)}{2}$
B. $\frac{1+a}{2}$
C. $\frac{\sqrt{a(a+1)}}{2}$
D. $\frac{a(a-1)}{2}$

Answer: C

- Watch Video Solution

43. Let $f(x)\left\{\begin{array}{ll}|x-2|+a, & \text { if } x \leq 2 \\ 4 x^{2}+3 x+1, & \text { if } x>2\end{array}\right.$. If $\mathrm{f}(\mathrm{x})$ has a local minimum at $x=2$, then
A. $a>21$
B. $a \leq 21$
C. $a>30$
D. $a>24$

Answer: B

44. If $y=m x+2$ is parallel to a tangent to curve $e^{4 y}=1+16 x^{2}$ then
A. $|m|<1$
B. $|m|<1$
C. $|m|>1$
D. $|m| \geq 1$

Answer: A

(D) Watch Video Solution

45. Given the function $f(x)=x^{2} e^{-2 x}, x>0$. Then $\mathrm{f}(\mathrm{x})$ has the maximum value equal to
A. e^{-2}
B. $(2 e)^{-1}$
C. e^{-1}
D. none of these

Answer: A

- Watch Video Solution

46. if $f(x)=(x-4)(x-5)(x-6)(x-7)$ then.
A. $f^{\prime}(x)=0$ has four real roots
B. three roots of $\mathrm{f}^{\prime}(\mathrm{x})=0$ lie in $(4,5) \cup(5,6) \cup(6,7)$
C. the equation $f^{\prime}(x)=$ has only two roots
D. three roots of $\mathrm{f}^{\prime}(\mathrm{x})=0$ lie $(3,4) \cup(4,5) \cup(5,6)$

Answer: B

47. If $f(x)=\frac{x^{2}-1}{x^{2}+1}$. For every real number x, then the minimum value of f. does not exist because f is unbounded is not attained even through f is bounded is equal to 1 is equal to -1
A. does not exist because f is unbounded
B. is not attained even though f is bounded
C. is equal to 1
D. is equal to -1

Answer: D

- Watch Video Solution

48. For all $x \in(0,1)$
A. $e^{x}<1+x$
B. $\log _{e}(1+x)<x$
C. $\sin x>x$
D. $\log _{e} x>x$

Answer: B

- Watch Video Solution

49. Let $h(x)=f(x)-(f(x))^{2}+(f(x))^{3}$ for every real x. Then,
A. h increases whenever f decreases
B. h decreases whenever f increases
C. h increases or decreases accordingly as f increases or decreases
D. nothing can be claimed in general

Answer: C

- Watch Video Solution

50. Let $f(x)=a x^{3}+b x^{2}+c x+d, b^{2}-3 a c>0, a>0, c<0$. Then $f(x)$ has
A. local maximum at some $x \in R^{+}$
B. a local maximum at some $x \in R^{-}$
C. a local minima at $\mathrm{x}=0$
D. local minima at some $\quad x \in R^{-} \quad$ Itbr.

$$
R^{+}=(0, \infty), R^{-}=(-\infty, 0)
$$

Answer: B

- View Text Solution

51. If $f(x)=\left\{\begin{array}{ll}3-x^{2}, & x \leq 2 \\ \sqrt{a+14}-|x-48|, & x>2\end{array}\right.$ and if $\mathrm{f}(\mathrm{x})$ has a local maxima at $x=2$, then greatest value of a is
A. a cannot be determined
B. least value of a is 2011
C. greater value of a is 2011
D. `a ge 3010

Answer: C

- Watch Video Solution

52. The total number of local maxima and local minima of the function
$\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}(2+x)^{3}, & -3<x \leq-1 \\ x^{2 / 3}, & -1<x<2\end{array}\right.$ is
A. 0
B. 1
C. 2
D. 3
53. If the function $g:(-\infty, \infty) \rightarrow\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ is given by $g(u)=2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$. Then, g is
A. even and is strictly increasing in $(0, \infty)$
B. odd and is strictly decreasing in $(-\infty, \infty)$
C. odd and is strictly increasing in $(-\infty, \infty)$
D. neither even nor odd, but is strictly increasing in $(-\infty, \infty)$

Answer: C

- Watch Video Solution

54. If $f(x)=x^{a} \log x$ and $f(0)=0$ then the value of α for which Rolle's theorem can be applied in $[0,1]$ is
A. -1
B. $-1 / 2$
C. 0
D. $1 / 2$

Answer: D

- Watch Video Solution

55. Suppose the cubic $x^{3}-p x+q$ has three distinct real roots, where $p>0$ and $q>0$. Then which one of the following holds?
A. $\mathrm{f}(\mathrm{x})$ has minima at $\sqrt{\frac{p}{3}}$ and maxima at $-\sqrt{\frac{p}{3}}$
B. $\mathrm{f}(\mathrm{x})$ has minima at $-\sqrt{\frac{p}{3}}$ and maxima at $\sqrt{\frac{p}{3}}$.
C. $\mathrm{f}(\mathrm{x})$ has minima at both $\sqrt{\frac{p}{3}}$ and $-\sqrt{\frac{p}{3}}$
D. $\mathrm{f}(\mathrm{x})$ has maxima at both $\sqrt{\frac{p}{3}}$ and $-\sqrt{\frac{p}{3}}$
56. Given $\mathrm{P}(\mathrm{x})=x^{4}+a x^{3}+b x^{2}+c x+d$ such that $\mathrm{x}=0$ is the only real root of $\mathrm{P}^{\prime}(\mathrm{x})=0$. If $\mathrm{P}(-1)$ It $\mathrm{P}(1)$, then \in the \int ervall $[-1,1]$
A. $P(-1)$ is the minimum but $P(1)$ is not the maximum of P
B. neither $P(-1)$ is the minimum nor $P(1)$ is the maximum of P
C. $P(-1)$ is the minimum and $P(1)$ is the maximum of P
D. $P(-1)$ is not minimum but $P(1)$ is the maximum of P

Answer: D

- Watch Video Solution

57.

Let $f: R \vec{R}$
be defined by $f(x)=\{k-2 x$, if $x \leq-12 x+3, f x \succ 1\}$. If f has a local minimum at $x=1$, then a possible value of k is (1) 0 (2) $-\frac{1}{2}$ (3) -1 (4) 1
A. $-1 / 2$
B. -1
C. 1
D. 0

Answer: B

- Watch Video Solution

58. The value of K in order that $f(x)=\sin x-\cos x-K x+5$ decreases for all positive real value of x is given by
A. $a \geq \sqrt{2}$
B. $a<\sqrt{2}$
C. $a \geq 1$
D. $a<1$

- Watch Video Solution

59. The curve that passes through the point $(2,3)$ and has the property that the segment of any tangent to it lying between the coordinate axes is bisected by the point of contact, is given by
A. $2 y-3 x=0$
B. $y=\frac{6}{x}$
C. $x^{2}+y^{2}+13$
D. $\left(\frac{x}{2}\right)^{2}+\left(\frac{y}{3}\right)^{2}=2$

Answer: B

- Watch Video Solution

60. A spherical balloon is filled with 4500 p cubic meters of helium gas.

If a leak in the balloon causes the gas to escape at the rate of 72π cubic meters per minute, then the rate (in meters per minute) at which the radius of the balloon decreases 49 minutes after the leakage began is (1) $\frac{9}{7}$ (2) $\frac{7}{9}$ (3) $\frac{2}{9}$ (4) $\frac{9}{2}$
A. $7 / 9$
B. $2 / 9$
C. $9 / 2$
D. $9 / 7$

Answer: B

D Watch Video Solution

Solved Examples Level 2 Single Correct Answer Type Questions

1. The point $M(x, y)$ of the graph of the function $y=e^{-|x|}$ so that area bounded by the tangent at M and the coordinate axes is greatest is
A. $\left(1, e^{-1}\right)$
B. $\left(2, e^{-2}\right)$
C. $\left(-2, e^{2}\right)$
D. $(0,1)$

Answer: A

- View Text Solution

2. The abscissa of the point on the curve $a y^{2}=x^{3}$, the normal at which cuts off equal intercepts from the coordinate axes is
A. 2
B. 4
C. -4
D. -2

Answer: B

- Watch Video Solution

3. v24
A. (0.4/3)
B. $(0,2 / 3)$
C. $(1,2 / 3)$
D. $(2,4 / 3)$

Answer: A

4. If the tangent to the curve $2 y^{3}=a x^{2}+x^{3}$ at the point (a, a) cuts off intercept α and β on the co-ordinate axes, (where $\alpha^{2}+\beta^{2}=61$) then a^{2} equals \qquad
A. 16
B. 28
C. 30
D. 31

Answer: C

- Watch Video Solution

5. The co-ordinates of the points on the barabola $y^{2}=8 x$, which is at minium distance from the circle $x^{2}+(y+6)^{2}=1$ are
A. $(2,-4)$
B. $(18,-12)$
C. $(2,4)$
D. none of these

Answer: A

- Watch Video Solution

6. The equation $e^{x-8}+2 x-17=0$ has :-
A. two real roots
B. one real root
C. eight real roots
D. four real roots

Answer: B

7. The maximum and minimum value of $f(x)$ $=a b \sin x+b \sqrt{1-a^{2}} \cos x+c$ lie in the interval (assuming $|a|<1, b>0)$
A. $[b-c, b+c]$
B. $(b-c, b+c)$
C. $[c-b, b+c]$
D. none of these

Answer: C

- Watch Video Solution

8. The maximum area of the rectangle whose sides pass through the vertices of a given rectangle of sides $a a n d b$ is $2(a b)$ (b) $\frac{1}{2}(a+b)^{2}$ $\frac{1}{2}\left(a^{2}+b^{2}\right)$ (d) noneofthese
A. $(1 / 2)(a b)^{2}$
B. $(1 / 2)(a+b)$
C. $(1 / 2)(a+b)^{2}$
D. none of these

Answer: C

- Watch Video Solution

9. Find the image of interval $[-1,3]$ under the mapping specified by the function $f(x)=4 x^{3}-12 x$.
A. $[-2,0]$
B. $[-8,72]$
C. $[-8,0]$
D. $[8,72]$

Answer: B

10. The difference between the greatest and the least value of the function $f(x)=\cos x+\frac{1}{2} \cos 2 x-\frac{1}{3} \cos 3 x$
A. $3 / 8$
B. $2 / 3$
C. $8 / 7$
D. $9 / 4$

Answer: D

- Watch Video Solution

11. The maximum distance of the point $(a, 0)$ from the curve $2 x^{2}+y^{2}-2 x=0$ is -
A. $\sqrt{1-2 a+2 a^{2}}$
B. $\sqrt{1-2 a+a^{2}}$
C. $\sqrt{1+2 a+2 a^{2}}$
D. $\sqrt{1+a+a^{2}}$

Answer: A

- Watch Video Solution

12. The sides of the rectangle of the greatest area, that can be inscribed in the ellipse $x^{2}+2 y^{2}=8$, are given by
A. $4 \sqrt{2}, 4$
B. $4,2 \sqrt{2}$
C. $2, \sqrt{2}$
D. $2 \sqrt{2}, 2$

Answer: B

13. The area of the region bounded by the curve $y=x^{3}$, its tangent at $(1,1)$ and x-axis is
A. $x^{2}+y^{2}+24 x-28 y+2=0$
B. $2\left(x^{2}+y^{2}\right)+12 x-8 y-8=0$
C. $3\left(x^{2}+y^{2}\right)-24 x+10 y+8=0$
D. none of these

