

MATHS

BOOKS - MCGROW HILL EDUCATION MATHS (HINGLISH)

AREA BY INTEGRATION

1. Find the area between the curve y = x(x-3) and the ordinates x = 3

and x = 5.

Watch Video Solution

2. Determine the are between $y = 2x^2 + 10$ and y = 4x + 16

3. Find the area between the curve y = x(x-3) and the ordinates x =

4. Find the area of the region in the first quadrant enclosed by $x=y^2 \,\, {
m and} \,\, x=y+2$

Watch Video Solution

Solved Examples Concept Based Single Correct Answer Type Questions

1. The area of region between $y=4-x^2, 0\leq x\leq 2$ and the x-axis is

A.
$$\frac{4}{3}$$

B. $\frac{7}{3}$
C. $\frac{16}{3}$

D.
$$\frac{5}{3}$$

Answer: C

2. The area of the region enclosed by $y=x^2 \; ext{and} \; y=\sqrt{|x|}$ is

B.
$$\frac{1}{2}$$

C. $\frac{1}{3}$

D. 2

Answer: C

3. The area of the region bounded by the curve $y=x^2$ and y = x is equal

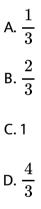
to

A. $\frac{1}{6}$ B. $\frac{1}{2}$ C. $\frac{1}{3}$ D. 1

Answer: A

4. The area of the region bounded by $y = \log x, y = 2$ and the coordinate axes is

A.
$$e^2-2$$


B. $e^{2} - 1$

C.
$$e^2 - e$$

D. $e^2 + 1$

Answer: B

Watch Video Solution

5. Find the area bounded by $x=2y-y^2 and the y-a\xi s_2$

Answer: D

1. The area of the region bounded by the lines $x=0, x=rac{\pi}{2}$ and $f(x)=\sin x, g(x)=\cos x$ is (A) $2(\sqrt{2}+1)$ (B) $\sqrt{3}-1$ (C) $2(\sqrt{3}-1)$ (D) $2(\sqrt{2}-1)$

- A. $2(\sqrt{2}-1)$
- $\mathsf{B.}\,\sqrt{3}-1$
- $C.2(\sqrt{3}-1)$
- D. $2(\sqrt{2}+1)$

Answer: A

2. Area bounded by the curve y = $\sqrt{5-x^2}$ and y = |x-1| is

A.
$$\left(\frac{5}{4}\pi - 2\right)$$

B.
$$\left(\frac{5\pi - 2}{4}\right)$$

C. $(5\pi - 2)/2$
D. $(\pi/2 - 5)$

Answer: B

Watch Video Solution

3. The area bounded by the curves $y^2=4x$ and $x^2=4y$

A. 32/3

B. 16/3

C.8/3

D. 0

Answer: B

4. The area of the plane region bounded by the curves $x+2y^2=0$ and $x+3y^2=1$ is equal to (1) $rac{5}{3}$ (2) $rac{1}{3}$ (3) $rac{2}{3}$ (4) $rac{4}{3}$

A. 5/3

B. 1/3

C.2/3

D. 4/3

Answer: D

Watch Video Solution

5. The area of the region enclosed by the curves y = x, x = e, $y = \frac{1}{x}$ and the positive x-axis is (A) $\frac{3}{2}$ sq. units (B) $\frac{5}{2}$ sq. units (C) $\frac{1}{2}$ sq. units (D) 1 sq. units

A. 5/2 square unit

B.
$$rac{1}{2}$$
 square units

C.1 square unit

D. $\frac{3}{2}$ square units

Answer: D

Watch Video Solution

6. The area bounded between the parabola $x^2 = rac{y}{4}$ and $x^2 = 9y$ and

the straight line y=2 is

A.
$$\frac{10\sqrt{2}}{3}$$

B. $\frac{20\sqrt{2}}{3}$
C. $10\sqrt{2}$

D. $20\sqrt{2}$

Answer: B

7. Let
$$F(x)$$
 bet the area bounded by the curve $f(t) = \frac{e^t}{t}$ between
 $t = a(a > 1), t = x$ and axis of abscissa then the area bounded by
 $g(t) = \frac{e^t}{1+t_0}(t_0 > 0)$ between t = a, t = x and axis of abscissa is
A. $e^{t_0}[F(x+t_0) - 2F(a+t_0)]$
B. $e^{t_0}[F(x+t_0) - F(a+t_0)]$
C. $e^{-t_0}[F(x+t_0) - F(a+t_0)]$
D. $e^{-t_0}[F(x+t_0) - F(a+t_0)]$

