©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - MCGROW HILL EDUCATION MATHS (HINGLISH)

AREA BY INTEGRATION

Illustration

1. Find the area between the curve $y=x(x-3)$ and the ordinates $\mathrm{x}=3$ and $\mathrm{x}=5$.

Watch Video Solution
2. Determine the are between $y=2 x^{2}+10$ and $y=4 x+16$
3. Find the area between the curve $y=x(x-3)$ and the ordinates $\mathrm{x}=$ 0 and $x=5$.

- Watch Video Solution

4. Find the area of the region in the first quadrant enclosed by $x=y^{2}$ and $x=y+2$

- Watch Video Solution

Solved Examples Concept Based Single Correct Answer Type Questions

1. The area of region between $y=4-x^{2}, 0 \leq x \leq 2$ and the x -axis is
A. $\frac{4}{3}$
B. $\frac{7}{3}$
C. $\frac{16}{3}$
D. $\frac{5}{3}$

Answer: C

- Watch Video Solution

2. The area of the region enclosed by $y=x^{2}$ and $y=\sqrt{|x|}$ is
A. 1
B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. 2

Answer: C

- Watch Video Solution

3. The area of the region bounded by the curve $y=x^{2}$ and $\mathrm{y}=\mathrm{x}$ is equal to
A. $\frac{1}{6}$
B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. 1

Answer: A

- Watch Video Solution

4. The area of the regioin bounded by $y=\log x, y=2$ and the coordinate axes is
A. $e^{2}-2$
B. $e^{2}-1$
C. $e^{2}-e$
D. $e^{2}+1$

Answer: B

- Watch Video Solution

5. Find the area bounded by $x=2 y-y^{2}$ andthey $-a \xi s$.
A. $\frac{1}{3}$
B. $\frac{2}{3}$
C. 1
D. $\frac{4}{3}$

Answer: D

- Watch Video Solution

Solved Examples Level 1 Single Correct Answer Type Questions

1. The area of the region bounded by the lines $x=0, x=\frac{\pi}{2}$ and $f(x)=\sin x, g(x)=\cos x$ is (A) $2(\sqrt{2}+1)$
(B) $\sqrt{3}-1$ (C) $2(\sqrt{3}-1)$
(D) $2(\sqrt{2}-1)$
A. $2(\sqrt{2}-1)$
B. $\sqrt{3}-1$
C. $2(\sqrt{3}-1)$
D. $2(\sqrt{2}+1)$

Answer: A

- Watch Video Solution

2. Area bounded by the curve $\mathrm{y}=\sqrt{5-x^{2}}$ and $\mathrm{y}=|\mathrm{x}-1|$ is
A. $\left(\frac{5}{4} \pi-2\right)$
B. $\left(\frac{5 \pi-2}{4}\right)$
C. $(5 \pi-2) / 2$
D. $(\pi / 2-5)$

Answer: B

- Watch Video Solution

3. The area bounded by the curves $y^{2}=4 x$ and $x^{2}=4 y$
A. $32 / 3$
B. $16 / 3$
C. $8 / 3$
D. 0

Answer: B

4. The area of the plane region bounded by the curves $x+2 y^{2}=0$ and $x+3 y^{2}=1$ is equal to (1) $\frac{5}{3}$ (2) $\frac{1}{3}$ (3) $\frac{2}{3}$ (4) $\frac{4}{3}$
A. $5 / 3$
B. $1 / 3$
C. $2 / 3$
D. $4 / 3$

Answer: D

- Watch Video Solution

5. The area of the region enclosed by the curves $y=x, x=e, y=\frac{1}{x}$ and the positive x-axis is (A) $\frac{3}{2}$ sq. units (B) $\frac{5}{2}$ sq. units (C) $\frac{1}{2}$ sq. units (D) 1 sq. units
A. $5 / 2$ square unit
B. $\frac{1}{2}$ square units
C. 1 square unit
D. $\frac{3}{2}$ square units