Answer: D

- Watch Video Solution

14. Let $f(x)=6 x^{4 / 3}-3 x^{1 / 2}, x \in[-1,1]$. Then
A. The maximum value of $f(x)$ on $[-1,1]$ is 3
B. The maximum value of $f(x)$ on $[-1,1]$ is 9
C. The maximum value of $f(x)$ on $[-1,1]$ is 0
D. none of these

Answer: B

- View Text Solution

15. Let $g(x)=(\log (1+x))^{-1}-x^{-1}, x>0$ then
A. $1<g(x)<2$
B. $-1<g(x)<0$
C. $0<g(x)<1$
D. none of these

Answer: C

16. Range of $\frac{x^{2}-x+1}{x^{2}+x+1}$ is
A. $1 / 2$
B. 1
C. 2
D. 3

Answer: D

17. If the tangent at $(1,1)$ on $y^{2}=x(2-x)^{2}$ meets the curve again at P, then find coordinates of P.
A. $(4,4)$
B. $(-1,2)$
C. (9/4,3/8)
D. none of these

- Watch Video Solution

18. If the curves $y^{2}=6 x, 9 x^{2}+b y^{2}=16$ intersect each other at right angles then the value of b is: (1) 6 (2) $\frac{7}{2}$ (3) 4 (4) $\frac{9}{2}$
A. 2
B. 4
C. $9 / 2$
D. none of these

Answer: C

- Watch Video Solution

19. Find the distance of the point on $y=x^{4}+3 x^{2}+2 x$ which is nearest to the line $y=2 x-1$
A. $4 / \sqrt{5}$
B. $3 / \sqrt{5}$
C. $2 / \sqrt{5}$
D. $1 / \sqrt{5}$

Answer: D

- Watch Video Solution

20. A given right cone has volume p, and the largest right circular cylinder that can be inscribed in the cone has volume q. Then $p: q$ is $9: 4$
(b) 8:3 (c) 7:2 (d) none of these
A. $9: 4$
B. $8: 3$
C. 7:2
D. none of these

Answer: A

- Watch Video Solution

21. The set of all values of a for which the function $f(x)=\left(a^{2}-3 a+2\right)\left(\cos ^{2} \frac{x}{4}-\sin ^{2} \frac{x}{4}\right)+(a-1) x+\sin 1$ does not possess critical points is (A) $[1, \infty)(B)(0,1) \cup(1,4)$ (C) $(-2,4)$
(D) $(1,3) \cup(3,5)$
A. $[1, \infty)$
B. $(-2,4)$
C. $(1,3) \cup(3,5)$
D. $(0,1) \cup(1,4)$

- Watch Video Solution

22. Let $x, p \in R, x+1>0, p \neq 0,1$. Then
A. $(1+x)^{p}>1 p x$ for $p>0$
B. $(1+x)^{p}>1+p x$ for $p \in(-\infty, 0) \cup(1, \infty)$
C. $(1+x)^{p}>1+p x$ for $0<p<1$
D. $(1+x)^{p}<1+p x$ for $p<1$

Answer: B

- View Text Solution

23. If $f(x)=\frac{a \sin x+b \cos x}{c \sin x+d \cos x}$ is decreasing for all x, then

$$
\text { A. } a d-b c<0
$$

B. $a d-b c>0$
C. $a b-c d>0$
D. $a b-c d<0$

Answer: A

- Watch Video Solution

24. In the interval $[0,1]$, the function $x^{25}(1-x)^{75}$ takes its maximum value at the point O (b) $\frac{1}{4}$ (c) $\frac{1}{2}$ (d) $\frac{1}{3}$
A. 0
B. $1 / 3$
C. $1 / 2$
D. $1 / 4$

Answer: D

25. The set of values of p for which the equation $p x^{2}=\ln x$ possess a single root is
A. $1 / 2$
B. $1 / 2 e$
C. $1 / e$
D. $2 e^{-1}$

Answer: B

- Watch Video Solution

Solved Examples Numerical Answer Type Questions

1. If $f(x)=|x-7|+|x-10|+|x-12|$ has a minimum at $\mathrm{x}=\mathrm{k}$, then
the value of k is
2. Let $f\left(x-=\tan ^{-1}\left(\frac{1-x}{1+x}\right)\right.$. Then difference of the greatest and least value of $f(x)$ on $[0,1]$ is:

(D) Watch Video Solution

3. The absolute maximum value of $f(x)=\frac{5}{3 x^{4}+8 x^{3}-18 x^{2}+60}$

- View Text Solution

4. Number of real roots of the equation $3 x^{5}+15 x-8=0$ is

- Watch Video Solution

5. If the value of greater of $\sin x+\tan x$ and $2 x(0<x<\pi / 2)$ at $\pi / 4$ is $g(\pi / 4)$ then $g(\pi / 4)$ is equal to

- Watch Video Solution

6. If the greatest value of $y=\frac{x}{\log x}$ on $\left[e, e^{3}\right]$ is u then u is equal to (given $\mathrm{e}=2.71$)

(D) Watch Video Solution

7. If (u, v) are the coordinates of the point on the curve $x^{3}=y(x-4)^{2}$ where the ordinate is minimum then $u v$ is equal to

- Watch Video Solution

8. If A gt $0, B$ gt 0 and $A+B=\frac{\pi}{3}$,then the maximum value of $\tan A \tan B$, is

- Watch Video Solution

9. If $f(\theta)=64 \sec \theta+27 \operatorname{cosec} \theta$ when θ lies in $(0, \pi / 4)$ then min $f(\theta)$ is equal to

D View Text Solution

10. Show that the area of the triangle formed by the positive x-axis and the normal and tangent to the circle $x^{2}+y^{2}=4$ at $(1, \sqrt{3})$ is $2 \sqrt{3}$

- Watch Video Solution

11. A curve is represented by the equations $x=\sec ^{2} \operatorname{tandy}=\cot t$, where t is a parameter. If the tangent at the point P on the curve
where $t=\frac{\pi}{4}$ meets the curve again at the point Q, then $|P Q|$ is equal to $\frac{5 \sqrt{3}}{2}$ (b) $\frac{5 \sqrt{5}}{2}$ (c) $\frac{2 \sqrt{5}}{3}$ (d) $\frac{3 \sqrt{5}}{2}$

- Watch Video Solution

12. If the slope of line through the origin which is tangent to the curve $y=x^{3}+x+16$ is m, then the value of $m-4$ is \qquad .

- Watch Video Solution

13. If the point on $y=x \tan \alpha-\frac{a x^{2}}{24^{2} \cos ^{2} \alpha}(\alpha>0)$ where the tangent is parallel to $\mathrm{y}=\mathrm{x}$ has an ordinate $u^{2} / 4 a$, then $\cos ^{2} \alpha$ is equal to
14. $f: R \rightarrow R$ be defined as $f(x)=|x|+\left|x^{2}-1\right|$. The total number of points at which f attains either local maximum or a level minimum is

- View Text Solution

15. The number of non-zero integral solution of K for which the equation $\frac{x^{3}}{3}-4 x=K$ has three distinct solution is

- Watch Video Solution

16. The least integral value of x where $f(x)=(\log)_{\frac{1}{2}}\left(x^{2}-2 x-3\right)$ is monotonically decreasing is \qquad
17. Let $P(x)$ be a polynomial of degree 5 having extremum at $x=-1,1$ and $\lim _{x \rightarrow 0}\left(\frac{P(x)}{x^{3}}-1\right)=7$. The value of $|P(7)|$ is

- Watch Video Solution

18. Let $f(x)=\left\{\begin{array}{ll}\left|x^{2}-2 x\right|+a, & 0 \leq x<5 / 2 \\ -2 x+5, & x \geq 5 / 2\end{array}\right.$. If $\mathrm{f}(\mathrm{x})$ has a maximum at $x=5 / 2$, then the greatest value of $|a|$ is

- Watch Video Solution

Exercise Concept Based Single Correct Answer Type Questions

1. The length of the tangent to the curve $x=a \sin ^{3} t, y=a \cos ^{3} t(a>0)$ at an arbitrary is
A. $a \cos ^{2} t$
B. $a \sin ^{2} t$
C. $\frac{a \sin ^{2} t}{\cot t}$
D. $\frac{a \cos ^{2} t}{\sin t}$

Answer: A

- Watch Video Solution

2. Equation of normal to $x=2 e^{t}, y=e^{-t}$ at $t=0$ is
A. $x+y-4=0$
B. $x+2 y-4=0$
C. $2 x-y-3=0$
D. $x-2 y-3=0$

Answer: C

3. A point moves according $s=\frac{2}{9} \sin \frac{\pi}{2} t+s_{0}$. The acceleration at the end of first second is
A. $-\frac{\pi}{18}$
B. $-\frac{\pi^{2}}{18}$
C. $\frac{\pi}{18}$
D. $\frac{\pi^{2}}{18}$

Answer: B

- Watch Video Solution

4. Let $\mathrm{f}(\mathrm{x})=\mathrm{x} \log \mathrm{x}+1$ then the set $\{\mathrm{x}: f(x)>0\}$ is equal to
A. $(1, \infty)$
B. $(1 / e, \infty)$
C. $[e, \infty)$
D. $(0,1) \cup(1, \infty)$

Answer: D

- Watch Video Solution

5. On the curve $y=x^{3}$, the point at which the tangent line is parallel to the chord through the point $(-1,-1)$ and $(2,8)$ is
A. $(1,1)$
B. $\left(\frac{1}{2}, \frac{1}{8}\right)$
C. $\left(\frac{1}{3}, \frac{1}{27}\right)$
D. $\left(\frac{1}{2},-\frac{1}{8}\right)$

Answer: A

- Watch Video Solution

6. Let $f(x)=2 x^{2}-\log x$, then
A. f increases on $(0, \infty)$
B. f decrease on $\left(\frac{1}{2}, \infty\right)$
C. f increases on $\left(\frac{1}{2}, \infty\right)$
D. f decreases on $(0,1)$

Answer:

- Watch Video Solution

7. Let $f(x)=\frac{3}{4} x^{4}-x^{3}-9 x^{2}+7$, then the number of critical points in $[-1,4]$ is
A. 4
B. 3
C. 2
D. 1

Answer: C

- Watch Video Solution

8. On the curve $x^{3}=12 y$, find the interval at which the abscissa changes at a faster rate than the ordinate.
A. $(-2,2) \sim\{0\}$
B. $(-3,3) \sim\{0\}$
C. $(1,4)$
D. $(2,4)$

Answer: A

- Watch Video Solution

9. Find the value of a if the curves $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{4}=1 a n d y^{3}=16 x$ cut orthogonally.
A. 1
B. $\frac{2 \sqrt{3}}{3}$
C. $3 \sqrt{3}$
D. $5 \sqrt{5})$

Answer: B

10. The least value of $g(t)=8 t-t^{4}$ on $[-2,1]^{`}$ is
A. -16
B. -20
C. -32
D. 7

Answer: C

- Watch Video Solution

Exercise Level 1 Single Correct Answer Type Questions

1. Let $f(x)=\tan ^{-1} x$ and $g(x)=\frac{x}{1+x^{2}}, x>0$ then
A. $f(x)<g(x), \quad$ on $\quad(0, \infty)$
B. $f(x) \leq g(x)$ on $[1, \infty)$
C. $g(x)<f(x)$ on $(0, \infty)$
D. none of these

Answer: C

2. Let $f(x)=(x-2)(x-3)(x-4)(x-5)(x-6)$ then
A. $f^{\prime}(x)=0$ has five real roots
B. four roots of $f^{\prime}(x)=0$ lie in $(2,3) \cup(3,4) \cup(4,5) \cup(5,6)$
C. the equation $f^{\prime}(x)$ has only three roots
D. four roots of $f^{\prime}(x)=0$ lie in $(1,2) \cup(2,3) \cup(3,4) \cup(4,5)$

Answer: B

- Watch Video Solution

3. Let $f(x)=(x-3)^{5}(x+1)^{4}$ then
A. $x=-1$ is point of minima
B. $x=-1$ is point of maxima
C. $x=7 / 9$ is a point of maxima
D. $x=-1$ is neither a point of maxima and minima

Answer: B

- Watch Video Solution

4.