Answer: C

View Text Solution

8. Find the area lying above x-axis and included between the circle $x^2 + y^2 = 8x$ and the parabola $y^2 = 4x$.

A.
$$\frac{32}{3} + 2\pi$$

B. $\frac{32}{3} + 6\pi$

C.
$$\frac{16}{3} + 4\pi$$

D. $\frac{32}{3} + 4\pi$

Answer: D

Watch Video Solution

9. Find the ratio in which the area bounded by the curves $y^2 = 12xandx^2 = 12y$ is divided by the line x = 3.

A. 15:49

B. 13:48

C. 12: 37

D. 16:35

Answer: A

10. The area bounded by the curve y=|x-1| and y=3-|x|

B. 2

A. 6

C. 4

D. 3

Answer: C

Watch Video Solution

11. Let f(x) = minimum $\left(x+1,\sqrt{1-x}
ight)$ for all $x\leq 1.$ Then the area

bounded by y=f(x) and the x-axis is

A.
$$\frac{7}{3}$$

B. $\frac{7}{6}$
C. $\frac{11}{6}$

$$\mathsf{D}.\,\frac{1}{6}$$

Answer: B

12.	The	area	of	the	region	bounded	by		
$x=1,x=2,y=4x+1,y=e^x$ is									
A	.7 + e - e	e^2							
В	.5 + e - e	e^2							
C	1.7 - e + e	e^2							
D	.7 - 2e +	e^2							

Answer: A

1. The area between the curve $y=-x^2+4x$ and $y=x^2-6x+5$ over the interval $0\leq x\leq 1$ is

A.
$$\frac{52}{3} + 5\sqrt{15}$$

B. $-\frac{52}{3} + 5\sqrt{15}$
C. $-\frac{52}{3} + 3\sqrt{15}$
D. $\frac{47}{3} + 5\sqrt{15}$

Answer: B

View Text Solution

2. Find the area of the region bounded by the curve $y^2 = 9x$ and y = 3x.

B.1/4

C.1/2

D. 2

Answer: C

Watch Video Solution

3. The area of the plane figure bounded by lines $y=\sqrt{x}, x\in [0,1], y=x^2, x\in [1,2]$ and $y=-x^2+2x+4, x\in [0,2]$ is

A. 10/7

B. 10/3

C.3/5

D. 4/3

Answer: B

4. The value of a(a>0) for which the area bounded by the curves

$$y=rac{x}{6}+rac{1}{x^2},y=0,x=a,~ ext{and}~x=2a$$
 has the least value is ____.

- A. 1
- $\mathsf{B.}\,\sqrt{2}$
- C. 2
- D. $2^{1/3}$

Answer: D

Watch Video Solution

5. The area bounded by the curve $y=xig(x^2-1ig)$ and x-axis is

B.
$$\frac{1}{2}$$

C. 1
D. $\frac{1}{4}$

Answer: B

6. The area between the curves $x=1-y^2$ and $x=y^2-1$ is

A.
$$\frac{4}{3}$$

B. $\frac{1}{3}$
C. $\frac{8}{3}$
D. $\frac{5}{3}$

Answer: C

7. The area bounded by $y=x^2, y=\sqrt{x}, 0\leq x\leq 4$ is

A.
$$\frac{20}{3}$$

B. $\frac{10}{3}$
C. 10

D.
$$\frac{50}{3}$$

Answer: D

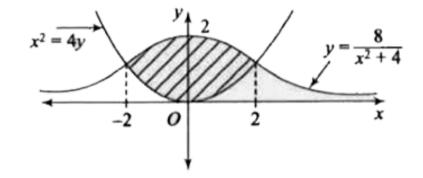
8. The area of the region enclosed by

$$y = x^3 - 2x^2 + 2$$
 and $y = 3x + 2$ is
A. $\frac{71}{6}$
B. 14
C. $\frac{29}{3}$