Answer: D

- Watch Video Solution

6. The area bounded between the parabola $x^{2}=\frac{y}{4}$ and $x^{2}=9 y$ and the straight line $y=2$ is
A. $\frac{10 \sqrt{2}}{3}$
B. $\frac{20 \sqrt{2}}{3}$
C. $10 \sqrt{2}$
D. $20 \sqrt{2}$

Answer: B
7. Let $F(x)$ bet the area bounded by the curve $f(t)=\frac{e^{t}}{t}$ between $t=a(a>1), t=x$ and axis of abscissa then the area bounded by $g(t)=\frac{e^{t}}{1+t_{0}}\left(t_{0}>0\right)$ between $\mathrm{t}=\mathrm{a}, \mathrm{t}=\mathrm{x}$ and axis of abscissa is
A. $e^{t_{0}}\left[F\left(x+t_{0}\right)-2 F\left(a+t_{0}\right)\right]$
B. $e^{t_{0}}\left[F\left(x+t_{0}\right)-F\left(a+t_{0}\right)\right]$
C. $e^{-t_{0}}\left[F\left(x+t_{0}\right)-F\left(a+t_{0}\right)\right]$
D. $e^{-t_{0}}\left[F\left(x+t_{0}\right)-F\left(a+t_{0}\right)\right]$

Answer: C

- View Text Solution

8. Find the area lying above x-axis and included between the circle $x^{2}+y^{2}=8 x$ and the parabola $y^{2}=4 x$.
A. $\frac{32}{3}+2 \pi$
B. $\frac{32}{3}+6 \pi$
C. $\frac{16}{3}+4 \pi$
D. $\frac{32}{3}+4 \pi$

Answer: D

- Watch Video Solution

9. Find the ratio in which the area bounded by the curves $y^{2}=12 x a n d x^{2}=12 y$ is divided by the line $x=3$.
A. $15: 49$
B. $13: 48$
C. 12:37
D. 16: 35
10. The area bounded by the curve $y=|x-1|$ and $y=3-|x|$
A. 6
B. 2
C. 4
D. 3

Answer: C

- Watch Video Solution

11. Let $\mathrm{f}(\mathrm{x})=$ minimum $(x+1, \sqrt{1-x})$ for all $x \leq 1$. Then the area bounded by $\mathrm{y}=\mathrm{f}(\mathrm{x})$ and the x -axis is
A. $\frac{7}{3}$
B. $\frac{7}{6}$
C. $\frac{11}{6}$
D. $\frac{1}{6}$

Answer: B

- Watch Video Solution

12.

The
area
of
the
region
bounded
by
$x=1, x=2, y=4 x+1, y=e^{x}$ is
A. $7+e-e^{2}$
B. $5+e-e^{2}$
C. $7-e+e^{2}$
D. $7-2 e+e^{2}$

Answer: A

Watch Video Solution

Solved Examples Level 2 Single Correct Answer Type Questions

1. The area between the curve $y=-x^{2}+4 x$ and $y=x^{2}-6 x+5$ over the interval $0 \leq x \leq 1$ is
A. $\frac{52}{3}+5 \sqrt{15}$
B. $-\frac{52}{3}+5 \sqrt{15}$
C. $-\frac{52}{3}+3 \sqrt{15}$
D. $\frac{47}{3}+5 \sqrt{15}$

Answer: B

- View Text Solution

2. Find the area of the region bounded by the curve $y^{2}=9 x$ and $y=3 x$.
A. 1
B. $1 / 4$
C. $1 / 2$
D. 2

Answer: C

- Watch Video Solution

3. The area of the plane figure bounded by lines
$y=\sqrt{x}, x \in[0,1], y=x^{2}, x \in[1,2]$ and $y=-x^{2}+2 x+4, x \in[0,2]$ is
A. $10 / 7$
B. $10 / 3$
C. $3 / 5$
D. $4 / 3$
4. The value of $a(a>0)$ for which the area bounded by the curves
$y=\frac{x}{6}+\frac{1}{x^{2}}, y=0, x=a$, and $x=2 a$ has the least value is \qquad
A. 1
B. $\sqrt{2}$
C. 2
D. $2^{1 / 3}$