The
normal to the curve
$x=a(\cos \theta-\theta \sin \theta), y=a(\sin \theta-\theta \cos \theta)$ at any point,θ, is such that
A. makes a constant angle with the x-axis
B. is at a constant distance from the origin
C. does not touch a fixed circle
D. passes through the origin

Answer: B

- Watch Video Solution

5. The number of values of k for which the equation $x^{3}-3 x+k=0$ has two distinct roots lying in the interval $(0,1)$ is three (b) two (c) infinitely many (d) zero
A. -1
B. 1
C. 3
D. none of these

Answer: D

- Watch Video Solution

6. If the sum of the squares of the intercepts on the axes cut off by tangent to the curve $x^{\frac{1}{3}}+y^{\frac{1}{3}}=a^{\frac{1}{3}}, a>0$ at $\left(\frac{a}{8}, \frac{a}{8}\right)$ is 2 , then $a=$ 1 (b) 2 (c) 4 (d) 8
A. 1
B. 2
C. 4
D. 8

Answer: C

- Watch Video Solution

7. If the area of the triangle included between the axes and any tangent to the curve $x^{n} y=a^{n}$ is constant, then find the value of n.
A. $1 / 2$
B. 1
C. $3 / 2$
D. 2

Answer: B

8. If the tangent at any point on the curve $x^{4}+y^{4}=c^{4}$ cuts off intercepts a and b on the coordinate axes, the value of $a^{-\frac{4}{3}}+b^{-\frac{4}{3}}$ is
A. $a^{-4 / 3}$
B. $a^{-1 / 2}$
C. $a^{1 / 2}$
D. none of these

Answer: A

- Watch Video Solution

9. The interval of increase of the function
$y=x-2 \sin x$ if $0 \leq x \leq 2 \pi$, is
A. $(0, \pi)$
B. $\left(0, \frac{\pi}{2}\right)$
C. $(\pi / 2, \pi)$
D. $(\pi / 3,5 \pi / 3)$

Answer: D

- Watch Video Solution

10. All possible value of $f(x)=(x+1)^{\frac{1}{3}}-(x-1)^{\frac{1}{3}}$ on [0,1] is 1 (b) 2
(c) 3 (d) $\frac{1}{3}$
A. 1
B. 2
C. '3
D. $2^{1 / 3}$

Answer: C

11. Let f be a function defined by $f(x)=2 x^{2}-\log |x|, x \neq 0$ then
A. f increases on $[-1 / 2,0] \cup[1 / 2, \infty)$
B. f decrease on $(-\infty, 0)$
C. f increases on $(-\infty,-1 / 2)$
D. f decreases on $[1 / 2, \infty]$

Answer:

- Watch Video Solution

12. The shortest distance of $(0,0)$ from the curve $y=\frac{e^{x}+e^{-x}}{2}$ is
A. $1 / 2$
B. $1 / 3$
C. 2
D. none of these

Answer: D

- Watch Video Solution

13. The normal to the circle $x^{2}+y^{2}-2 x-2 y=0$ passing through
$(2,2)$ is
A. $x=y$
B. $2 x+y-6=0$
C. $x+2 y-6=0$
D. $x+y-4=0$

Answer: A

- Watch Video Solution

14. If $f(x)=x$ for $x \leq 0$
$=0$ for $x>0$ then $\mathrm{f}(\mathrm{x})$ at $\mathrm{x}=0$ is
A. decreases on $(0, \infty)$
B. increases on $(0, \infty)$
C. decreases on $(1, \infty)$
D. neither increases nor decreases on $(0, \infty)$

Answer: B

- Watch Video Solution

15. The value of k so that the equation $x^{3}-12 x+k=0$ has distinct roots in $[0,2]$ is
A. 4
B. 2
C. -2
D. none of these

Answer: D

- Watch Video Solution

16. Let $f(x)=6 x^{4 / 3}-3 x^{1 / 3}$ defined on $[-1,1]$ then
A. maximum value of f is 7
B. maximum value of f is 5
C. maximum value of f is 9
D. minimum value of f is $-3 / 2$

Answer: C

17. An equation of tangent line at an inflection point of $f(x)=x^{4}-6 x^{3}+12 x^{2}-8 x+3$ is
A. $y=3 x+4$
B. $y=4$
C. $y=3 x+2$
D. none of these

Answer: D

- Watch Video Solution

18. The number of real roots of the equation $2 x^{3}-3 x^{2}+6 x+6=0$ is
A. 1
B. 2
C. 3
D. none of these

Answer: A

- Watch Video Solution

19. Let $\mathrm{f}(\mathrm{x})=(x-2)\left(x^{4}-4 x^{3}+6 x^{2}-4 x+1\right)$ then value of local minimum of f is
A. $-2 / 3$
B. $-(4 / 5)^{4}$
C. $-4^{4} / 5^{5}$
D. $-(4 / 5)^{5}$

Answer: C

- View Text Solution

20. Let $f(x)=x^{2}-2|x|+2, x \in[-1 / 2,3 / 2]$ then
A. $\min f(x)=1 / 2 x \in[-1 / 2,3 / 2]$
B. $\min f(x)=1 x \in[-1 / 2,3 / 2]$
C. $\max f(x)=3 / 2 x \in[-1 / 2,3 / 2]$
D. none of these

Answer:

D Watch Video Solution

21. The function $f(x)=\frac{|x-1|}{x^{2}}$ is
A. -1
B. 3
C. 2
D. $1 / 2$

Answer: C

- Watch Video Solution

22. The function $f(x)=x^{x}$ decreases on the interval (a) ($0, e$) (b)
$(0,1)(\mathrm{c})(0,1 / e)(\mathrm{d})(1 / e, e)$
A. $(0, \mathrm{e})$
B. $(0,1)$
C. (0, 1/e)
D. none of these

Answer: C

- Watch Video Solution

23. The interval of increase of the function
$f(x)=x-e^{x}+\tan (2 \pi / 7)$ is (a) $(0, \infty)$ (b) $(-\infty, 0)$ (c) $(1, \infty)$
(d) $(-\infty, 1)$
A. $(-\infty, 1)$
B. $(0, \infty)$
C. $(-\infty, 0)$
D. $(1, \infty)$

Answer: C

- Watch Video Solution

24. Let $f(x)=x^{2}+p x+q$. The value of (p, q) so that $\mathrm{f}(1)=3$ is an extreme value of f on $[0,2]$ is
A. $(-2,2)$
B. $(1,4)$
C. $(-2,4)$
D. $(-2,3)$

Answer: C

- Watch Video Solution

25. The number of inflection points of a function given by a third degree polynomial is exactly
A. 2
B. 1
C. 3
D. 0

Answer: B

26. Let $f(x)=2 \tan ^{-1} x+\sin ^{-1} \frac{2 x}{1+x^{2}}$ then
A. $\max \mathrm{f}(\mathrm{x})=\pi / 2$
B. $\min f(x)=\pi / 4$
C. $\max \mathrm{f}(\mathrm{x})=2 \pi$
D. none of these

Answer: C

- Watch Video Solution

27. If the normal to the curve $x^{3}=y^{2}$ at the point $\left(m^{2},-m^{3}\right)$ is $y=m x-2 m^{3}$, then the value of m^{2} is
A. 1
B. $1 / 2$
C. $1 / 3$
D. $2 / 3$

Answer: D

- View Text Solution

28. Let $f(x)=2 \sin x+\cos 2 x(0 \leq x \leq 2 \pi)$ and $g(x)=x+\cos x$ then
A. g is a decreasing function
B. fincreases on $(0, \pi / 2)$
C. f increases on $(0, \pi / 6) \cup(\pi / 2,5 \pi / 6)$
D. f decreases on $(0, \pi / 2)$

Answer: C

29. In the interval $(0 \pi / 2)$ the fucntion $f(x)=\tan ^{n} x \cot ^{n}$ attains
A. 1
B. 0
C. 2
D. $1 / 2$

Answer: C

- Watch Video Solution

30. Find the number of points of local extrema of $f(x)=3 x^{4}-4 x^{3}+6 x^{2}+a x+b$ where $a, b \in R$
A. 4
B. 3
C. 1
D. 2

Answer: C

- Watch Video Solution

31. The shortest distance between line $\mathrm{y}-\mathrm{x}=1$ and curve $x=y^{2}$ is
A. $3 / 8$
B. $3 \sqrt{2} / 4$
C. $3 / 4$
D. $3 \sqrt{2} / 8$

Answer: D

- Watch Video Solution

32. The set of values of p for which the points of extremum of the function, $f(x)=x^{3}-3 p x^{2}+3\left(p^{2}-1\right) x+1$ lin in the interval $(-2,4)$ is
A. $(-1,0)$
B. $(-2,4)$
C. $(-1,5)$
D. $(-1,3)$

Answer: D

- Watch Video Solution

33. If A gt O, B gt 0 and $\mathrm{A}+\mathrm{B}=\frac{\pi}{3}$, then the maximum value of $\tan \mathrm{A} \tan \mathrm{B}$, is
A. $1 / 3$
B. $1 / 2$
C. $1 / \sqrt{2}$
D. $\sqrt{3} / 2$

Answer: A

- Watch Video Solution

34. The maximum value of $|\mathrm{x} \log \mathrm{x}|$ for $0<x \leq 1$ is
A. 0
B. $1 / e$
C. $2 e^{-1}$
D. none of these

Answer: B

35. The greatest value of the function $\log _{x} 1 / 9-\log _{3} x^{2}(x>1)$ is
A. 2
B. 0
C. -4
D. -2

Answer: C

- Watch Video Solution

36. Let f be differentiable for all x, If $f(1)=-2 a n d f^{\prime}(x) \geq 2$ for all $x \in[1,6]$, then find the range of values of $f(6)$.
A. $f(6)<8$
B. $f(6) \geq 8$
C. $f(6) \geq 10$
D. $f(6) \geq 5$

Answer: B

- Watch Video Solution

37. An extremum value of the function
$f(x)=\left(\sin ^{-1} x\right)^{3}+\left(\cos ^{-1} x\right)^{3}(-1 \leq x \leq 1)$ is
A. $7 \pi^{3} / 8$
B. $\pi^{3} / 8$
C. $\pi^{3} / 32$
D. $\pi^{3} / 16$