D.
$$\frac{71}{3}$$

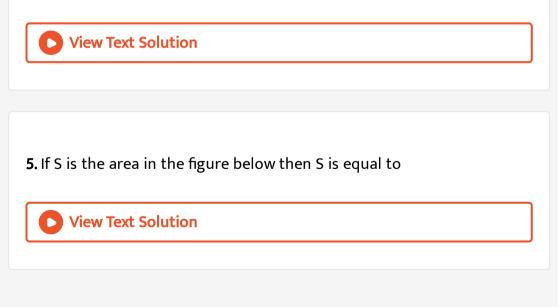
Answer: A

Solved Examples Numerical Answer Type Questions


1. Find the area bounded by the curves $x=y^2$ and $x=3-2y^2$.

Watch Video Solution

2. If A is the area of the figure bounded by the straight lines x = 0 and x =


2 and the curves y = 2x and
$$y = 2x - x^2$$
 then the value of $\left(rac{3}{\log 2} - A
ight)$ is

3. If S is the area of the figure given below, then S is equal to $(\pi = 3.14)$

4. If A is the area of the loop given below than A is equal to

Exercise Concept Based Single Correct Answer Type Questions

1. The area below $y = e^x$ and above y = x between x = 0 and x = 2 is

A. $e^2 - 1$ B. $e^2 + e$ C. $e^2 - 3$

 $\mathsf{D.}\, e+2$

Answer: C

Watch Video Solution

2. The area between y = x and $y=x^2, 0\leq x\leq 2$ is

A. 1
B.
$$\frac{2}{3}$$

C. $\frac{1}{3}$
D. $\frac{4}{3}$

Answer: A

3. The area of the region bounded by $y=x^2-x$ and y=2x+4 is

A.
$$\frac{175}{6}$$

B. $\frac{31}{6}$
C. 12
D. $\frac{125}{6}$

Answer: D

4. The area of the region enclosed by the parabola $y = 2 - x^2$ and the straight line y = -x is equal to:

A.
$$\frac{8\sqrt{2}+3}{7}$$

B. $\frac{8\sqrt{2}+6}{7}$
C. $\frac{7\sqrt{2}-1}{5}$
D. $\frac{7\sqrt{2}+1}{3}$

Answer: B

Watch Video Solution

5. The area of the region bounded by $y=x^2$ and $y=\ -x^2+2$ is

A.
$$\frac{5}{3}$$

B. $\frac{4}{3}$
C. $\frac{8}{3}$

D. 1

Answer: C

Exercise Level 1 Single Correct Answer Type Questions

1. The total area between
$$y = 4x - x^2$$
 and $y = x$ from x = 0 and x = 4

is

A. 17/3

B. 37/6

C.
$$\frac{19}{3}$$

D. 4

Answer: c

2. The area between the curves $y=x^2~~{
m and}~~y=x^{1\,/\,3},~-1\leq x\leq 1$ is

A.	$\frac{1}{2}$			
B. 2				
C.	$\frac{3}{4}$			
D.	$\frac{3}{2}$			

Answer: D

Watch Video Solution

3. The area of the region bounded by the parabola $(y-2)^2 = x - 1$, the tangent to the parabola at the point (2, 3) and the x-axis is