Answer: D

- Watch Video Solution

5. The area bounded by the curve $y=x\left(x^{2}-1\right)$ and x -axis is
A. 0
B. $\frac{1}{2}$
C. 1
D. $\frac{1}{4}$

Answer: B

- Watch Video Solution

6. The area between the curves $x=1-y^{2}$ and $x=y^{2}-1$ is
A. $\frac{4}{3}$
B. $\frac{1}{3}$
C. $\frac{8}{3}$
D. $\frac{5}{3}$

Answer: C

7. The area bounded by $y=x^{2}, y=\sqrt{x}, 0 \leq x \leq 4$ is
A. $\frac{20}{3}$
B. $\frac{10}{3}$
C. 10
D. $\frac{50}{3}$

Answer: D

- Watch Video Solution

> 8. The area of the region enclosed by $y=x^{3}-2 x^{2}+2$ and $y=3 x+2$ is
A. $\frac{71}{6}$
B. 14
C. $\frac{29}{3}$
D. $\frac{71}{3}$

Answer: A

- View Text Solution

Solved Examples Numerical Answer Type Questions

1. Find the area bounded by the curves $x=y^{2}$ and $x=3-2 y^{2}$.

- Watch Video Solution

2. If A is the area of the figure bounded by the straight lines $x=0$ and $x=$

2 and the curves $\mathrm{y}=2 \mathrm{x}$ and $y=2 x-x^{2}$ then the value of $\left(\frac{3}{\log 2}-A\right)$ is

- Watch Video Solution

3. If S is the area of the figure given below, then S is equal to $(\pi=3.14)$

- Watch Video Solution

4. If A is the area of the loop given below than A is equal to

- View Text Solution

5. If S is the area in the figure below then S is equal to

- View Text Solution

1. The area below $y=e^{x}$ and above $\mathrm{y}=\mathrm{x}$ between $\mathrm{x}=0$ and $\mathrm{x}=2$ is
A. $e^{2}-1$
B. $e^{2}+e$
C. $e^{2}-3$
D. $e+2$

Answer: C

- Watch Video Solution

2. The area between $\mathrm{y}=\mathrm{x}$ and $y=x^{2}, 0 \leq x \leq 2$ is
A. 1
B. $\frac{2}{3}$
C. $\frac{1}{3}$
D. $\frac{4}{3}$

- Watch Video Solution

3. The area of the region bounded by $y=x^{2}-x$ and $y=2 x+4$ is
A. $\frac{175}{6}$
B. $\frac{31}{6}$
C. 12
D. $\frac{125}{6}$

Answer: D

- View Text Solution

4. The area of the region enclosed by the parabola $y=2-x^{2}$ and the straight line $y=-x$ is equal to:
A. $\frac{8 \sqrt{2}+3}{7}$
B. $\frac{8 \sqrt{2}+6}{7}$
C. $\frac{7 \sqrt{2}-1}{5}$
D. $\frac{7 \sqrt{2}+1}{3}$

Answer: B

- Watch Video Solution

5. The area of the region bounded by $y=x^{2}$ and $y=-x^{2}+2$ is
A. $\frac{5}{3}$
B. $\frac{4}{3}$
C. $\frac{8}{3}$
D. 1

Answer: C

Exercise Level 1 Single Correct Answer Type Questions

1. The total area between $y=4 x-x^{2}$ and $y=x$ from $\mathrm{x}=0$ and $\mathrm{x}=4$ is
A. $17 / 3$
B. $37 / 6$
C. $\frac{19}{3}$
D. 4

Answer: c

Watch Video Solution
2. The area between the curves $y=x^{2}$ and $y=x^{1 / 3},-1 \leq x \leq 1$ is
A. $\frac{1}{2}$
B. 2
C. $\frac{3}{4}$
D. $\frac{3}{2}$

Answer: D

- Watch Video Solution

3. The area of the region bounded by the parabola $(y-2)^{2}=x-1$, the tangent to the parabola at the point $(2,3)$ and the x-axis is
A. 9
B. 12
C. 3
D. 6
4. The area bounded by the curves $y=\cos x$ and $y=\sin x$ between the ordinates $x=0$ and $x=\frac{3 \pi}{2}$ is
A. $4 \sqrt{2}-1$
B. $4 \sqrt{2}+1$
C. $4 \sqrt{2}-2$
D. $4 \sqrt{2}+2$