Answer: C

- Watch Video Solution

38. Let $f(x)=x \log x+3 x$. Then
A. f increases in $\left(e^{-4}, \infty\right)$
B. f increases in $(0, \infty)$
C. f decreases in $(0, \infty)$
D. f decreases in $\left(0, e^{-2}\right)$

Answer: A

- Watch Video Solution

39. Let $f(x)=x^{2} . e^{-x^{2}}$ then which one is incorrect? (A) $f(x)$ has local maxima at $x=-1$ and $x=1$ (B) $f(x)$ has local minima at $x=0$ (C) $f(x)$ is strictly decreasing on $x \in R(\mathrm{D})$ Range of $f(x)$ is $\left[0 . \frac{1}{e}\right]$,
A. $\max f(x)=e^{-1}$
B. $\max f(x)=4 e^{-2}$
C. $\min f(x)=e^{-1}$
D. $\min f(x)>0$

Answer: B

- Watch Video Solution

40. The minimum value of $f(x)=|3-x|+|2+x|+|5-x|$ is
A. 0
B. 7
C. 8
D. 10

Answer: B

41. Let $f(x)=2+2 x-3 x^{2 / 3}$ on $[-1,10 / 3]$. Then f has
A. Absolute maximum at an end point
B. Absolute minimum at an interior point
C. Absolute minimum is $f(10 / 3)$
D. Absolute minimum is $f(-1)$

Answer: D

- Watch Video Solution

42. If f and g are defined on $[0, \infty)$ by $f(x)=\lim _{n \rightarrow \infty} \frac{x^{n}-1}{x^{n}+1}$ and $g(x)=\int_{0}^{x} f(t) d t$. Then
A. g has local maximum at $x=1$
B. g has local minimum at $x=1$
C. g is an increasing function on $(0, \infty)$
D. g is a decreasing function on $(0, \infty)$

Answer: B

- View Text Solution

43. Let the function $f(x)=\sin x+\cos x$, be defined in $[0,2 \pi]$, then $f(x)$
A. $x=17 \pi / 4$ is a point of minima
B. $x=13 \pi / 4$ is a point of maxima
C. $x=21 \pi / 4$ is a point of minima
D. $x=29 \pi / 4$ is a point of maxima

Answer: C

- Watch Video Solution

44. If $f(x)=x e^{x(1-x)}$, then $\mathrm{f}(\mathrm{x})$ is
A. increasing on $[-1 / 2,1]$
B. decreases on R
C. increasing on R
D. decreasing on $[-1 / 2,1]$

Answer: A

- Watch Video Solution

45. The tangent to the curve $y=e^{x}$ drawn at the point $\left(c, e^{c}\right)$ intersects the line joining $\left(c-1, e^{c-1}\right)$ and $\left(c+1, e^{c+1}\right)$ (a) on the left of $n=c(\mathrm{~b})$ on the right of $n=c(\mathrm{c})$ at no points (d) at all points
A. on the left of $x=c$
B. on the right of $x=c$
C. at no point
D. at all points

Answer: A

- Watch Video Solution

Exercise Level 2 Single Correct Answer Type Questions

1. Find the critical points(s) and stationary points (s) of the function

$$
f(x)=(x-2)^{2 / 3}(2 x+1)
$$

A. -1 and 2
B. 1
C. 1 and $-1 / 2$
D. 1 and $1 / 2$

Answer: B

2. The function $f(x)=\frac{x^{3}}{4}-\sin \pi x+3$ on $[-2,2]$ takes the value
A. 1
B. $16 / 3$
C. 6
D. 8

Answer: A

- Watch Video Solution

3. The greatest value of the function $f(x)=\tan ^{-1} x-\frac{1}{2} \log x$ in $\left[\frac{1}{\sqrt{3}}, \sqrt{3}\right]$ is
A. $\pi / 2+(1 / 2) \log 3$
B. $\pi / 6+(1 / 4) \log 3$
C. $\pi / 6+(1 / 2) \log 3$
D. $\pi / 4-(1 / 4) \log 3$

Answer: B

- Watch Video Solution

4. Equations of those tangents to $4 x^{2}-9 y^{2}=36$ which are prependicular to the straight line $2 y+5 x=10$, are
A. $5(y-3)=(x-\sqrt{117 / 4})$
B. $5(y-2)=2(x-\sqrt{18})$
C. $5(y+2)=2(x-\sqrt{18})$
D. none of these

Answer: D

- Watch Video Solution

5. if $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are real then find the intervial in which $f(x)=\left|\begin{array}{lll}x+a^{2} & a b & a c \\ a b & x+b^{2} & b c \\ a c & b c & x+c^{2}\end{array}\right|$ is decreasing.
A. $\left(-(2 / 3)\left(a^{2}+b^{2}+c^{2}\right), 0\right)$
B. $\left(0,(2 / 3)\left(a^{2}+b^{2}+c^{2}\right)\right)$
C. $\left((1 / 3)\left(a^{2}+b^{2}+c^{2}\right), 0\right)$
D. none of these

Answer: A

- Watch Video Solution

6. A channel 27 m wide falls at a right angle into another channel 64 m wide. The greatest length of the log that can be floated along this system of channels is
A. 120
B. 125
C. 100
D. 110

Answer: B

- View Text Solution

7. For $a \in[\pi, 2 \pi]$ and $n \in Z$ the critical points of g
$f(x)=\frac{1}{3} \sin a \tan ^{3} x+(\sin a-1) \tan x+\frac{\sqrt{a-2}}{8-a}$ are
A. $x=n \pi(n \in I)$ as critical points
B. no critical points
C. $x=2 n \pi(n \in I)$ as critical points
D. $x=(2 n+1) \pi(n \in I)$ as critical points

Answer: B

8. The value of a for which the function $f(x)=(4 a-3)(x+\log 5)+2(a-7) \frac{\cot x}{2} \frac{\sin ^{2} x}{2}$ does not possess critical points is $\left(-\infty,-\frac{4}{3}\right)$ (b) $(-\infty,-1)[1, \infty)$ (d) $(2, \infty)$
A. $(-\infty,-4 / 3]$
B. $(-\infty,-1)$
C. $[1, \infty)$
D. $(0,00)$

Answer: A

- Watch Video Solution

9. The interval to which a may belong so that the function $f(x)=\left(1-\frac{\sqrt{21-4 a-a^{2}}}{a+1}\right) x^{3}+5 x+100 \quad$ is increasing for $x \in R$
A. $[-7,0]$
B. $[-6,0]$
C. $[1,4]$
D. $[2,3]$

Answer: D

- Watch Video Solution

10. The muinimum area of the triangle formed by the tangent to $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the coordinate axes is
A. $a b$
B. $\frac{a^{2}+b^{2}}{2}$
C. $(a+b)^{2} / 4$
D. $2 a b$

Answer: A

- Watch Video Solution

11. The set of all x for which $\log (1+x) \leq x$ is equal to
A. $(1, \infty)$
B. $(0, \infty)$
C. $(-1, \infty)$
D. none of these

Answer: C

12. The minimum value of $2^{x^{2}-3 \wedge}(3+27)$ is 2^{27} (b) 2 (c) 1 (d) none of these
A. 2^{27}
B. 2
C. 1
D. none of these

Answer: D

- Watch Video Solution

13. If $f(x)= \begin{cases}|x|, & \text { for } \\ 1, & f \text { or }\end{cases}$ $0<|x| \leq 2$
$x=0$. Then, at $\mathrm{x}=0, f$ has
A. a local maximum
B. no local maximum
C. a local minimum
D. no extremum

Answer: A

(D) Watch Video Solution

14. If $f(x)=x e^{x(1-x)}$, then $\mathrm{f}(\mathrm{x})$ is
A. increasing on $[-1 / 2,1]$
B. decreases on R
C. increasing on R
D. decreasing on $[-1 / 2,1]$

Answer: A

- Watch Video Solution

15. If $f(x)=\left\{\begin{array}{ll}x^{\alpha} \log x & x>0 \\ 0 & x=0\end{array}\right.$ and Rolle's theorem is applicable to $f(x)$ for $x \in[0,1]$ then α may equal to (A) -2 (B) -1 (C) 0 (D) $\frac{1}{2}$
A. -1
B. $-1 / 2$
C. 0
D. $1 / 2$

Answer: D

- Watch Video Solution

16. A cone is made from a circular sheet of radius $\sqrt{3}$ by cutting out a sector and giving the cut edges of the remaining piece together. The maximum volume attainable for the cone is (A) $\frac{\pi}{3}$ (B) $\frac{\pi}{6}$ (C) $\frac{2 \pi}{3}$
$3 \sqrt{3} \pi$

$$
\text { A. } \pi / 3
$$

B. $\pi / 6$
C. $2 \pi / 3$
D. $3 \sqrt{3} \pi$

Answer: C

- Watch Video Solution

17. The dimension of the rectangle of maximum area that can be inscribed in the ellipse $(x / 4)^{2}+(y / 3)^{2}=1$ are
A. $\sqrt{8}, \sqrt{2}$
B. 4,3
C. $2 \sqrt{8}, 3 \sqrt{2}$
D. none of these

Answer: C

18. Consider $f(x)=a x^{4}+c x^{2}+d x+e$ has no point o inflection Then which of the following is/are possible?
A. $b^{2}-4 a c>0$
B. $3 b^{2}-8 a c=0$
C. $3 b^{2}-8 a c>0$
D. $3 b^{2}-8 a c<0$

Answer: C

- Watch Video Solution

19. The smallest value of M such that $\left|x^{2}-3 x+2\right| \leq M$ for all x in $\left[1, \frac{5}{2}\right]$
A. $3 / 4$
B. $3 / 8$
C. $3 / 16$
D. $7 / 4$

Answer: C

- Watch Video Solution

20. The point in the interval $[0, \pi]$ for which the curve $\mathrm{y}=(1 / 2) x$ and $y=\sin x$ are farthest apart is
A. $\pi / 2$
B. $\pi / 4$
C. $\pi / 6$
D. π

Answer: D

21. The points at which the tangents to the curve $a x^{2}+2 h x y+b y^{2}=1$ is parallel to y-axis is
A. $(0,0)$
B. where $h x+b y=0$ meets it
C. where $a x+h y$ meets it
D. none of these

Answer: B

- Watch Video Solution

22. If the point on $y=x \tan \alpha-\frac{a x^{2}}{32 \cos ^{2} \alpha},(\alpha>0)$ where the tangent is parallel to $y=x$ has an ordinate $\frac{4}{a}$ then $4 \sin ^{2} \alpha$ equals to:
A. $\pi / 2$
B. $\pi / 6$
C. $\pi / 3$
D. none of these

Answer: D

- Watch Video Solution

23. Let $f(x)=\left\{\begin{array}{ll}|x-1|+a, & x \leq 1 \\ 2 x+3, & x>1\end{array}\right.$. If $\mathrm{f}(\mathrm{x})$ has local minimum at $\mathrm{x}=1$ and $a \geq 5$ then the value of a is
A. 5
B. 6
C. $11 / 2$
D. $15 / 2$

Answer: A

24. Let $g(x)=\int_{0}^{x} f(t) d t$ and $f(x)$ satisfies the equation $f(x+y)=f(x)+f(y)+2 x y-1$ for all $x, y \in R$ and $\mathrm{f}^{\prime}(0)=2$ then
A. g increases on $(0, \infty)$ and decreases on $(-\infty, 0)$
B. g increases on $(0, \infty)$
C. g decreases on $(0, \infty)$ and increases $(-\infty, 0)$
D. g decreases on $(-\infty, \infty)$