A. 9

B. 12

C. 3

D. 6

Answer: A

4. The area bounded by the curves $y = \cos x$ and $y = \sin x$ between the 3π

ordinates x=0 and $x=rac{3\pi}{2}$ is

A. $4\sqrt{2}-1$

- $\mathrm{B.}\,4\sqrt{2}+1$
- $\mathsf{C.}\,4\sqrt{2}-2$
- D. $4\sqrt{2}+2$

Answer: C

Watch Video Solution

5. The area included between $x^2+y^2=4x \; {
m and} \; y^2=x$ above x-axis is

A.
$$rac{4}{3}(3\pi-8)$$

B.
$$\frac{2}{3}(8+3\pi)$$

C. $\frac{1}{3}(4+3\pi)$
D. $\frac{5\sqrt{3}}{2} + \frac{2\pi}{3}$

Answer: D

6. The area of the region bounded by $y=2\cos x, y=3\tan x$ and the y-

axis is

A.
$$1 + \frac{3}{2}\log 3 - \log 2$$

B. $\log \frac{3}{2}$
C. $1 + 3\log \frac{2}{\sqrt{3}}$
D. $1 + \frac{3}{2}\log 3 - \log 8$

Answer: D

7. The area bounded by
$$y=\sin^{-1}x$$
, y-axis and $|y|=rac{\pi}{2}$ is

A. 2

 $\mathsf{B.}\,\pi$

C. 2π

D. 1

Answer: A

Watch Video Solution8. The area of the region bounded by
$$x = 1, x = 2, y = \log x$$
 and $y = 3^x$ is

A.
$$rac{9}{\log 3} + \log rac{e}{4}$$

B. $rac{6}{\log 3} - 2\log 2 + 1$

C.
$$\frac{3}{\log 3} - 2\log 2$$

D. $\frac{9}{\log 3} - 2\log 2 + 1$

Answer: B

Watch Video Solution

9. The area inside the parabola $5x^2 - y = 0$ but outside the parabola $2x^3 - y + 9 = 0$ is

A. $4\sqrt{3}$

B. $6\sqrt{3}$

C. $12\sqrt{3}$

D. $8\sqrt{3}$

Answer: C

10. The area bounded by the curve $y=2\log$ x, x-axis, y-axis and y = log 5

is equal to

A. $3ig(\sqrt{5}-1ig)$ B. 4

 $\mathsf{C.}\,2\big(\sqrt{5}-1\big)$

D. $\sqrt{5}-1$

Answer: C

View Text Solution

11. Let
$$A=ig\{(x,y)\!:\!y^2\leq 4x,y-2x\geq -2,y\geq 0ig\}.$$
 The area of the region A is

A.
$$rac{2}{3}ig(1+\sqrt{5}ig)^{3/2}-2$$

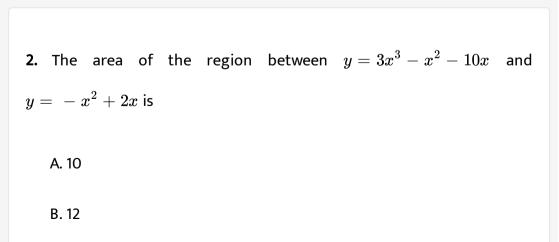
B. $rac{4}{3}ig(3+\sqrt{5}ig)^{3/2}$

C.
$$rac{2}{3\lceil 3}(3+\lceil 5)^{3/2}-rac{1}{2}(7+3\lceil 5)$$

D. $rac{4}{3}ig(3+\sqrt{5}ig)^{3/2}-ig(5+4\sqrt{5}ig)$

Answer: C

12. The area of the region above x-axis bounded by
$$y = \cot x, \frac{\pi}{12} \le x \le \frac{\pi}{4}$$
 is
A.1
B. $\log(\sqrt{2} + 1)$
C. $\log(\sqrt{5} + 1)$
D. $\log(\sqrt{3} + 1)$