Answer: C

- Watch Video Solution

5. The area included between $x^{2}+y^{2}=4 x$ and $y^{2}=x$ above x-axis is
A. $\frac{4}{3}(3 \pi-8)$
B. $\frac{2}{3}(8+3 \pi)$
C. $\frac{1}{3}(4+3 \pi)$
D. $\frac{5 \sqrt{3}}{2}+\frac{2 \pi}{3}$

Answer: D

- Watch Video Solution

6. The area of the region bounded by $y=2 \cos x, y=3 \tan x$ and the y axis is
A. $1+\frac{3}{2} \log 3-\log 2$
B. $\log \frac{3}{2}$
C. $1+3 \log \frac{2}{\sqrt{3}}$
D. $1+\frac{3}{2} \log 3-\log 8$

Answer: D

7. The area bounded by $y=\sin ^{-1} x$, y-axis and $|y|=\frac{\pi}{2}$ is
A. 2
B. π
C. 2π
D. 1

Answer: A

- Watch Video Solution

8. area of the
region
bounded
by
$x=1, x=2, y=\log x$ and $y=3^{x}$ is
A. $\frac{9}{\log 3}+\log \frac{e}{4}$
B. $\frac{6}{\log 3}-2 \log 2+1$
C. $\frac{3}{\log 3}-2 \log 2$
D. $\frac{9}{\log 3}-2 \log 2+1$

Answer: B

- Watch Video Solution

9. The area inside the parabola $5 x^{2}-y=0$ but outside the parabola $2 x^{3}-y+9=0$ is
A. $4 \sqrt{3}$
B. $6 \sqrt{3}$
C. $12 \sqrt{3}$
D. $8 \sqrt{3}$

Answer: C

10. The area bounded by the curve $y=2 \log x, x$-axis, y-axis and $y=\log 5$ is equal to
A. $3(\sqrt{5}-1)$
B. 4
C. $2(\sqrt{5}-1)$
D. $\sqrt{5}-1$

Answer: C

- View Text Solution

11. Let $A=\left\{(x, y): y^{2} \leq 4 x, y-2 x \geq-2, y \geq 0\right\}$. The area of the region A is
A. $\frac{2}{3}(1+\sqrt{5})^{3 / 2}-2$
B. $\frac{4}{3}(3+\sqrt{5})^{3 / 2}$
C. $\frac{2}{3\lceil 3}\left(3+\lceil 5)^{3 / 2}-\frac{1}{2}(7+3\lceil 5)\right.$
D. $\frac{4}{3}(3+\sqrt{5})^{3 / 2}-(5+4 \sqrt{5})$

Answer: C

- Watch Video Solution

12. The area of the region above x-axis bounded by $y=\cot x, \frac{\pi}{12} \leq x \leq \frac{\pi}{4}$ is
A. 1
B. $\log (\sqrt{2}+1)$
C. $\log (\sqrt{5}+1)$
D. $\log (\sqrt{3}+1)$

Answer: D

1. The area between $x=y+3$ and $x=y^{2}$ from $\mathrm{y}=-1$ to $y=1$ is
A. $\frac{4}{3}$
B. $\frac{16}{3}$
C. $\frac{5}{3}$
D. 4

Answer: B

- Watch Video Solution

2. The area of the region between $y=3 x^{3}-x^{2}-10 x$ and $y=-x^{2}+2 x$ is
A. 10
B. 12
C. 18
D. 24

Answer: D

- Watch Video Solution

3. The area of the region bounded by $\mathrm{y}=\mathrm{x}-1$ and $x=3-y^{2}$ is
A. $\frac{5}{2}$
B. $\frac{7}{2}$
C. $\frac{9}{2}$
D. 4

Answer: C

- Watch Video Solution

4. The area between the curves $y=x^{2}+3$ and $y=-x^{2}-1$ on $[-2,2]$ is
A. $\frac{80}{3}$
B. $\frac{29}{3}$
C. 21
D. $\frac{47}{3}$

Answer: A

- View Text Solution

5.