Answer: B

- View Text Solution

25. The area of the triangle formed by the positive x-axis with the normal and the tangent to the circle $x^{2}+y^{2}=4$ at $(1, \sqrt{3})$ is

$$
\text { A. } 2 \sqrt{3}
$$

B. $\sqrt{3}$
C. $4 \sqrt{3}$
D. `3

Answer: A

- Watch Video Solution

26. The interval in which the function $y=f(x)=\frac{x-1}{x^{2}-3 x+3}$ transforms the real line is
A. $[1 / 3,2]$
B. $[-1 / 3,2]$
C. $[-1 / 3,1]$
D. none of these

Answer: D

27. Angle at which the circle $x^{2}+y^{2}=16$ can be seen from $(8,0)$ is
A. $\pi / 6$
B. $\pi / 4$
C. $\pi / 2$
D. $\pi / 3$

Answer: D

(D) Watch Video Solution

28. The critical points of the function $f(x)=(x+2)^{2 / 3}(2 x-1)$ are
A. -1 and 2
B. 1
C. 1 and $-1 / 2$
D. -1 and -2

Answer: D

D Watch Video Solution

29. The function $f(x)=\frac{\log (\pi+x)}{\log (e+x)} \mathrm{s}$ is
A. increasing on $[0, \infty)$
B. decreasing on $[0, \infty)$
C. increasing on $[0, \pi / e)$ and decreasing on $[\pi / e, \infty)$
D. decreasing on $[0, \pi / e)$ and increasing on $[\pi / e, \infty)$

Answer: B

- Watch Video Solution

A. 12
B. 10
C. 8
D. 14

Answer: C

- Watch Video Solution

31. The greatest vaue of the function
$f(x)=\cot ^{-1} x+(1 / 2) \log x$ on $[1, \sqrt{3}]$ is
A. $(\pi / 6)+0.25 \log 3$
B. $(\pi / 3)-0.25 \log 3$
C. $\pi / 4$
D. $\tan ^{-1} e-1 / 2$

- Watch Video Solution

32. A particle is moving along the parabola $y^{2}=4(x+2)$. As it passes through the point $(7,6)$ its y-coordinate is increasing at the rate of 3 units per second. The rate at which x-coordinate change at this instant is (in units/sec)
A. 4
B. 6
C. 8
D. 9

Answer: D

33. The perimeter of a rectangle is fixed at 24 cm . If the length I of the rectangle is increasing at the rate of 1 cm per second, the value of I for which the area of rectangle start to decrease is
A. 2 cm
B. 6 cm
C. 4 cm
D. 8 cm

Answer: B

- Watch Video Solution

34. The rate at which fluid level inside vertical cylindrical tank of radius r drop if we pump fluid out at the rate of $3 \mathrm{~cm}^{3} / \mathrm{min}$ is
A. $-\frac{1}{\pi r^{2}}$
B. $\frac{3}{\pi r^{2}}$
C. $\frac{2}{\pi r^{2}}$
D. $\frac{4}{\pi r}$

Answer: B

- Watch Video Solution

35. The length x of a rectangle is increasing at the rate of $3 \mathrm{~cm} / \mathrm{sec}$. and the width y is increasing at the rate of $2 \mathrm{~cm} / \mathrm{sec}$. If $\mathrm{x}=10 \mathrm{~cm}$ and $\mathrm{y}=6 \mathrm{~cm}$, then the rate of change of its area is
A. 14
B. 12
C. 8
D. 4

Answer: A

36. if $f(x)$ be a twice differentiable function such that $f(x)=x^{2}$ for $x=1,2,3$, then
A. $f^{\prime \prime}(x)=2 \forall x \in(1,3)$
B. $\mathrm{f}^{\prime \prime}(\mathrm{x})=2$ for some $x \in(1,3)$
C. $f^{\prime \prime}(x)=3 \forall x \in(2,3)$
D. $f^{\prime \prime}(x)=f^{\prime}(x)$ for some x in $(2,3)$

Answer: B

- Watch Video Solution

37. A tangent drawn to the curve $y=f(x)$ at $P(x, y)$ cuts the x -axis and y -axis at A and B respectively such that $B P: A P=2: 1$. Given that $f(1)=1$. Answer the question: Equation of curve is (A) $y=\frac{1}{x}$ (B) $y=\frac{1}{x^{2}}$ (C) $y=\frac{1}{x^{3}}$ (D) none of these
A. equation of the curve is $x \frac{d y}{d x}-3 y=0$
B. normal at $(1,1)$ is $x+3 y=4$
C. curve passes through $(2,1 / 8)$
D. equation of the curve is $x \frac{d y}{d x}+4 y=0$

Answer: C

- Watch Video Solution

38. If $f(x)=x^{3}+b x^{2}+c x+d$ and $0<b^{2}<c$.then in $(-\infty, \infty)$
A. has no local minima
B. has no local maxima
C. is strictly increasing on R
D. is strictly decreasing on R

Answer: C

Exercise Numerical Answer Type Questions

1. If the tangent at $(16,64)$ on the curve $y^{2}=x^{3}$ meets the curve again at $Q(u, v)$ then $u v$ is equal to \qquad

- Watch Video Solution

2. If $f(x)=\left\{\begin{array}{ll}3, & x=0 \\ -x^{2}+3 x+k, & 0<x<1 \\ a x+b, & 1 \leq x \leq 2\end{array}\right.$ satisfies the hypothesis of
the Lagrange's theorem then $(a+b) / k$ is equal to

- View Text Solution

3. If the slope of a line that passes through the origin which is tangent to $y=x^{3}+x+54$ is m , then m is equal to
4. If A is the area of triangle formed by positive x-axis and the normal and the tangents to $x^{2}+y^{2}=9$ at $(1, \sqrt{8})$ then A is equal to $(\sqrt{2}=1.41)$

(D) Watch Video Solution

5. Let $f(x)=\left[\begin{array}{ll}x^{3 / 5,} & \text { if } x \leq 1 \\ -(x-2)^{3} & \text { if } x>1\end{array}\right.$, then the number of critical points on the graph of the function are. \qquad

- Watch Video Solution

6. The minimum value of $\sqrt{e^{x^{2}}-1}$ is
7. Let $f(x)=\left\{\begin{array}{ll}|x-1|+a, & x \leq 1 \\ 2 x+3, & x>1\end{array}\right.$. If $\mathrm{f}(\mathrm{x})$ has local minimum $\mathrm{x}=1$ and $a \geq 5$ then a is equal to

- Watch Video Solution

8. Let P be a variable point on the elipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with foci F_{1} and F_{2}. If A is the area of the triangle $P F_{1} F_{2}$, then maximum value of A is

- Watch Video Solution

9. The maximum value of $|\mathrm{x} \log \mathrm{x}|$ for $0<x \leq 1$ is (e=2.71)

- View Text Solution

10. If $\mathrm{f}(\mathrm{x})=\log _{x} 1 / 9-\log _{3} x^{2}(x>1)$ then $|\max \mathrm{f}(\mathrm{x})|$ is equal to
11. Let $f(x)=\cos ^{2} x+\cos x+3$ then greatest value of $\mathrm{f}(\mathrm{x})+$ least value of $f(x)$ is equal to

- Watch Video Solution

12. The greatest value of the function $y=\sin ^{2} x-20 \cos x+1$ is

- Watch Video Solution

13. If $f(x)=a \log |x|+b x^{2}+x$ has its extremum values at $x=-1 a n d x=2, \quad$ then $\quad a=2, b=-1 \quad a=2, b=-1 / 2$ $a=-2, b=1 / 2(\mathrm{~d})$ none of these

- Watch Video Solution

14. If $\mathrm{V}(\mathrm{x})$ is larger of $e^{x}-1$ and $(1+x) \log (1+x)$ for $x \in(0, \infty)$ then $\log (V(8)+1)$ is equal to

- View Text Solution

15. A cylindrical vessel of volume $25 \frac{1}{7}$ cu metres, open at the top is to be manufactured from a sheet of metal. If r and h are the radius and height of the vessel so that amount of metal I sused in the least possible then rh is equal to

- View Text Solution

16. The altitude of a cylinder of the greatest possible volume which can be inscribed in a sphere of radius $3 \sqrt{3}$ is
17. A straight line I with negative slope passes through $(8,2)$ and cuts the coordinate axes at P and Q . Find absolute minimum value of "OP+OQ where O is the origin-

- Watch Video Solution

Question For Previous Year S Aieee Jee Main Paper

1. If $2 a+3 b+6 c+0(a, b, c \in R)$ then the quadractic equation $a x^{2}+b x+c=0$ has
A. at least one root in $[0,1]$
B. at least one root in $[2,3]$
C. at least one root
D. none of these
2. The maximum distance from origin of a point on the curve $x=a \sin t-b \sin \left(\frac{a t}{b}\right), y=a \cos t-b \cos \left(\frac{a t}{b}\right)$, borth $\mathrm{a}, \mathrm{b}>0$ is
A. $a-b$
B. $a+b$
C. $\sqrt{a^{2}+b^{2}}$
D. $\sqrt{a^{2}-b^{2}}$

Answer: B

- Watch Video Solution

3. If the function $f(x)=2 x^{3}-9 a x^{2}+12 x^{2} x+1$, wherea >0, attains its maximum and minimum at pandq, respectively, such that $p^{2}=q$, then a equal to 1 (b) 2 (c) $\frac{1}{2}$ (d) 3
A. 1
B. 2
C. $1 / 2$
D. 3

Answer: B

(D) Watch Video Solution

4. If $u=\sqrt{a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta}+\sqrt{a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta}$, then the difference between maximum and minimum values of u^{2} is
A. $(a+b)^{2}$
B. $2 \sqrt{a^{2}+b^{2}}$
C. $2\left(a^{2}+b^{2}\right)$
D. $(a-b)^{2}$

- Watch Video Solution

5. A function $y=f(x)$ has a second order derivative $f(x)=6(x-1)$.

If its graph passes through the point $(2,1)$ and at that point the tangent to the graph is $y=3 x-5$ then the function is
A. $(x+1)^{3}$
B. $(x-1)^{3}$
C. $(x-1)^{2}$
D. $(x+1)^{2}$

Answer: B

- Watch Video Solution

6. The normal to the curve $x=a(1+\cos \theta), y=a \sin \theta$ at ' θ ' always passes through the fixed point
A. $(0,0)$
B. $(0, a)$
C. $(a, 0)$
D. (a, a)

Answer: C

- Watch Video Solution

7. A function is matched below against an interval, where it is supposed to be increasing. Which of the following pairs is incorrectly matched?

$$
\begin{array}{ll}
\text { A. } \begin{array}{ll}
\text { Interval } & \text { Function } \\
(-\infty, 1 / 3) & \left(3 x^{2}-2 x+1\right) \\
\text { B. Interval } & \text { Function } \\
(-\infty,-4) & \left(x^{3}-6 x^{2}+6\right)
\end{array}
\end{array}
$$

Interval Function
C. $(-\infty, \infty)\left(x^{3}-3 x^{2}\right)$

Interval Function
D. $(2, \infty) \quad\left(2 x^{3}-3 x^{2}-12 x+6\right)$

Answer: A

- Watch Video Solution

8.