Answer: D

D View Text Solution

1. The area between x=y+3 and $x=y^2$ from y = -1 to y=1 is

A.
$$\frac{4}{3}$$

B. $\frac{16}{3}$
C. $\frac{5}{3}$
D 4

Answer: B

C. 18

D. 24

Answer: D

Watch Video Solution

3. The area of the region bounded by y = x - 1 and $x=3-y^2$ is

A. $\frac{5}{2}$ B. $\frac{7}{2}$ C. $\frac{9}{2}$ D. 4

Answer: C

4. The area between the curves $y=x^2+3$ and $y=\ -x^2-1$ on [-2, 2]

is

A.
$$\frac{80}{3}$$

B. $\frac{29}{3}$
C. 21
D. $\frac{47}{3}$

Answer: A

View Text Solution

5. The area the region enclosed by
$$f(x) = x^3 - 10x$$
 and $g(x) = 6x, x \ge 0, y \ge 0$ is

A. 24

B. 39

C. 42

D. 84

Answer: B

Watch Video Solution

6. The area bounded by
$$y=x^2$$
 and $y=1-x^2$ is

A. $\sqrt{8}/3$

B. 16/3

C. 32/3

D. 16/3

Answer: A

7. The area of the region bounded by the lines
$$x = 0, x = \frac{\pi}{2}$$
 and
 $f(x) = \sin x, g(x) = \cos x$ is (A) $2(\sqrt{2} + 1)$ (B) $\sqrt{3} - 1$ (C) $2(\sqrt{3} - 1)$
(D) $2(\sqrt{2} - 1)$
A. $2(\sqrt{2} - 1)$
B. $\sqrt{3} - 1$
C. $2(\sqrt{3} - 1)$
D. $2(\sqrt{2} + 1)$

Answer: A

Watch Video Solution

8. The area of the figure bounded by the curves $y^2=2x+1$ and x-y-1=0 , is

A. 16/3

B.4/3

D.
$$\frac{11}{3}$$

Answer: A

O Watch Video Solution

Exercise Numerical Answer Type Questions

1. If A is the area bonded by $x = \left|y^2 - 1\right|$ and y = x - 5 then A is equal to

Watch Video Solution

2. If the x-axis divides the area of the rigion bounded by the parabolas

 $y = 4 - x \ -^2 \ \ {
m and} \ \ y^2 - x^2 - x$ in the ratio of a: b, then ab is equal to

View Text Solution

3. The line y = mx bisects the area enclosed by the curve $y = 1 + 4x - x^2$ and the lines $x = 0, x = \frac{3}{2}andy = 0$. Then the value of m is $\frac{13}{6}$ b. $\frac{6}{13}$ c. $\frac{3}{2}$ d. 4

Watch Video Solution

4. Let A be the area bounded by the curve $y = \sin x (0 \le x \le \pi)$ and xaxis and B is the area bounded by the curves $y = \sin x (0 \le x \le \pi/2), y = a \cos x (0 \le x \le \pi/2)$ and x-axis (a > 0). If A:B=1, then a is equal to

5. If the area bounded by the curve $f(x) = x^{1/3}(x-1)$ and the x-axis

is A, then the value of 28A is_.

View Text Solution

1. The area of the region bounded by the curves y=|x-2|, x=1, x=3 and $thex-a\xi sis(A)$ 3(B)2(C)1(D)4`

A. 3

B. 2

C. 1

D. 3

Answer: C

Watch Video Solution

2. The area enclosed between the curve $y = \log_e(x+e)$ and the coordinate axes is

4

C. 1

D. 2

Answer: C

Watch Video Solution

3. The area enclosed between the curves $y^2 = xandy = |x|$ is (1) 2/3 (2)

1 (3) 1/6 (4) 1/3

A.
$$\frac{2}{3}$$

B. 1
C. $\frac{1}{6}$
D. $\frac{1}{3}$

Answer: C

4. The area of the plane region bounded by the curves $x+2y^2=0$ and $x+3y^2=1$ is equal to (1) $rac{5}{3}$ (2) $rac{1}{3}$ (3) $rac{2}{3}$ (4) $rac{4}{3}$

A. 5/3

B. 1/3

C. 2/3

D. 4/3

Answer: D

Watch Video Solution

5. The area of the region bounded by the parabola $(y-2)^2 = x - 1$, the tangent to the parabola at the point (2, 3) and the x-axis is B. 12