The
area
the
region
enclosed
$f(x)=x^{3}-10 x$ and $g(x)=6 x, x \geq 0, y \geq 0$ is
A. 24
B. 39
C. 42
D. 84

Answer: B

- Watch Video Solution

6. The area bounded by $y=x^{2}$ and $y=1-x^{2}$ is
A. $\sqrt{8} / 3$
B. $16 / 3$
C. $32 / 3$
D. $16 / 3$

Answer: A

- Watch Video Solution

7. The area of the region bounded by the lines $x=0, x=\frac{\pi}{2}$ and $f(x)=\sin x, g(x)=\cos x$ is (A) $2(\sqrt{2}+1)$ (B) $\sqrt{3}-1$ (C) $2(\sqrt{3}-1)$ (D) $2(\sqrt{2}-1)$
A. $2(\sqrt{2}-1)$
B. $\sqrt{3}-1$
C. $2(\sqrt{3}-1)$
D. $2(\sqrt{2}+1)$

Answer: A

- Watch Video Solution

8. The area of the figure bounded by the curves $y^{2}=2 x+1$ and $x-y-1=0$, is
A. $16 / 3$
B. $4 / 3$
C. $8 / 3$
D. $\frac{11}{3}$

Answer: A

- Watch Video Solution

Exercise Numerical Answer Type Questions

1. If A is the area bonded by $x=\left|y^{2}-1\right|$ and $y=x-5$ then A is equal to

Watch Video Solution

2. If the x-axis divides the area of the rigion bounded by the parabolas $y=4-x-{ }^{2}$ and $y^{2}-x^{2}-x$ in the ratio of $\mathrm{a}: \mathrm{b}$, then ab is equal to
3. The line $y=m x$ bisects the area enclosed by the curve $y=1+4 x-x^{2}$ and the lines $x=0, x=\frac{3}{2} a n d y=0$. Then the value of m is $\frac{13}{6}$ b. $\frac{6}{13}$ c. $\frac{3}{2}$ d. 4

- Watch Video Solution

4. Let A be the area bounded by the curve $y=\sin x(0 \leq x \leq \pi)$ and x axis and B is the area bounded by the curves $y=\sin x(0 \leq x \leq \pi / 2), y=a \cos x(0 \leq x \leq \pi / 2) \quad$ and $\quad \mathrm{x}$-axis $(a>0)$. If $\mathrm{A}: \mathrm{B}=1$, then a is equal to

- View Text Solution

5. If the area bounded by the curve $f(x)=x^{1 / 3}(x-1)$ and the x-axis is A , then the value of 28 A is .
6. The area of the region bounded by the curves $y=|x-2|, \mathrm{x}=1, \mathrm{x}=3$ and thex $-a \xi s i s(A) 3(B) 2(C) 1(D) 4^{`}$
A. 3
B. 2
C. 1
D. 3

Answer: C

- Watch Video Solution

2. The area enclosed between the curve $y=\log _{e}(x+e)$ and the coordinate axes is
A. 3
B. 4
C. 1
D. 2

Answer: C

- Watch Video Solution

3. The area enclosed between the curves $y^{2}=x a n d y=|x|$ is (1) $2 / 3$ (2)

1 (3) $1 / 6$ (4) $1 / 3$
A. $\frac{2}{3}$
B. 1
C. $\frac{1}{6}$
D. $\frac{1}{3}$

Answer: C

4. The area of the plane region bounded by the curves $x+2 y^{2}=0$ and $x+3 y^{2}=1$ is equal to (1) $\frac{5}{3}$ (2) $\frac{1}{3}$ (3) $\frac{2}{3}$ (4) $\frac{4}{3}$
A. $5 / 3$
B. $1 / 3$
C. $2 / 3$
D. $4 / 3$

Answer: D

- Watch Video Solution

5. The area of the region bounded by the parabola $(y-2)^{2}=x-1$, the tangent to the parabola at the point $(2,3)$ and the x-axis is
A. 9
B. 12
C. 3
D. 6