The
normal
to the
curve
$x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \cos \theta)$ at any θ is such that
A. it passes through $\left(\frac{a \pi}{2},-a\right)$
B. it is at constant distance from origin
C. it passes through origin
D. it makes angle $\frac{\pi}{2}+\theta$ which the x -axis

Answer: B

9. Let f be differentiable for all x, If $f(1)=-2 a n d f^{\prime}(x) \geq 2$ for all $x \in[1,6]$, then find the range of values of $f(6)$.
A. $f(6)<5$
B. $f(6)=5$
C. $f(6) \geq 8$
D. $f(6)<8$

Answer: C

- Watch Video Solution

10. A spherical iron ball 10 cm in radius is coated with a layer of ice of uniform thickness that melts at a rate of $50 \mathrm{~cm}^{3} / \mathrm{min}$. When the thickness of ice is 5 cm , then the rate at which the thickness of ice decreases, is:
A. $1 / 54 \pi \mathrm{~cm} / \mathrm{min}$
B. $5 / 6 \pi \mathrm{~cm} / \mathrm{min}$
C. $1 / 36 \pi \mathrm{~cm} / \mathrm{min}$
D. $1 / 8 \pi \mathrm{~cm} / \mathrm{min}$

Answer: D

- Watch Video Solution

11. The function $f(x)=\frac{x}{2}+\frac{2}{x}$ has a local minimum at $x=2$ (b) $x=-2 x=0$ (d) $x=1$
A. $x=1$
B. $x=2$
C. $x=-2$
D. $x=0$

Answer: B

12. A value of c for which the conclusion of Mean value theorem holds for the function $f(x)=\log _{e} x$ on the interval $[1,3]$ is
A. $2 \log _{3} e$
B. $(1 / 2) \log 3$
C. $\log _{3} c$
D. $\log 3$

Answer: A

- Watch Video Solution

13. The function $f(x)=\tan ^{-1}(\sin x+\cos x)$ is an increasing function in (1) $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$ (2) $\left(-\frac{\pi}{2}, \frac{\pi}{4}\right)$ (3) $\left(0, \frac{\pi}{2}\right)$ (4) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
A. $(\pi / 4, \pi / 2)$
B. $(-\pi / 2, \pi / 4)$
C. $(0, \pi / 2)$
D. $(-\pi / 2, \pi / 2)$

Answer: B

(D) Watch Video Solution

14. Suppose the cubic $x^{3}-p x+q$ has three distinct real roots, where $p>0$ and $q>0$. Then which one of the following holds?
A. The cubic has minima at $\sqrt{\frac{p}{3}}$ and maxima at $-\sqrt{\frac{p}{3}}$
B. The cubic has minima at $-\sqrt{\frac{p}{3}}$ and maxima at $\sqrt{\frac{p}{3}}$
C. The cubic has minima at both $\sqrt{\frac{p}{3}}$ and $-\sqrt{\frac{p}{3}}$
D. The cubic has maxima at both $\sqrt{\frac{p}{3}}$ and $-\sqrt{\frac{p}{3}}$
15. Given $\mathrm{P}(\mathrm{x})=x^{4}+a x^{3}+b x^{2}+c x+d$ such that $\mathrm{x}=0$ is the only real root of $\mathrm{P}^{\prime}(\mathrm{x})=0$. If $\mathrm{P}(-1)$ It $\mathrm{P}(1)$, then \in the \int erval $[-1,1]$
A. $P(-1)$ is the minimum but $P(1)$ is not the maximum of P
B. neither $P(-1)$ is the minimum nor $P(1)$ is the maximum of P
C. $P(-1)$ is the minimum and $P(1)$ is the maximum of P
D. $P(-1)$ is not minimum but $P(1)$ is the maximum of P

Answer: D

- Watch Video Solution

16.

Let
$f: R \vec{R}$
be defined
by
$f(x)=\{k-2 x$, if $x \leq-12 x+3, f x \succ 1\}$. If f has a local minimum at $x=1$, then a possible value of k is (1) 0 (2) $-\frac{1}{2}$ (3) -1 (4) 1
A. $-1 / 2$
B. -1
C. 1
D. 0

Answer: B

- Watch Video Solution

17. The curve that passes through the point $(2,3)$ and has the property that the segment of any tangent to it lying between the coordinate axes is bisected by the point of contact, is given by
A. $2 y-3 x=0$
B. $y=6 / x$
C. $x^{2}+y^{2}+13$
D. $\left(\frac{x}{2}\right)^{2}+\left(\frac{y}{3}\right)^{2}=2$

Answer: B

- Watch Video Solution

18. Let be a function defined by $f(x)= \begin{cases}\frac{\tan x}{x}, & x \neq 0 \\ 1, & x=0\end{cases}$

Statement-1: $x=0$ is a point on minima of f
Statement-2: $f^{\prime}(0)=0$

- Watch Video Solution

19. Let a, b be such that the function f given by $f(x)=\ln |x|+b x^{2}+a x, x \neq 0$ has extreme values at $x=1$ and $x=2$. Statement 1: f has local maximum at $x=1$ and at $x=2$. Statement 2: $a=\frac{1}{2}$ and $b=\frac{-1}{4}$ (1) Statement 1 is false, statement 2 is true (2) Statement 1 is true, statement 2 is true; statement 2 is a correct explanation for statement 1 (3) Statement 1 is true, statement 2
is true; statement 2 is not a correct explanation for statement 1 (4) Statement 1 is true, statement 2 is false

- Watch Video Solution

20. A spherical balloon is filled with 4500p cubic meters of helium gas.

If a leak in the balloon causes the gas to escape at the rate of 72π cubic meters per minute, then the rate (in meters per minute) at which the radius of the balloon decreases 49 minutes after the leakage began is (1) $\frac{9}{7}$ (2) $\frac{7}{9}$ (3) $\frac{2}{9}$ (4) $\frac{9}{2}$
A. $7 / 9$
B. $2 / 9$
C. $9 / 2$
D. $9 / 7$

Answer: B

21. The cost of running a bus from A to B , is Rs. $\left(a v+\frac{b}{v}\right)$, where v km / h is the average speed of the bus. When the bus travels at $30 \mathrm{~km} / \mathrm{h}$, the cost comes out to be Rs. 75 while at $40 \mathrm{~km} / \mathrm{h}$, it is Rs. 65.Then the most economical speed (in km / h) of the bus is :
A. 45
B. 50
C. 60
D. 40

Answer: C

- Watch Video Solution

22. If the surface area of a sphere of radius r is increasing uniformly at the rate $8 \frac{(c m)^{2}}{s}$, then the rate of change of its volume is:
A. constant
B. proportional to \sqrt{r}
C. proportional to r^{2}
D. proportional to r

Answer: D

- Watch Video Solution

23. The real number k for which the equation, $2 x^{3}+3 x+k=0$ has two distinct real roots in $[0,1]$ (1) lies between 2 and 3 (2) lies between -1 and 0 (3) does not exist (4) lies between 1 and 2
A. lies between 2 and 3
B. lies between 1 and 0
C. does not exist
D. lies between 1 and 2

Answer: C

- Watch Video Solution

24. The maximum area of a right angled triangle with hypotenuse h is
A. $\frac{h^{2}}{2 \sqrt{2}}$
B. $\frac{h^{2}}{2}$
C. $\frac{h^{2}}{\sqrt{2}}$
D. $\frac{h^{2}}{4}$

Answer: C

- Watch Video Solution

25. Statement-1: The equation $\mathrm{x} \log \mathrm{x}=2-x$ is satisfied by at least one value of x lying between 1 and 2

Statement-2: The function $f(x)=x \log x$ is an increasing function in $[1,2]$ and $g(x)=2-x$ is a decreasing function in $[1,2]$ and the graphs represented by these functions intersect at a point in [1,2]

- View Text Solution

26. Statement 1 : The function $x^{2}\left(e^{x}+e^{-x}\right)$ is increasing for all $x>0$ Statement 2: The functions $x^{2} e^{x}$ and $x^{2} e^{-x}$ are increasing for all $x>0$ and the sum of two infunctions in any interval (a, b) is an increasing function in (a, b).

- Watch Video Solution

27. If f and g are differentiable functions in $[0,1]$ satisfying $f(0)=2=g(1), g(0)=0$ and $f(1)=6$, then for some $c \in] 0,1[(1)$
$2 f^{\prime}(c)=g^{\prime}(c)$
(2) $2 f^{\prime}(c)=3 g^{\prime}(c)$
(3) $f^{\prime}(c)=g^{\prime}(c)$
$f^{\prime}(c)=2 g^{\prime}(c)$
A. $2 f^{\prime}(c)=g^{\prime}(c)$
B. $2 f^{\prime}(c)=3 g^{\prime}(c)$
C. $f^{\prime}(c)=g^{\prime}(c)$
D. $f^{\prime}(c)=2 g^{\prime}(c)$

Answer: D

- Watch Video Solution

28. If $\mathrm{x}=-1$ and $\mathrm{x}=2$ are extreme points of $\mathrm{f}(\mathrm{x})=\alpha \log |x|+\beta x^{2}+x$, then
A. $\alpha=-6, \beta=\frac{1}{2}$
B. $\alpha-6, \beta=-\frac{1}{2}$
C. $\alpha=2, \beta=-\frac{1}{2}$
D. $\alpha=2, \beta=\frac{1}{2}$

Answer: C

- Watch Video Solution

29. If the volume of a sphere increase at the rate of , $2 \pi \mathrm{~cm}^{3} / \mathrm{sec}$, then the rate of increase of its radius (in $\mathrm{cm} / \mathrm{sec}$), when the volume is $288 \pi \mathrm{~cm}^{3}$ is :
A. $\frac{1}{9}$
B. $\frac{1}{6}$
C. $\frac{1}{36}$
D. $\frac{1}{24}$

Answer: C

- Watch Video Solution

30. If non-zero real number b and c are such that $\min f(x)>\max \mathrm{g}(\mathrm{x})$
where

$$
=x^{2}+2 b x+2 c^{2} \text { and } g(x)=-x^{2}-2 c x+b^{2}(x \in R) \text { then }\left|\frac{c}{b}\right|
$$

lies in the interval
A. $\left[\frac{1}{\sqrt{2}}, \sqrt{2}\right]$
B. $\left[0, \frac{1}{2}\right]$
C. $\left[\frac{1}{2}, \frac{1}{\sqrt{2}}\right]$
D. $[\sqrt{2}, \infty]$

Answer: D

- Watch Video Solution

31. Let $f^{\prime}(x)>0$ and $g^{\prime}(x)<0$ for all $x \in R$ Then
A. $g(f(x))>g(f(x-1))$
B. $f(g(x))>f(g(x+1))$
C. $f(g(x))>f(g(x-1))$
D. $g(f(x))<g(f(x+1))$

Answer: B

- Watch Video Solution

32. If Rolle's theorem holds for the function $f(x)=2 x^{3}+a x^{2}+b x$ in the interval $[-1,1]$ for the point $c=\frac{1}{2}$, then the value of $2 \mathrm{a}+\mathrm{b}$ is
A. 1
B. -1
C. 2
D. -2