C. 3

D. 6

Answer: A

Watch Video Solution

6. The area bounded by the curves $y = \cos x$ and $y = \sin x$ between the

ordinates x = 0 and $x=rac{3\pi}{2}$, is

A. $4\sqrt{2}-1$

B. $4\sqrt{2} + 1$

 $\mathsf{C.}\,4\sqrt{2}-2$

D. $4\sqrt{2}+2$

Answer: C

7. The area bounded by the curves $y^2=4x$ and $x^2=4y$

A.
$$\frac{32}{3}$$

B. $\frac{16}{3}$
C. $\frac{8}{3}$

D. 0

Answer: B

Watch Video Solution

8. The area bounded between the parabolas $x^2 = rac{y}{4}$ and $x^2 = 9y$ and

the straight line y=2 is

A.
$$\frac{10\sqrt{2}}{3}$$

B. $\frac{20\sqrt{2}}{3}$

C. $10\sqrt{2}$

D. $20\sqrt{2}$

Answer: B

Watch Video Solution

9. The area bounded by the curves $y=\sqrt{x}, \, 2y-x+3=0,\,$ X-axis and

lying in the first quadrant is

A. 36

B. 18

C.
$$\frac{27}{4}$$

D. 9

Answer: D

10. The area under the curve $y=|\cos x-\sin x|, 0\leq x\leq rac{\pi}{2},$ and above x-axis is: (A) $2\sqrt{2}+2$ (B) 0 (C) $2\sqrt{2}-2$ (D) $2\sqrt{2}$

A. $2\sqrt{2}$

 $\mathsf{B}.\,2\sqrt{2}-2$

 $\mathsf{C.}\,2\sqrt{2}+2$

D. 0

Answer: B

Watch Video Solution

11. The area bounded by the curve $y=\ln(x)$ and the lines

 $y=0, y=\ln(3)$ and x=0 is equal to

A. 3

 $\mathsf{B.3}\log-2$

 $\mathsf{C.3}\log 3 + 2$

D. 2

Answer: D

Watch Video Solution

12. The area of the region described by $A=ig\{(x,y)\!:\!x^2+y^2\leq 1$ and

$$y^2 \leq 1-xig\}$$
 is :

A.
$$\frac{\pi}{2} + \frac{4}{3}$$

B. $\frac{\pi}{2} - \frac{4}{3}$
C. $\frac{\pi}{2} - \frac{2}{3}$
D. $\frac{\pi}{2} + \frac{2}{3}$

Answer: A

13. Let $A = \{(x, y); y^2 \le 4x, y - 2x \le -4\}$ The area (insurunits) of the region A is

A. 8

B. 9

C. 10

D. 11

Answer: B

Watch Video Solution

14. The area of the region bounded by the curve $y = \tan x$, tangent drawn to the curve at $x = \frac{\pi}{4}$ and the x-axis is

A.
$$rac{1}{2}\left(\log 2-rac{1}{2}
ight)$$

B. $rac{1}{2}\left(\log 2+rac{1}{2}
ight)$

C.
$$rac{1}{2}(1 - \log 2)$$

D. $rac{1}{2}(1 + \log 2)$

Answer: A

Watch Video Solution

15. The area (in square units) of the region bounded by the curves $y+2x^2=0, y+3x^2=1$ is equal to

A. $\frac{3}{5}$ B. $\frac{3}{4}$ C. $\frac{1}{3}$ D. $\frac{4}{3}$

Answer: D

16. The area (in square units) of the region described by $ig\{(x,y): y^2 \leq 2x ext{ and } y \leq 4-xig\}$ is

A.
$$\frac{7}{32}$$

B. $\frac{5}{64}$
C. $\frac{15}{64}$

D. 18

Answer: D

17. The area (in square units) of the region $\{(x,y): y^2 \ge 2x ext{ and } x^2 + y^2 \le 4x, x \ge 0, y \ge 0\}$ is

A.
$$\pi - rac{4}{3}$$

B. $\pi - rac{8}{3}$

C.
$$\pi - \frac{4\sqrt{2}}{3}$$

D. $\frac{\pi}{2} - \frac{2\sqrt{2}}{3}$

Answer: B

18. The area (in sq. units) of the region described by

$$A = \{(x, y) : y \ge x^2 - 5x + 4, x + y > 1, y \le 0\}$$
 is
A. $\frac{19}{6}$
B. $\frac{17}{6}$
C. $\frac{7}{2}$
D. $\frac{13}{6}$