Answer: A

- Watch Video Solution

6. The area bounded by the curves $y=\cos x$ and $y=\sin x$ between the ordinates $\mathrm{x}=0$ and $x=\frac{3 \pi}{2}$, is
A. $4 \sqrt{2}-1$
B. $4 \sqrt{2}+1$
C. $4 \sqrt{2}-2$
D. $4 \sqrt{2}+2$

Answer: C

7. The area bounded by the curves $y^{2}=4 x$ and $x^{2}=4 y$
A. $\frac{32}{3}$
B. $\frac{16}{3}$
C. $\frac{8}{3}$
D. 0

Answer: B

- Watch Video Solution

8. The area bounded between the parabolas $x^{2}=\frac{y}{4}$ and $x^{2}=9 y$ and the straight line $\mathrm{y}=2$ is
A. $\frac{10 \sqrt{2}}{3}$
B. $\frac{20 \sqrt{2}}{3}$
C. $10 \sqrt{2}$
D. $20 \sqrt{2}$

Answer: B

- Watch Video Solution

9. The area bounded by the curves $y=\sqrt{x}, 2 y-x+3=0, \mathrm{X}$-axis and
lying in the first quadrant is
A. 36
B. 18
C. $\frac{27}{4}$
D. 9

Answer: D

10. The area under the curve $y=|\cos x-\sin x|, 0 \leq x \leq \frac{\pi}{2}$, and above x -axis is: (A) $2 \sqrt{2}+2$ (B) 0 (C) $2 \sqrt{2}-2$ (D) $2 \sqrt{2}$
A. $2 \sqrt{2}$
B. $2 \sqrt{2}-2$
C. $2 \sqrt{2}+2$
D. 0

Answer: B

- Watch Video Solution

11. The area bounded by the curve $y=\ln (x)$ and the lines $y=0, y=\ln (3)$ and $x=0$ is equal to
A. 3
B. $3 \log -2$
C. $3 \log 3+2$
D. 2

Answer: D

- Watch Video Solution

12. The area of the region described by $A=\left\{(x, y): x^{2}+y^{2} \leq 1\right.$ and $\left.y^{2} \leq 1-x\right\}$ is:
A. $\frac{\pi}{2}+\frac{4}{3}$
B. $\frac{\pi}{2}-\frac{4}{3}$
C. $\frac{\pi}{2}-\frac{2}{3}$
D. $\frac{\pi}{2}+\frac{2}{3}$

Answer: A
13. Let $A=\left\{(x, y) ; y^{2} \leq 4 x, y-2 x \leq-4\right\}$ The area (insurunits) of the region A is
A. 8
B. 9
C. 10
D. 11

Answer: B

- Watch Video Solution

14. The area of the region bounded by the curve $y=\tan x$, tangent drawn to the curve at $x=\frac{\pi}{4}$ and the x -axis is
A. $\frac{1}{2}\left(\log 2-\frac{1}{2}\right)$
B. $\frac{1}{2}\left(\log 2+\frac{1}{2}\right)$
C. $\frac{1}{2}(1-\log 2)$
D. $\frac{1}{2}(1+\log 2)$

Answer: A

- Watch Video Solution

15. The area (in square units) of the region bounded by the curves $y+2 x^{2}=0, y+3 x^{2}=1$ is equal to
A. $\frac{3}{5}$
B. $\frac{3}{4}$
C. $\frac{1}{3}$
D. $\frac{4}{3}$

Answer: D
16. The area (in square units) of the region described by $\left\{(x, y): y^{2} \leq 2 x\right.$ and $\left.y \leq 4-x\right\}$ is
A. $\frac{7}{32}$
B. $\frac{5}{64}$
C. $\frac{15}{64}$
D. 18

Answer: D

- Watch Video Solution

17. The area (in square units) of the region $\left\{(x, y): y^{2} \geq 2 x\right.$ and $\left.x^{2}+y^{2} \leq 4 x, x \geq 0, y \geq 0\right\}$ is
A. $\pi-\frac{4}{3}$
B. $\pi-\frac{8}{3}$
C. $\pi-\frac{4 \sqrt{2}}{3}$
D. $\frac{\pi}{2}-\frac{2 \sqrt{2}}{3}$