Answer: B

33. Let $f(x)$ be a polynomial of degree four having extreme values at $x=1$ and $x=2$. If $(\lim)_{x \rightarrow 0}\left[1+\frac{f(x)}{x^{2}}\right]=3$, then $\mathrm{f}(2)$ is equal to :
(1) $-8(2)-4(3) 0(4) 4$
A. -8
B. -4
C. 0
D. 4

Answer: C

D Watch Video Solution

34. The equation of a normal to the curve, $\sin y=x\left(\frac{\sin \pi}{3}+y\right)$ at $x=0$ is
A. $2 x+\sqrt{3} y=0$
B. $2 y-\sqrt{3} x=0$
C. $2 y+\sqrt{3}=0$
D. $2 x-\sqrt{3} y=0$

Answer: A

- Watch Video Solution

35. Let k and K be the minimum and the maximum values of the function $f(x)=\frac{(1+x)^{0.6}}{1+x^{0.6}}$, and $x \in[0,1]$ respectively,then the ordered pair (k, K) is equal to
A. $\left(1,2^{0.6}\right)$
B. $\left(2^{-0.4}, 2^{0.6}\right)$
C. $\left(2^{-0.6}, 1\right)$
D. $\left(2^{-0.4}, 1\right)$

Answer: D

- Watch Video Solution

36. From the top of a 64 metres high tower, a stone is thrown upward vertically with the velocity of $48 \mathrm{~m} / \mathrm{s}$. The greatest height (in metres) attained by stone, assuming the value of the gravitational acceleration $g-32 m / s^{2}$, is
A. 100
B. 88
C. 128
D. 112

Answer: A

37. If $x=2 \cos t+\cos 2 t, y=2 \sin t-\sin 2 t$, then at $t=\frac{\pi}{4}, \frac{d y}{d x}$
A. 4
B. $2 \sqrt{2}$
C. 2
D. $\sqrt{2}$

Answer: C

D Watch Video Solution

38. Tangents are drawn to $x^{2}+y^{2}=16$ from the point $P(0, h)$. These tangents meet the $x-a \xi s$ at $A a n d B$. If the area of triangle $P A B$ is minimum, then $h=12 \sqrt{2}$ (b) $h=6 \sqrt{2} h=8 \sqrt{2}$ (d) $h=4 \sqrt{2}$
A. $4 \sqrt{3}$
B. $3 \sqrt{3}$
C. $3 \sqrt{2}$
D. $4 \sqrt{2}$

Answer: D

- Watch Video Solution

39. Consider $f(x)=\tan ^{-1}\left(\sqrt{\frac{1+\sin x}{1-\sin x}}\right), x \in\left(0, \frac{\pi}{2}\right)$. A normal to $y=f(x)$ at $x=\frac{\pi}{6}$ also passes through the point: (1) (0,0) (2) $\left(0, \frac{2 \pi}{3}\right)$ (3) $\left(\frac{\pi}{6}, 0\right)$ (4) $\left(\frac{\pi}{4}, 0\right)$
A. $(0,0)$
B. $\left(0, \frac{2 \pi}{3}\right)$
C. $\left(\frac{\pi}{6}, 0\right)$
D. $\left(\frac{\pi}{4}, 0\right)$

Answer: B

40. If m and M are the minimum and the maximum values of $4+\frac{1}{2} \sin ^{2} 2 x-2 \cos ^{4} x, x \in R$ then
A. $\frac{9}{4}$
B. $\frac{15}{4}$
C. $\frac{7}{4}$
D. $\frac{1}{4}$

Answer: A

- Watch Video Solution

41. If the tangent at a point P with parameter t, on the curve $x=4 t^{2}+3, y=8 t^{3}-1 t \in R$ meets the curve again at a point Q, then the coordinates of Q are

$$
\text { A. }\left(16 t^{2}+3,-64 t^{3}-1\right)
$$

B. $\left(4 t^{2}+3,-8 t^{3}-1\right)$
C. $\left(t^{2}+3, t^{3}-1\right)$
D. $\left(t^{2}+3,-t^{3}-1\right)$

Answer: D

- Watch Video Solution

42. Let $f(x)=\sin ^{4} x+\cos ^{4} x$. Then f is increasing function in the interval
A. $] \frac{5 \pi}{8}, \frac{3 \pi}{4}[$
B. $] \frac{\pi}{2}, \frac{5 \pi}{8}[$
C. $] \frac{\pi}{4}, \frac{\pi}{2}[$
D. $] 0, \frac{\pi}{4}[$

Answer: C

43. Let C be a curve given by $y=1+\sqrt{4 x-3}, x>\frac{3}{4}$. If P is a point on C such that the tangent at P has slope $\frac{2}{3}$, then a point through which the normal at P passes, is
A. $(1,7)$
B. $(3,-4)$
C. $(4,-3)$
D. $(2,3)$

Answer: A

- Watch Video Solution

44. The normal to the curve $y(x-2)(x-3)=x+6$ at the point where the curve intersects the $y-a \xi s$, passes through the point :
$\left(\frac{1}{2},-\frac{1}{3}\right)(2)\left(\frac{1}{2}, \frac{1}{3}\right)$ (3) $\left(-\frac{1}{2},-\frac{1}{2}\right)(4)\left(\frac{\frac{1}{2,1}}{2}\right)$
A. $\left(\frac{1}{2}, \frac{1}{3}\right)$
B. $\left(-\frac{1}{2},-\frac{1}{2}\right)$
C. $\left(\frac{1}{2}, \frac{1}{2}\right)$
D. $\left(\frac{1}{2},-\frac{1}{3}\right)$

Answer: C

- Watch Video Solution

45. The tangent at the point $(2,-2)$ to the curve, $x^{2} y^{2}-2 x=4(1-y)$ does not pass through the point:
A. $(4,1 / 3)$
B. $(8,5)$
C. $(-4,-9)$
D. $(-2,-7)$

Answer: D

- Watch Video Solution

46. A tangent drawn to the curve $y=f(x)$ at $P(x, y)$ cuts the x and y axes at A and B, respectively, such that $A P: P B=1: 3$. If $f(1)=1$ then the curve passes through $\left(k, \frac{1}{8}\right)$ where k is
A. $\left(\frac{1}{3}, 24\right)$
B. $\left(\frac{1}{2}, 4\right)$
C. $\left(2, \frac{1}{8}\right)$
D. $\left(3, \frac{1}{28}\right)$

Answer: C

47. If a point P has co-ordinates $(0,-2)$ and Q is any point on the circle $x^{2}+y^{2}-5 x-y+5=0$, then the maximum value of $(P Q)^{2}$ is
: (a) $\frac{25+\sqrt{6}}{2}$ (b) $14+5 \sqrt{3}$ (c) $\frac{47+10 \sqrt{6}}{2}$ (d) $8+5 \sqrt{3}$
A. $\frac{25+\sqrt{6}}{2}$
B. $14+5 \sqrt{3}$
C. $\frac{47+10 \sqrt{6}}{2}$
D. $8+5 \sqrt{3}$

Answer: B

- Watch Video Solution

48. The function f defined by
$f(x)=x^{3}-6 x^{2}-36 x+7$ is increasing, if
A. increasing on R
B. decreasing on R
C. decreasing on $(0, \infty)$ and increasing on $(-\infty, 0)$
D. increasing on $(0, \infty)$ and decreasing on $(-\infty, 0)$

Answer: A

- Watch Video Solution

49. Twenty metres of wire is available for fencing off a flower-bed in the form of a circular sector. Then the maximum area (in sqm) of the flower-bed is: 25 (2) 30 (3) 12.5 (4) 10
A. 30
B. 12.5
C. 10
D. 25
50. Let $\mathrm{f}(\mathrm{x})$ be a polynomial of degree four having extreme values at $\mathrm{x}=1$
and $\mathrm{x}=2$. If $\lim _{x \rightarrow 0}\left(1+\frac{f(x)}{x^{2}}\right)=3$, then $\mathrm{f}(2)$ is equal to
A. $5 / 2$
B. $9 / 2$
C. $1 / 2$
D. $3 / 2$

Answer: B

- Watch Video Solution

51. If the curves $y^{2}=6 x, 9 x^{2}+b y^{2}=16$ intersect each other at right angles then the value of b is: (1) 6 (2) $\frac{7}{2}$ (3) 4 (4) $\frac{9}{2}$
A. 6
B. $7 / 2$
C. 4
D. $9 / 2$

Answer: D

- Watch Video Solution

52. If a right circular cone, having maximum volume is inscribed in a sphere of radius 3 cm , then the curved surface area (in cm^{2}) of this cone is
A. $6 \sqrt{3 \pi}$
B. $6 \sqrt{2} \pi$
C. $8 \sqrt{2} \pi$
D. $8 \sqrt{3} \pi$

Answer: D

- View Text Solution

53. Let $f(x)=x^{2}+\left(\frac{1}{x^{2}}\right)$ and $g(x)=x-\frac{1}{x} \xi n R-\{-1,0,1\}$. If
$h(x)=\left(\frac{f(x)}{g(x)}\right)$ then the local minimum value of $h(x)$ is: (1) 3 (2) -3
(3) $-2 \sqrt{2}$ (4) $2 \sqrt{2}$
A. -3
B. $-2 \sqrt{2}$
C. $2 \sqrt{2}$
D. 3

Answer: C

54. if θ denotes the acute angle between the curves, $y=10-x^{2}$ and $y=2+x^{2}$ at a point of their intersection, then $|\tan \theta|$ is equal to
A. $4 / 9$
B. $7 / 17$
C. $8 / 17$
D. $8 / 15$

Answer: D

- Watch Video Solution

55. The tangent to the curve $y t=x e^{x^{2}}$ passing through the point $(1, \mathrm{e})$ also passes through the point
A. $(4 / 3,2 e)$
B. $(2,3 \mathrm{e})$
C. $(5 / 3,2 e)$
D. $(3,6 e)$

Answer: A

- Watch Video Solution

56. The tangent to the curve $y=x^{2}-5 x+5$. parallel to the line
$2 y=4 x+1$, also passes through the point :
A. $(1 / 4,7 / 2)$
B. $(7 / 2,1 / 4)$
C. $(-1 / 8), 7)$
D. $(1 / 8,-7)$

Answer: D

57. The equation of a tangent to the parabola, $x^{2}=8 y$, which makes an angle θ with the positive direction of x-axis, is:
A. $x=y \cot \theta+2 \tan \theta$
B. $x=y \cot \theta-2 \tan \theta$
C. $y=x \tan \theta-2 \cot \theta$
D. $y=x \tan \theta+2 \cot \theta$

Answer: A

- Watch Video Solution

58. Let $f(x)=-\frac{x}{\sqrt{a^{2}+x^{2}}}-\frac{d-x}{\sqrt{b^{2}+(d-x)^{2}}}, x \in R$, where a, b and d are non-zero real constants. Then,
A. f is decreasing function of x
B. f is neither increasing nor decreasing function of x
C. f^{\prime} is not a continuous function of x
D. f is an increasing function of x

Answer: D

- Watch Video Solution

59. Find the area of the largest rectangle with lower base on the x-axis and upper vertices on the curve $y=12-x^{2}$.
A. $20 \sqrt{2}$
B. $18 \sqrt{3}$
C. 32
D. 36