Answer: A

19. The area (in sq. units) of the region $\{(x, y): x \ge 0, x + y \le 3, x^2 \le 4y \text{ and } y \le 1 + \sqrt{x}\}$ is : A. $\frac{5}{2}$ B. $\frac{59}{12}$ C. $\frac{3}{2}$ D. $\frac{7}{3}$

Answer: A

20. The area (in sq. units) of the region
$$\{(x, y), x \ge 0, y \ge 0, y \ge x - 2, \text{ and } y \le \sqrt{x}\}$$
 is

A.
$$\frac{10}{3}$$

B. $\frac{13}{3}$

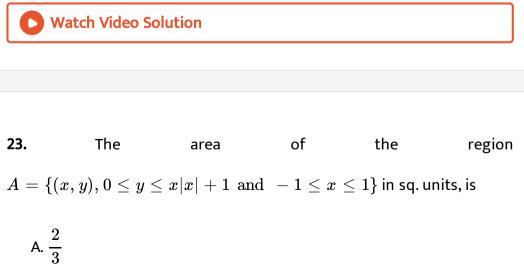
C.
$$\frac{5}{3}$$

D. $\frac{8}{3}$

Answer: A

Watch Video Solution

21. Let $g(x) = \cos x^2$, $f(x) = \sqrt{x}$, and α , $\beta(\alpha < \beta)$ be the roots of the quadratic equation $18x^2 - 9\pi x + \pi^2 = 0$. Then the area (in sq. units) bounded by the curve y = (gof)(x) and the lines $x = \alpha$, $x = \beta$ and y = 0 is


A.
$$\frac{1}{2}(\sqrt{3}+1)$$

B. $\frac{1}{2}(\sqrt{3}-\sqrt{2})$
C. $\frac{1}{2}(\sqrt{2}-1)$
D. $\frac{1}{2}(\sqrt{3}-1)$

Answer: D

22. The area (in sq. units) bounded by the parabola $y=x^2-1$, the tangent at the point (2,3) to it and the y-axis is

A.
$$\frac{14}{3}$$

B. $\frac{56}{3}$
C. $\frac{8}{3}$
D. $\frac{32}{3}$

Answer: C

B.
$$\frac{1}{3}$$

C. 2
D. $\frac{4}{3}$

-

Answer: C

24. If the area enclosed between the curves $y = kx^2$ and $x = ky^2$, where k > 0, is 1 square unit. Then k is: (a) $\frac{1}{\sqrt{3}}$ (b) $\frac{\sqrt{3}}{2}$ (c) $\frac{2}{\sqrt{3}}$ (d) $\sqrt{3}$

A.
$$\frac{1}{\sqrt{3}}$$

B. $\frac{2}{\sqrt{3}}$
C. $\frac{\sqrt{3}}{2}$

D. $\sqrt{3}$

Answer: A

25. Let $I=\int_a^b ig(x^4-2x^2ig) dx.$ If I is minimum then the ordered pair (a, b) is:

A. $(-\sqrt{2}, 0)$ B. $(-\sqrt{2}, \sqrt{2}$ C. $(0, \sqrt{2})$ D. $(\sqrt{2}, -\sqrt{2})$

Answer: B

Watch Video Solution

26. The area of the region bounded by the curve $x^2 = 4y$ and the straight line x = 4y - 2 is

A.
$$\frac{5}{4}$$

B.
$$\frac{9}{8}$$

C. $\frac{3}{4}$
D. $\frac{7}{8}$

Answer: B

27. The area (in sq units) of the region bounded by the parabola,

 $y=x^2+2$ and the lines, $y=x+1, x=0 \, ext{ and } \, x=3$, is

A.
$$\frac{15}{4}$$

B. $\frac{15}{2}$
C. $\frac{21}{2}$
D. $\frac{17}{4}$

Answer: B

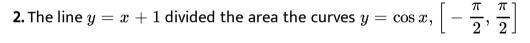
28. The area (in sq units) in the first quadrant bounded by the parabola, $y=x^2+1$, the tangent to it at the point (2, 5) and the coordinate axes is