Answer: B

- Watch Video Solution

18. The area (in sq. units) of the region described by $A=\left\{(x, y): y \geq x^{2}-5 x+4, x+y>1, y \leq 0\right\}$ is
A. $\frac{19}{6}$
B. $\frac{17}{6}$
C. $\frac{7}{2}$
D. $\frac{13}{6}$
19. The area (in sq. units) of the region $\left\{(x, y): x \geq 0, x+y \leq 3, x^{2} \leq 4 y\right.$ and $\left.y \leq 1+\sqrt{x}\right\}$ is:
A. $\frac{5}{2}$
B. $\frac{59}{12}$
C. $\frac{3}{2}$
D. $\frac{7}{3}$

Answer: A

- Watch Video Solution

20. The area (in sq. units) of the region
$\{(x, y), x \geq 0, y \geq 0, y \geq x-2$, and $y \leq \sqrt{x}\}$ is
A. $\frac{10}{3}$
B. $\frac{13}{3}$
C. $\frac{5}{3}$
D. $\frac{8}{3}$

Answer: A

- Watch Video Solution

21. Let $g(x)=\cos x^{2}, f(x)=\sqrt{x}$, and $\alpha, \beta(\alpha<\beta)$ be the roots of the quadratic equation $18 x^{2}-9 \pi x+\pi^{2}=0$. Then the area (in sq. units) bounded by the curve $y=(g \circ f)(x)$ and the lines $x=\alpha, x=\beta$ and $y=0$ is
A. $\frac{1}{2}(\sqrt{3}+1)$
B. $\frac{1}{2}(\sqrt{3}-\sqrt{2})$
C. $\frac{1}{2}(\sqrt{2}-1)$
D. $\frac{1}{2}(\sqrt{3}-1)$
22. The area (in sq. units) bounded by the parabola $y=x^{2}-1$, the tangent at the point $(2,3)$ to it and the y-axis is
A. $\frac{14}{3}$
B. $\frac{56}{3}$
C. $\frac{8}{3}$
D. $\frac{32}{3}$

Answer: C

- Watch Video Solution

23.

$A=\{(x, y), 0 \leq y \leq x|x|+1$ and $-1 \leq x \leq 1\}$ in sq. units, is
A. $\frac{2}{3}$
B. $\frac{1}{3}$
C. 2
D. $\frac{4}{3}$

Answer: C

- Watch Video Solution

24. If the area enclosed between the curves $y=k x^{2}$ and $x=k y^{2}$, where $k>0$, is 1 square unit. Then k is: (a) $\frac{1}{\sqrt{3}}$ (b) $\frac{\sqrt{3}}{2}$ (c) $\frac{2}{\sqrt{3}}$ (d) $\sqrt{3}$
A. $\frac{1}{\sqrt{3}}$
B. $\frac{2}{\sqrt{3}}$
C. $\frac{\sqrt{3}}{2}$
D. $\sqrt{3}$

Answer: A
25. Let $I=\int_{a}^{b}\left(x^{4}-2 x^{2}\right) d x$. If I is minimum then the ordered pair (a, b) is:
A. $(-\sqrt{2}, 0)$
B. $(-\sqrt{2}, \sqrt{2}$
C. $(0, \sqrt{2})$
D. $(\sqrt{2},-\sqrt{2})$

Answer: B

- Watch Video Solution

26. The area of the region bounded by the curve $x^{2}=4 y$ and the straight line $x=4 y-2$ is
A. $\frac{5}{4}$
B. $\frac{9}{8}$
C. $\frac{3}{4}$
D. $\frac{7}{8}$

Answer: B

- Watch Video Solution

27. The area (in sq units) of the region bounded by the parabola, $y=x^{2}+2$ and the lines, $y=x+1, x=0$ and $x=3$, is
A. $\frac{15}{4}$
B. $\frac{15}{2}$
C. $\frac{21}{2}$
D. $\frac{17}{4}$