Answer: C

60. The maximum values of $3 \cos \theta+5 \sin \left(\theta-\frac{\pi}{6}\right)$ for any real value of θ is:
A. $\sqrt{19}$
B. $\sqrt{\frac{79}{2}}$
C. $\sqrt{31}$
D. $\sqrt{34}$

Answer: A

- Watch Video Solution

61. Let $f(x)=x^{3}-3(a-2) x^{2}+3 a x+7$ and $f(x)$ is increasing in $(0,1]$ and decreasing is $[1,5)$, then roots of the equation $\frac{f(x)-14}{(x-1)^{2}}=0$ is (A) 1 (B) 3 (C) 7 (D) -2
A. 6
B. 5
C. 7
D. -7

Answer: C

- Watch Video Solution

62. The maximum value of the function
$f(x)=3 x^{3}-18 x^{2}+27 x-40 \quad$ on the set
$S=\left\{x \in R: x^{2}+30 \leq 11 x\right\}$ is:
A. 122
B. -222
C. -122
D. 222

- Watch Video Solution

63. A helicopter flying along the path $y=7+x^{\frac{3}{2}}$, A soldier standint at point $\left(\frac{1}{2}, 7\right)$ wants to hit the helicopter when it is closest from him, then minimum distance is equal to (a) $\frac{1}{6} \frac{\sqrt{2}}{3}$ (b) $\frac{1}{2}$ (c) $\frac{1}{3} \sqrt{\frac{2}{3}}$ (d) $\sqrt{\frac{5}{2}}$
A. $\frac{1}{2}$
B. $\frac{1}{3} \sqrt{\frac{7}{3}}$
C. $\frac{1}{6} \sqrt{\frac{7}{3}}$
D. $\frac{\sqrt{5}}{6}$

Answer: C

64. The shortest distance between the point $\left(\frac{3}{2}, 0\right)$ and the curve $y=\sqrt{x},(x>0)$, is
A. $\frac{\sqrt{5}}{2}$
B. $\frac{5}{4}$
C. $\frac{3}{2}$
D. $\frac{\sqrt{3}}{2}$

Answer: A

- Watch Video Solution

65. The maximum volume (in cu.m) of the right circular cone having slant height 3 m is
A. $3 \sqrt{3} \pi$
B. 6π
C. $2 \sqrt{3} \pi$
D. $\frac{4}{3} \pi$

Answer: C

- Watch Video Solution

Question For Previous Year S B Architecture Entrance Examination Papers

1. The slope of the normal to curve $y=x^{3}-4 x^{2}$ at $(2,-1)$ is
A. $\frac{1}{4}$
B. $\frac{1}{2}$
C. 4
D. -4

Answer: A
2. For the curve $x=t^{2}-1, y=t^{2}-t$, the tangent line is perpendicular to x-axis, then $t=$ (i) 0 (ii) ∞ (iii) $\frac{1}{\sqrt{3}}$ (iv) $-\frac{1}{\sqrt{3}}$
A. $t=0$
B. $t=1$
C. $t=\frac{1}{\sqrt{3}}$
D. $t=\frac{1}{2}$

Answer: B

- Watch Video Solution

3. If $f(x)=4^{\sin x}$ satisfies the Rolle's theorem on $[0, \pi]$, then the value of $c \in(0, \pi)$ for which $f^{\prime}(c)=0$ is
A. $c=\frac{\pi}{6}$
B. $c=\frac{\pi}{4}$
C. $c=\frac{\pi}{2}$
D. $c=\frac{\pi}{3}$

Answer: C

(D) Watch Video Solution

4. $f(x)=\sqrt{25-x^{2}}$ in $[1,5]$
A. $\sqrt{3}$
B. $\sqrt{5}$
C. $\sqrt{15}$
D. 2

Answer: C

5. Let $f(x)=\left\{\begin{array}{ll}|x-1|+a & \text { if } x \leq 1 \\ 2 x+3 & \text { if } x>1\end{array}\right.$. If $\mathrm{f}(\mathrm{x})$ has a local minimum at $\mathrm{x}=1$, then
A. $a>5$
B. $0<a \leq 5$
C. $a \leq 5$
D. $a=5$

Answer: C

(D) Watch Video Solution

6. If m be the slope of the tangent to the curve $e^{2 y}=1+4 x^{2}$, then
A. $|m| \leq 1$
B. $|m|>1$
C. $|m| \geq 1$
D. $|m|<1$

Answer: A

- Watch Video Solution

7. Let $f:(-\infty, \infty) \rightarrow(-\infty, \infty)$ be acontinuous and differentiable function and let $f^{\prime}($.$) denote the derivative of f($.$) .If f(0)=-2$ and $f^{\prime}(x)$ ≤ 3 for each $x \in[0,2]$, then the largest possible value of $\mathrm{f}(2)$ is
A. 1
B. 2
C. 3
D. 4

Answer: D

8. Let $f[1,2] \rightarrow(-\infty, \infty)$ be given by $f(x)=\frac{x^{4}+3 x^{2}+1}{x^{2}+1}$ then find value of in $\left[f_{\max }\right]$ in $[-1,2]$ where [.] is greatest integer function :
A. 1
B. $\frac{29}{5}$
C. $\frac{21}{5}$
D. $\frac{28}{5}$

Answer: B

(D) Watch Video Solution

9. Let $y=f(x)$ be a curve which passes through (3,1) and is such that normal at any point on it passes through (1,1). Then $y=f(x)$ describes
A. a circle of area π
B. an ellipse of area 2π
C. an ellipse of area 3π
D. a circle of area 4π

Answer: D

- Watch Video Solution

10. Let $f(x)=\left\{\begin{array}{ll}x \sin \frac{\pi}{x}, & 0<x \leq 1 \\ 0 & x=0\end{array}\right.$.Then $\mathrm{f}^{\prime}(\mathrm{x})=0$ for
A. exactly two value of x
B. no value of x
C. infinitely many values of x
D. exactly one value of x

Answer: C

11. Let $f(x)=\left[1-x^{2}\right], x \in R$, where [] is the greatest integer function. Then
A. f is increasing
B. $x=0$ is the point of maxima of f
C. f is continuous at $x=0$
D. f is decreasing

Answer: D

- View Text Solution

12. A particle is constrained to move along the curve $y=\sqrt{x}$ starting at the origin at time $\mathrm{t}=0$. The point on the curve where the abscissa and the ordinate are changing at the same rate is
A. $\left(\frac{1}{2}, \frac{1}{\sqrt{2}}\right)$
B. $\left(\frac{1}{8}, \frac{1}{2 \sqrt{2}}\right)$
C. $\left(\frac{1}{4}, \frac{1}{2}\right)$
D. $(1,1)$

Answer: C

- Watch Video Solution

13. If the tangent and the normal to $x^{2}-y^{2}=4$ at a point cut off intercepts a_{1}, a_{2} on the x-axis respectively $\& b_{1}, b_{2}$ on the y -axis respectively. Then the value of $a_{1} a_{2}+b_{1} b_{2}$ is equal to:
A. -1
B. 0
C. 4
D. 1

Answer: B

- Watch Video Solution

14. Let f be a differentiable function defined on R such that $f(0)=-3$. If $f^{\prime}(x) \leq 5$ for all x then
A. $f(2)>7$
B. $f(2) \leq 7$
C. $f(2)>8$
D. $f(2)=8$

Answer: B

- Watch Video Solution

15. Let f be a function defined on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ by $f(x)=$ $3 \cos ^{4} x-6 \cos ^{3} x-6 \cos ^{2} x-3$. Then the range of $f(x)$ is
A. $[-12,-3]$
B. $[-6,-3]$
C. $[-6,3]$
D. $(-12,3]$

Answer: A

- Watch Video Solution

16. The function $\mathrm{f}(\mathrm{x})=x e^{-x}$ has
A. neither a maximum nor a minimum at $x=1$
B. a minimum at $x=1$
C. a maximum at $x=1$
D. a maximum at $x=-1$

Answer: C

- Watch Video Solution

17. Each side of a square is increasing at the uniform rate of $1 \mathrm{~m} / \mathrm{sec}$. If after sometime the area of the square is increasing at the rate of $8 m^{2}$ $/ \mathrm{sec}$, then the area of square at that time in sq. meters is
A. 4
B. 9
C. 16
D. 25

Answer: C

18. Find the rate of change of the volume of a sphere with respect to its surface area when the radius is 2 cm .
A. 4
B. 3
C. 2
D. 1

Answer: D

- Watch Video Solution

19. If m is the slope of the tangent to the curve $e^{y}=1+x^{2}$, then
A. $[0,1]$
B. $(1, \infty)$
C. $(-\infty,-1)$
D. $[-1,1]$

Answer: D

- Watch Video Solution

20. $\mathrm{f}(\mathrm{x})=|x \log x|, x>0$ is monotonically decreasing in
A. $\left(0, \frac{1}{e}\right)$
B. $\left[\frac{1}{e}, 1\right]$
C. $(1, \mathrm{e})$
D. (e, ∞)

Answer: B

- View Text Solution

21. Let $f(x)=\left|x-x_{1}\right|+\left|x-x_{2}\right|$, where x_{1} and x_{2} are distinct real numbers. Then the number of points at which $f(x)$ is minimum
A. 1
B. 2
C. 3
D. more than 3

Answer: B

- Watch Video Solution

22. The maximum value of $\mathrm{f}(\mathrm{x})=2 \sin x+\sin 2 x$, in the interval $\left[0, \frac{3}{2} \pi\right]$ is
A. $\sqrt{2}+1$
B. $2 \sqrt{3}$
C. $\frac{3 \sqrt{3}}{2}$
D. $\sqrt{3}$

Answer: C

- Watch Video Solution

23. The abscissae of a point, tangent at which to the curve $y=e^{x} \sin x, x \in[0, \pi]$ has maximum slope is
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. π
D. 0

Answer: B

24. Let $\mathrm{p}(\mathrm{x})$ be a real polynomial of degree 4 having extreme values $x=1$ and $x=2$. if $\lim _{x \rightarrow 0} \frac{p(x)}{x^{2}}=1$, then $p(4)$ is equal to
A. 16
B. 32
C. 64
D. 8

Answer: A

- Watch Video Solution

25. Water is running into an underground right circular conical reservoir, which is 10 m deep and radius of the base is 5 m . If the rate of change in the volume of water in the reservoir is $\frac{3}{\sqrt{2}} \pi m^{3} / / \mathrm{min}$, then the rate (in $\mathrm{m} / \mathrm{min}$) at which water rises in it, when the water level is $4 m$ is
A. $3 / 2$
B. $3 / 8$
C. $1 / 8$
D. $1 / 4$

Answer: A

- View Text Solution

26. If $f(x)=\left|x^{2}-16\right|$ for all $x \in R$, then the total number of points of R at which $\mathrm{f}: R \rightarrow R$ attains local extreme values of
A. 1
B. 2
C. 3
D. 4

Answer: C

- View Text Solution

27. A real valued function $f(x)=C \log |x|+D x^{3}+x, x \neq 0$ where C and D are constant, has critical points at $x=-1$ and $x=2$. Then the ordered pair (C,D) is
A. $\left(\frac{2}{3},-\frac{1}{9}\right)$
B. $\left(-\frac{1}{9}, \frac{2}{3}\right)$
C. $\left(-\frac{2}{3}, \frac{1}{9}\right)$
D. $\left(-\frac{1}{9}, \frac{2}{3}\right)$

Answer: A