A.
$$\frac{14}{3}$$

B. $\frac{187}{24}$
C. $\frac{37}{24}$
D. $\frac{8}{3}$

Answer: C

Watch Video Solution


Question From Previous Years B Architecture Entrance Examination Papers

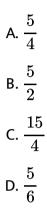
1. The area enclosed by the parabola $y=3ig(1-x^2ig)$ and the x-axis is

Answer: A

D. 2

and the x-axis into two regions which are in the ratio

A. 2:1


B. 1:3

C.2:3

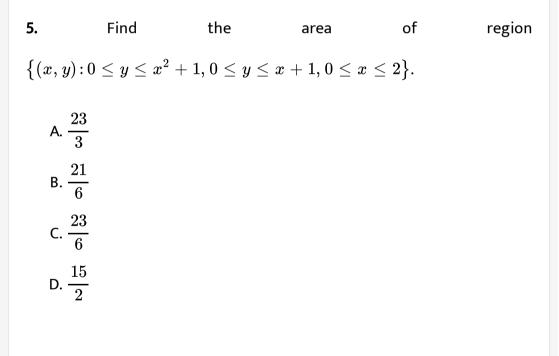
D.1:1

Answer: B

3. Find the area enclosed by the curves $x^2=y, y=x+2, andx-a\xi s$.

Answer: D

Watch Video Solution


4. Find the area of the region $ig\{(x,y)\!:\!x^2\leq y\leq |x|ig\}.$

A.
$$2\frac{1}{6}$$

B. $1\frac{1}{3}$

C.
$$\frac{1}{3}$$

D. $2\frac{5}{6}$

Answer: C

Answer: C

6. The area of the region bounded by curves $y = 1 - x^2, x + y + 1 = 0$ and x - y - 1 = 0 is A. $\frac{10}{3}$ B. $\frac{7}{3}$ C. $\frac{8}{3}$ D. 3

Answer: B

7. Find the ratio in which the area bounded by the curves $y^2 = 12xandx^2 = 12y$ is divided by the line x = 3.

A.
$$\frac{147}{4}$$

B. $\frac{45}{4}$

C.
$$\frac{137}{4}$$

D. $\frac{245}{4}$

Answer: A

Watch Video Solution

8. The area (in sq units) of the region bounded by the curve $y=\sqrt{x}$

and the lines $y=0,\,y=x-2,\,$ is

A.
$$\frac{10}{3}$$

B. $\frac{8}{3}$
C. $\frac{4}{3}$
D. $\frac{16}{3}$

Answer: A

9. If the line x=a bisects the area under the curve $y=rac{1}{x^2}, 1\leq x\leq 9$,

then a is equal to

A.
$$\frac{9}{5}$$

B. $\frac{5}{9}$
C. $\frac{9}{4}$
D. $\frac{4}{9}$

Answer: A

10. If the line,
$$y = mx$$
 bisects the area of the region $\left\{(x, y): 0 \le x \le \frac{3}{2}, 0 \le y \le 1 + 4x - x^2\right\}$, then m equals:
A. $\frac{39}{16}$
B. $\frac{9}{8}$

C.
$$\frac{13}{3}$$

D. $\frac{13}{6}$

Answer: D

D View Text Solution

11. The area (in sq. units) of the region bounded by the curve $12y = 36 - x^2$ and the tangents drawn to it at the points, where the curve intersects the x-axis is

A. 12

B. 18

C. 27

D. 6

Answer: A

View Text Solution

12. The area (in sq. units) of the region bounded by the curve $\sqrt{x} + \sqrt{y} = 1, x, y, \ge 0$ and the tangent to it at the point $\left(\frac{1}{4}, \frac{1}{4}\right)$ is A. $\frac{1}{36}$ B. $\frac{1}{8}$ C. $\frac{1}{12}$ D. $\frac{1}{24}$

Answer: D

View Text Solution