Answer: B

28. The area (in sq units) in the first quadrant bounded by the parabola, $y=x^{2}+1$, the tangent to it at the point $(2,5)$ and the coordinate axes
is
A. $\frac{14}{3}$
B. $\frac{187}{24}$
C. $\frac{37}{24}$
D. $\frac{8}{3}$

Answer: C

- Watch Video Solution

Question From Previous Years B Architecture Entrance Examination Papers

1. The area enclosed by the parabola $y=3\left(1-x^{2}\right)$ and the x-axis is
A. 4
B. 3
C. 9
D. 2

Answer: A

- Watch Video Solution

2. The line $y=x+1$ divided the area the curves $y=\cos x,\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and the x-axis into two regions which are in the ratio
A. $2: 1$
B. $1: 3$
C. $2: 3$
D. 1:1

Watch Video Solution

3. Find the area enclosed by the curves $x^{2}=y, y=x+2, a n d x-a \xi s$.
A. $\frac{5}{4}$
B. $\frac{5}{2}$
C. $\frac{15}{4}$
D. $\frac{5}{6}$

Answer: D

- Watch Video Solution

4. Find the area of the region $\left\{(x, y): x^{2} \leq y \leq|x|\right\}$.
A. $2 \frac{1}{6}$
B. $1 \frac{1}{3}$
C. $\frac{1}{3}$
D. $2 \frac{5}{6}$

Answer: C

- Watch Video Solution

5.

Find
the
area
of
region
$\left\{(x, y): 0 \leq y \leq x^{2}+1,0 \leq y \leq x+1,0 \leq x \leq 2\right\}$.
A. $\frac{23}{3}$
B. $\frac{21}{6}$
C. $\frac{23}{6}$
D. $\frac{15}{2}$

Answer: C

6. The area of the region bounded by curves
$y=1-x^{2}, x+y+1=0$ and $x-y-1=0$ is
A. $\frac{10}{3}$
B. $\frac{7}{3}$
C. $\frac{8}{3}$
D. 3

Answer: B

- Watch Video Solution

7. Find the ratio in which the area bounded by the curves $y^{2}=12 x a n d x^{2}=12 y$ is divided by the line $x=3$.
A. $\frac{147}{4}$
B. $\frac{45}{4}$
C. $\frac{137}{4}$
D. $\frac{245}{4}$

Answer: A

- Watch Video Solution

8. The area (in sq units) of the region bounded by the curve $y=\sqrt{x}$ and the lines $y=0, y=x-2$, is
A. $\frac{10}{3}$
B. $\frac{8}{3}$
C. $\frac{4}{3}$
D. $\frac{16}{3}$
9. If the line $\mathrm{x}=\mathrm{a}$ bisects the area under the curve $y=\frac{1}{x^{2}}, 1 \leq x \leq 9$, then a is equal to
A. $\frac{9}{5}$
B. $\frac{5}{9}$
C. $\frac{9}{4}$
D. $\frac{4}{9}$

Answer: A

- Watch Video Solution

10. If the line, $y=m x$ bisects the area of the region $\left\{(x, y): 0 \leq x \leq \frac{3}{2}, 0 \leq y \leq 1+4 x-x^{2}\right\}$, then m equals:
A. $\frac{39}{16}$
B. $\frac{9}{8}$
C. $\frac{13}{3}$
D. $\frac{13}{6}$

Answer: D

- View Text Solution

11. The area (in sq. units) of the region bounded by the curve $12 y=36-x^{2}$ and the tangents drawn to it at the points, where the curve intersects the x-axis is
A. 12
B. 18
C. 27
D. 6
12. The area (in sq. units) of the region bounded by the curve $\sqrt{x}+\sqrt{y}=1, x, y, \geq 0$ and the tangent to it at the point $\left(\frac{1}{4}, \frac{1}{4}\right)$ is
A. $\frac{1}{36}$
B. $\frac{1}{8}$
C. $\frac{1}{12}$
D. $\frac{1}{24}$

Answer: D

